Homework 5 Stat 550

Dr. Scott

November 9, 2023
Due: Friday 11-17
30 Points

Instructions: We will discuss generally in class before due date. You can work in groups, but turn in your own solutions. Due date flexible.

Where to look: http://www.stat.rice.edu/~scottdw/stat550/HW/
Where to turn in: Canvas upload.

1. Problem 6-25 displays a kernel

$$
K(t) \propto \exp \left(-1 /\left(1-t^{2}\right)\right) \quad-1<t<1,
$$

that has finite support but is infinitely differentiable on the real line.
a. Use NIntegrate in Mathematica to find the correct normalizing constant; then (numerically) compute the variance of this kernel. (The constant given in the book is not correct.)
b. For the geyser dataset (use dget('geyser.dat') to input), plot the default Gaussian KDE using the R function density; record the bandwidth given in the x-axis label. Using the bandwidth transformation formula in equation (6.28), overlay the kernel estimate using the new kernel here. Comments?
2. Enter the Swiss Franc data into R. (The read.table command is in the file.) The data are 6 measurments on the old 1000 franc bills, 100 genuine and 100 counterfeit. We will use only the 5 th and 6 th columns for this problem. (Use as.double(x[,5]) + runif (200,-.05,.05) to transform into a blurred double vector.)
a. Load the ash library in R to compute the bivariate pdf of the data. Plot the blurred data points and use the contour(...)
function with the option add=T to superimpose the contours onto the scatterplot. Hints: Let the limits of the graphing area be given by $\mathrm{xl}=\mathrm{c}(7.5,12.75)$, $\mathrm{yl}=\mathrm{c}(137.5,143.25)$, and choose kopt $=\mathrm{c}(2,3)$, which gives the triweight kernel. Use $\mathrm{xlim}=x l$ and ylim=yl when plotting the data so the contours will fit. Let $a b=c b i n d(x l, y l)$ and $n b i n=c(200,200)$ as inputs to the function bin2, which is input to the function ash2. Play around with the smoothing parameters in function ash2.
b. For this question, repeat part (a) but compute the contours for the genuine (1-100) and counterfeit (101-200) bills separately. Add to the scatter plot.
3. Problem 7-2, with the obvious typo fixed. Hints: Write out the integral as the sum of 2 integrals with domains $z<-u$ and $z>-u$. Then add and subtract another integral so the $E Z=0$ can be computed. Finally, recall $\Phi(-u)=1-\Phi(u)$. This useful identity can be used to show the optimal pointwise L_{1} and L_{2} bandwidths are nearly equal.

Possible research topics for the doctoral students: RKHS, t-SNE/UMAP, Bayesian KDE, NN regression, SOM (self-organizing map), NN density estimation, survival analysis, mixture estimation, adaptive kde.

