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Chapter III: Histograms: Theory and Practice

I histogram most intuitive; first thing taught in intro stat
course; how taught?

I non-density forms: bin counts or as a stem-and-leaf plot

I distinction between histogram as a density estimator and as a
data presentation device?

I Sturges’ Rule for Choosing the Number of Bins
I Histogram with k bins, labelled 0, 1, . . . , k − 1:

B(k−1, p = 1
2 ) ≈ N

(
k − 1

2
,
k − 1

4

)
∼
(
k − 1

x

)
0.5x(1−0.5)k−1−x

I Sturges took the binomial coefficients as the bin counts:

n =
k−1∑
x=0

(
k − 1

x

)
= 2k−1 ⇒ k = 1 + log2 n

I Check boundary condition: n = 1 implies k = 1.



Example with 21 Bins
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Figure: Binomial pdf with p = 0.5 used by Sturges to determine the
number of histogram bins.

k − 1 = 20 =⇒ n = 221 ≈ 2 million

Question: only 21 bins?



The L2 Theory of Univariate Histograms
Pointwise Mean Squared Error and Consistency
I construct an equally spaced mesh with 0 as one mesh point

and let h denote the bin width

{tk = kh, −∞ < k <∞}
I define the kth bin, Bk as the interval [tk , tk+1)

t−1 = − h t0 = 0 t1 = h t2 = 2h t3 = 3h

ν−1 ν0 ν1

f̂−1

f̂0

f̂1

f̂2

B−1 B0 B1 B2

Figure: Notation for construction of an equally-spaced histogram.



I Define the density form of the histogram as

f̂ (x) =
νk
nh

for x ∈ Bk

I νk is the bin count; clearly,
∑

k νk = n

I can you verify that ∫ ∞
x=−∞

f̂ (x) dx = 1 ?

I break up the integral bin-by-bin:∫ ∞
x=−∞

f̂ (x) dx =
∞∑

k=−∞

∫
x∈Bk

f̂ (x) dx

=
∞∑

k=−∞

νk
nh
× h =

n

n
= 1



I The bin count νk ∼ B(n, pk), where pk =
∫
Bk

f (t) dt

I For a fixed point x ∈ Bk , what is the mean squared error of
f̂ (x)? Recall MSE = Var + Bias2.

Var f̂ (x) =
Var νk
(nh)2

=
npk(1− pk)

n2h2
=

pk(1− pk)

nh2

Bias f̂ (x) = E f̂ (x)− f (x) =
E νk
nh
− f (x) =

pk
h
− f (x)

I Let’s try to be exact as long as possible. By the Mean Value
Theorem,

pk =

∫
Bk

f (t) dt = h f (ξk) for some ξk ∈ Bk

I Also assume f (x) is Lipschitz continuous (weaker than
assuming the derivative f ′(x) exists):

|f (y)− f (x)| < γk |y − x | for all x , y ∈ Bk



I Then we have the following results for the variance and bias:

Var f̂ (x) =
pk(1− pk)

nh2
≤ pk

nh2
=

h f (ξk)

nh2
=

f (ξk)

nh

Bias f̂ (x) =
pk
h
− f (x) =

h f (ξk)

h
− f (x) = f (ξk)− f (x)

∴
∣∣∣Bias f̂ (x)

∣∣∣ =
∣∣∣f (ξk)− f (x)

∣∣∣ ≤ γk ∣∣ξk − x
∣∣ ≤ γk h

I Combining, we have

MSE f̂ (x) ≤ f (ξk)

nh
+ γ2k h

2 (var + bias2)

I Observations and conclusions:
I histogram consistent if, as n→∞, h→ 0 and nh→∞
I In fact, h∗ = O(n−1/3) which results in MSE∗ = O(n−2/3).
I So the convergence is slower than O(n−1) for parameters.
I Very different than the logarithmic rate suggested by Sturges’

rule.



Understanding the Noise in a Histogram

I The noise inherent in the histogram varies directly with the
square root of its height, since var {f̂ (x)} ≈ f (x)/(nh)

I There is a variance-stabilizing transformation for Poisson data,
namely, the square root function.

I A little work gives us the result√
var

√
f̂ (x) ≈ 1

2
√
f (x)

√
f (x)

nh
=

1

2
√
nh

which does not depend on the unknown density function value
f (x)

I Tukey advocated plotting the histogram on a square root
scale, which he called the rootgram.

I True in <d as well. But the contours of f̂ (x) and
√

f̂ (x) are
identical! Conclusion?



Global L2 Histogram Error

I Want to use the decomposition IMSE = IV + ISB for this
purpose (integrated variance and the integrated squared bias)

IV =

∫ ∞
−∞

Var f̂ (x) dx

=
∞∑

k=−∞

∫
Bk

Var f̂ (x) dx

=
∞∑

k=−∞

pk(1− pk)

nh2
× h

=
1

nh

∞∑
k=−∞

[
pk − p2k

]
=

1

nh
− 1

n

∫ ∞
−∞

f (t)2dt + · · ·



Bias Calculations
Here is a picture of how the bias behaves in the limit:

Bias > 0 f  '(x) > 0

Bias < 0

0 h

Figure: Bias of histogram estimator in a typical bin.



Taylor Series approximation for the bin probability p0

The bin probability, p0, may be approximated by

p0 =

∫ h

0
f (t) dt =

∫ h

0

[
f (x) + (t − x)f ′(x) +

1

2
(t − x)2f ′′(x) + · · ·

]
dt

= hf (x) + h

(
h

2
− x

)
f ′(x) + O(h3)

It then follows that

Bias f̂ (x) =
p0
h
− f (x) =

(
h

2
− x

)
f ′(x) + O(h2)

Note that the bias is greater where the slope of f (x) is greater (see
figure again). The integrated squared bias over the bin B0 is given
by: (here we use the Generalized MVT for some η0 ∈ B0)∫

B0

(
h

2
− x

)2

f ′(x)2 dx = f ′(η0)2
∫ h

0

(
h

2
− x

)2

dx =
h3

12
f ′(η0)2



Accumulated the Integrated Squared Bias bin-by-bin
I The previous result for bin B0 easily generalizes to bin Bk :

ISB =
∞∑

k=−∞
ISBk

=
∞∑

k=−∞

h3

12
f ′(ηk)2 for some ηk ∈ Bk

=
h2

12

∞∑
k=−∞

f ′(ηk)2 × h (a Riemannian sum)

=
h2

12

∫ ∞
−∞

f ′(x)2 dx + o(h2)

=
1

12
h2R(f ′) + o(h2) ,

I Introducing a new notation for the “roughness” of a function:

R(φ) =

∫ ∞
−∞

φ(t)2 dt



AMISE (h) Result

I Combining the asymptotic approximations to the IV and ISB,
we have

AMISE (h) =
1

nh
+

1

12
h2R(f ′) hence,

h∗ = [6/R(f ′)]1/3n−1/3

AMISE ∗ = (3/4)2/3R(f ′)1/3n−2/3

I A practical data-based rule (Normal Reference Rule):

f ∼ N(µ, σ2) =⇒ R(f ′) =
1

4
√
πσ3

I Plugging into h∗ gives us Scott’s Rule:

h∗ =
(
24
√
πσ3

)1/3
n−1/3

≈ 3.5 σ̂ n−1/3



Literature Review

I These results first appeared in
I Scott, D.W. (1979) “On Optimal and Data-Based

Histograms,” Biometrika, 66:605–610
I Freedman, D. and Diaconis, P. (1981). “On the Histogram as

a Density Estimator: L2 Theory,” Zeitschrift für
Wahrscheinlichkeitstheorie und verwandte Gebiete, 57:453–476

I Freedman and Diaconis proposed an alternative data-based
rule:

hFD = 2 (IQR) n−1/3

where IQR is the interquartile range, a more robust measure
of scale

I For normal data, the Freedman-Diaconis rule is about 23%
narrower than Scott’s rule

I Soon we will look at other estimates of the unknown R(f ′)



Comparison of Bandwidth Rules

Table: Comparison of Number of Bins from Three Normal Reference
Rules

n Sturges’ Rule Scott’s Rule F-D Rule

50 5.6 6.3 8.5
100 7.6 8.0 10.8
500 10.0 13.6 18.3

1,000 11.0 17.2 23.2
5,000 13.3 29.4 39.6

10,000 14.3 37.0 49.9
100,000 17.6 79.8 107.6

Clearly, Sturges’ Rule is too conservative, oversmoothing the
histogram and losing information with bins that are too wide.



Asymptotic MISE Curves for Beta(5, 5) Density

The Beta(5, 5) is close to normal, but with finite support.
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Figure: AMISE versus bandwidth for a B(5, 5) density. The best and
Sturges’ bandwidths are indicated by points on the curves. The
Freedman-Diaconis and Scott reference bandwidths are shown as
semicircular and triangular points, respectively, along the x-axis.



Equivalent Sample Sizes for Normal Data

I Here we compare the sample size required to achieve a certain
AMISE by the histogram and several parametric estimators.

I From our earlier results, it follows that if f = N(0, 1), then
the optimal AMISE of the histogram is

AMISE∗ = [9/(64
√
π)]1/3n−2/3 ≈ 0.4297n−2/3.

I Then we find

Table: Equivalent Sample Sizes for Several Normal Density Estimators

Estimator
AMISE N(x̄ , s2) N(x̄ , 1) N(0, s2) Histogram

0.002468 100 57 43 2,297
0.000247 1,000 571 429 72,634

I Steep penalty for such generality?



Sensitivity of MISE to Bin Width
I How close to h∗ can be get, and how close should we be?

I Suppose we use a bin width, h, which is multiple of h∗. How
is the error AMISE affected?

AMISE(ch∗)

AMISE(h∗)
=

2 + c3

3c
(1)

I This author’s rule-of-thumb is to be within 10-15% of h∗

Table: Sensitivity of AMISE to Error in Bin Width Choice h = ch∗

(d = 1, r = 0) p = 1 p = 2 p = 4
c (c3 + 2)/(3c) (c5 + 4)/(5c) (c9 + 8)/(9c)

1/2 1.42 1.61 1.78
3/4 1.08 1.13 1.20

1 1 1 1
4/3 1.09 1.23 1.78

2 1.67 3.60 28.89



Simulation evaluation of ch∗ for N(0, 1) data (n = 1000)
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Figure: Three histograms of 1,000 normal observations with bin widths
h = ( 1

2h
∗, h∗, 2h∗).



Simulation evaluation of ch∗ for N(0, 1) data (n = 106)
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Figure: Exact ISE of four histograms of a million normal points with bin
widths h = (h∗/2, h∗, 2h∗, 4h∗), where h∗ = 0.035.



Exact MISE versus Asymptotic MISE

I Generalize the definition of the histogram mesh to allow the
bin width of Bk to be hk . The it is straightforward to show we
have the following (exact) expressions:

IV =
1

n

∑
k

pk(1− pk)

hk
and

ISB = R(f )−
∑
k

p2k
hk

I For the special case where hk = h, the (exact)

MISE (h, t0, n) =
1

nh
− n + 1

nh

∑
k

p2k + R(f )



AMISE versus MISE for N(0, 1) Data
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Figure: AMISE and exact MISE for the N(0, 1) density.



Decomposition of MISE into IV and ISB for N(0, 1) Data
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Figure: Integrated squared-bias/variance decomposition of MISE for the
N(0, 1) density.



How Good Is the Sensitivity Curve for h = ch∗?
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Figure: Complete MISE curve for the N(0, 1) density when n = 100. The
asymptotic sensitivity relationship holds over a wide range of bin widths.



Similar Results for the Lognormal Density?
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Figure: AMISE and exact MISE for the lognormal density.



Thoughts on the Lognormal Density

I The roughness of a density is summarized in R(f ′)

I The lognormal density is infinitely differentiable, but is very
rough statistically!

I In fact, 90% of the roughness, R(f ′) = 3e9/4/(8
√
π), comes

from the small interval [0, 0.27], even though the mode is
located at x = 0.368 and the 99th percentile is x = 10.2.

I This suggests we should try to use an adaptive mesh; that is,
use hk rather than a fixed mesh where all hk = h. But hard to
do in practice.

I For small samples, the histogram cannot track the rapid rise
near x = 0

I Useful to think of sample sizes as being one of
I inadequate
I transitional
I sufficient



Influence of Bin Edge Location on MISE
I Our Taylor Series analysis of the AMISE revealed that the

choice of the bin origin, t0, is asymptotically negligible
I A discontinuity in the density at a boundary

I causes no problem if place t0 at the (known) boundary
I can reduce the convergence rate to O(n−1/2) if unknown

0

1

f(x) = e−x



Table: Potential Impact on AMISE of Lack of Knowledge of Boundary
Discontinuities for Negative Exponential Data

X > 0 Known X > 0 Unknown
n h∗ AMISE∗ h∗ AMISE∗ Error Ratio

10 1.063 0.14116 0.3162 0.31623 2.24
100 0.493 0.03041 0.1 0.1 3.29

1,000 0.229 0.00655 0.0316 0.03162 4.83
10,000 0.106 0.00141 0.01 0.01 7.09

100,000 0.049 0.00030 0.0032 0.00316 10.54



Optimally Adaptive Histogram Meshes

Bounds on MISE Improvement for Adaptive Histograms

I Try to find h∗ for each point x by considering the
asymptotically adaptive pointwise histogram MSE (AAMSE):

AAMSE (x) ≈ f (x)

nh
+

1

12
h2f ′(x)2

I Therefore, we obtain the following results:

h∗(x) =

[
6f (x)

nf ′(x)2

]1/3
⇒ AAMSE∗(x) =

[
3f (x)f ′(x)

4n

]2/3
.

I This leads to the best adaptive AMISE

AAMISE ∗ = (3/4)2/3
(∫ ∞
−∞

[f ′(x)f (x)]2/3dx

)
n−2/3



How Much Better is AAMISE ∗ versus AMISE ∗?

Table: Reduced AMISE Using an Optimally Adaptive Histogram Mesh

Density
∫

(f 2f ′2)1/3 ÷ [
∫
f ′2]1/3

N(0, 1) 0.4648/0.5205 = 89.3%

3/4 (1− x2)+ 0.8292/1.1447 = 72.4%

15/16 (1− x2)2+ 2.1105/2.8231 = 74.8%

315/256 (1− x2)4+ 1.4197/1.6393 = 86.6%

Cauchy 0.3612/0.4303 = 84.0%
Lognormal 0.6948/1.2615 = 55.1%

Notes: Given how hard it is likely to be in practice to actually
construct an adaptive mesh, it is reassuring to see that the
(potential) improvement is marginal for N(µ, σ2) data. Jensen’s
inequality assures the ratio in the table is always less than 1.



Some Optimal Meshes

These were found by numerical minization of the exact MISE
formulae.
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Figure: Representation of optimal adaptive meshes for the transformed
Beta(5,5) density, which equals 315/256 (1− x2)4+. The optimal
adaptive mesh is also indicated by tick marks above each graph.



An Intuitively Appealing Adaptive Mesh: Percentile
Meshes or Adaptive Histograms with Equal Bin Counts

This can be modeled by picking the mesh to satisfy

tk = F−1X

(
k

m

)
, k = 0, . . . ,m .
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Figure: Exact MISE for fixed (•••••) and percentile (ooooo) meshes
with k bins over (−1, 1) for the transformed Beta(5,5) density with
n = 100 and 1,000.



Using Adaptive Meshes vs. Transformation

I Since skewed data have greater roughness (and hence
approximation error), it is easy to consider transformations of
the raw data before constructing the histogram

I For example, Economists usually transform household income,
x , to log(1 + x). This is a nice choice, as x = 0 is 0 on both
scales.

I Also used to justify percentage raises, rather than absolute
raises?

I Tukey’s transformation ladder:

. . . , x−2, x−1, x−1/2, x−1/4, log(x), x1/4, x1/2, x , x2, x3, . . .

I Box-Cox family is similar, but continuous in λ for x > 0:

x (λ) =

{
xλ−1
λ λ 6= 0

log x λ = 0 .



More Practical Data-Based Bin Width Rules:
Oversmoothed Bin Widths

I Since the density f (x) can be very rough, there is no lower
bound on h∗

I However, it turns out there are useful upper bounds on h∗

I Recall that h∗ =
(

6
R(f ′)

)1/3
n−1/3

I George Terrell proposed the following variational problem:

min
f

∫ ∞
−∞

f ′(x)2dx s/t support of f = [−0.5, 0.5]

I The solution is

f1(x) =
3

2
(1− 4x2)I[−.5,.5](x) =

3

2
(1− 4x2)+

I f1(x) is the smoothest density with fixed support
(“oversmoothed” in George’s jargon)



Oversmoothed Bin Width Rule

I Note that R(f ′1) = 12.

I For a (known) support interval (a, b), we have the inequality

R(f ′) ≥ 12/(b − a)3

I Therefore, we have the useful result that

h∗ =

(
6

nR(f ′)

)1/3

≤
(

6(b − a)3

n · 12

)1/3

=
b − a
3
√

2n
≡ hOS

I Rearranging, gives us a lower bound on the number of bins:

number of bins =
b − a

h∗
≥ b − a

hOS
=

3
√

2n

I Compare to Sturges’ Rule: number of bins = 1 + log2(n)



Examples: Buffalo snowfall (n = 63, 3
√

126 = 5.01) and

LRL (n = 25,752, 3
√

51504 = 37.2) data
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Figure: Oversmoothed histograms of the Buffalo snowfall and LRL data.

Note that the true “optimal” histogram must be rougher. Why?



Another Oversmoothed Rule Based Upon Variance

The variational problem

min
f

∫ ∞
−∞

f ′(x)2dx s/t variance of f = σ2

has the solution

f2(x) =
15

16
√

7σ

(
1− x2

7σ2

)2

I[−
√
7σ,
√
7σ](x).

for which R(f ′2) = 15
√

7/(343σ3).
Hence, we have the result

h∗ ≤
(

6

nR(f ′2)

)1/3

=

(
686σ3

5
√

7n

)1/3

≈ 3.729σ n−1/3 ≡ hOS .

Note: Recall the constant is 3.5 for N(µ, σ2) data.



Yet Another Oversmoothed Rule Based Upon IQR

I Consider the variation problem where the constraint is the
robust scale measure provided by the interquartile range
(IQR).

I This leads to the oversmoothed rule

h∗ ≤ 2.603(IQR)n−1/3 ≡ hOS

I Recall that the Freedman-Diaconis rule used the constant 2.

I In practice, very good estimates of σ and IQR are available,
as well as the interval of support (a, b).

I Can compute all three oversmoothed rules and use the
smallest.



Examples

I For N(µ, σ2) data,

h∗ = 3.5σ n−1/3 < 3.729σ n−1/3 = hOS (= upper bound)

which is only off by 6.4%.

I However, for lognormal data, σ2 = e(e − 1); hence,

h∗ = 1.44n−1/3 < 3.729× 2.161× n−1/3 = 8.059n−1/3

which is only 18% of hOS. Not a “tight” approximation.

I For standard Cauchy data, R(f ′) = 1/(4π) and the IQR
covers (−1, 1); hence,

h∗ = 4.225n−1/3 < 2.603× 2× n−1/3 = 5.206n−1/3

which is useful formula for a density whose variance is
undefined.



Bin Width Selection: Biased & Unbiased Cross-Validation

I the goal now is to produce bin widths ĥCV that are close to h∗

for finite samples

I we know that h∗ ∈ (0, hOS), which is better than (0,∞)

I biased cross-validation tries to estimate R(f ′) with the data

I unbiased cross-validation tries to estimate ISE (h) itself
I References:

I BCV: Scott and Terrell (1987) JASA
I UCV: Rudemo (1982) and Bowman (1984)



Biased Cross-Validation (or Plug-In)

I The only unknown quantity in the AMISE is R(f ′); use the
histogram itself to estimate the derivative by finite differences:

f̂ ′(tk) =

[νk+1

nh −
νk
nh

]
h

I This leads us to

R̂1 =
∑

k
[f̂ ′(tk)]2 · h =

1

n2h3

∑
k

(νk+1 − νk)2

I Similar Taylor Series arguments lead to the result

E[R̂1] = R(f ′) + 2/(nh3) + O(h) .

I The term 2/(nh3) does not vanish; indeed, with optimal
smoothing, it converges to R(f ′)/3 by our theorem

I So biased upwards by a factor of a third



Biased Cross-Validation (continued)

I An asymptotically unbiased estimate of R(f ′) is simply

R̂h(f ′) =
1

n2h3

∑
k

(νk+1 − νk)2 − 2

nh3

I Plugging this into the AMISE (h) expression

AMISE (h) =
1

nh
+

1

12
h2R(f ′)

gives us

BCV (h) =
5

6nh
+

1

12n2h

∑
k

(νk+1 − νk)2

I Try different histograms giving different bin counts {νk} and
find minimum, subject to the constraint that ĥBCV ≤ hOS



Unbiased Cross-Validation
I Expand the ISE and consider each integral separately

ISE (h) =

∫ [
f̂ (x)− f (x)

]2
dx

= R(f̂ )− 2

∫
f̂ (x)f (x) dx + R(f )

= R(f̂ )− 2E f̂ (X ) + constant

I Using a clever unbiased estimator for the second term gives us

UCV (h) = R(f̂ )− 2

n

n∑
i=1

f̂−i (xi )

where f̂−i (xi ) is the histogram constructed without the data
point xi and then evaluated in the bin where xi falls

UCV (h) =
2

(n − 1)h
− n + 1

n2(n − 1)h

∑
k

ν2k



JAVA Histogram Applet: Scott and Lane

I Long term NSF grant with David Lane, Dept of Psychology

I on-line statistics book

I case studies

I demonstrations

I click here: http://www.davidmlane.com

http://www.davidmlane.com


Examples: Vertical Scale Carefully Matched
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Figure: BCV and UCV functions for a N(0, 1) sample of 1,000 points.



Example: German Household Income Data
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Figure: Six histograms of the 1983 German income sample of 5,625
households (Sturges 13 bins; BCV 95 bins; UCV 95-200 bins)



Example: German Household Income Data (continued)
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Figure: BCV and UCV functions of the 1983 German income sample of
5,625 households. A second UCV curve is shown for the blurred
logarithmic data. (Note: UCV will return h = 0 if thinks discrete data.)



Remarks on BCV and UCV

I Both BCV (h) and UCV (h) converge to 0 as h→∞
I Since UCV (h) omitted the (unknown) constant R(f ), this is

unbiased and why the minimizer occurs at negative values
I For BCV (h), the value 0 would be the global minimum, so

must pay attention to the constraint ĥ ≤ hOS

I Scott and Terrell (1987) showed the UCV is much noiser than
BCV ; however, UCV (h) is unbiased for all values of h,
whereas BCV (h) is accurate only in a range around h∗

I BCV (h) often has no local minimum; so choose one of the
other rules

I Check the histogram demo at davidmlane.com

I BCV targets the AMISE criterion, while UCV goes directly
after ISE or MISE

I However, slow convergence: σhCV
/hCV = O(n−1/6)

I Hall, Marron,... showed can construct a better (point)
estimator of R(f ′) with higher rate of convergence



L2 Theory for Multivariate Histograms

I The derivation of the MISE for the multivariate histogram is
only slightly more complicated than in the univariate case.

I Having gone through some of the details and issues in the
univariate case, we will not dwell on those details from now on
(see the book)

I Consider a regular partition of size h1 × h2 × · · · × hd

f̂ (x) =
νk

nh1h2 · · · hd
for x ∈ Bk

I Similar Binomial approximations lead to

AMISE (h) = AIV + AISB =
1

nh1h2 · · · hd
+

1

12

d∑
i=1

h2i R(fi ).



Best Bin Widths for Multivariate Histogram

I R(fi ) is the multivariate integral of the square of the partial
derivative

h∗k = R(fk)−1/2

(
6

d∏
i=1

R(fi )
1/2

)1/(2+d)

n−1/(2+d),

AMISE ∗ =
d + 2

2
6−d/(2+d)

(
d∏

i=1

R(fi )

)1/(2+d)

n−2/(2+d).

I Note the bin widths get wider as the dimension d increases

I But the rate of convergence of the AMISE slows as d
increases

I Aside: Surprising fact is that any orthogonal rotation of the
multivariate bins does not change the total AMISE



EXAMPLE: Multivariate Normal Case

I Suppose that X ∼ N(µ,Σ), Σ = Diag(σ21, σ
2
2, . . . , σ

2
d).

I Let cd = σ1σ2 · · ·σd ; then

R(fi ) = (2d+1πd/2σ2i cd)−1

and

h∗k = 2 · 31/(2+d)πd/(4+2d)σkn
−1/(2+d)

AMISE ∗ = (2 + d) 2−(1+d)3−d/(2+d)π−d
2/(4+2d)c−1d n−2/(2+d)

I Note: The constant in h∗k varies from 3.4908 in one dimension
to the limiting value of 2

√
π = 3.5449 as d →∞

normal reference rule : h∗k ≈ 3.5σk n
−1/(2+d)



Curse of Dimensionality

I Bellman first coined the phrase “curse of dimensionality” to
describe the exponential growth in combinatorial optimization
as the dimension increases.

I In our context, it is the number of bins that grows
exponentially as the dimension increases (and most will be
empty)

Table: Example of Asymptotically Optimal Bin Widths and Errors
for f = N(0d , Id)

Dimension d h∗d AMISE∗d
1 3.491n−1/3 0.430n−2/3

2 3.504n−1/4 0.163n−2/4

3 3.512n−1/5 0.058n−2/5

4 3.518n−1/6 0.020n−2/6

I The convergence rates of the parametric estimates are O(n−1)



How to Compare AMISE Across Dimesions

I Epanechnikov created a dimensionless quantity

εd ≡
MISE

R(f )

{
≈ 2+d

2 3
−d
2+d π

d
2+d n−

2
2+d when f = N(0d , Id)

}

Table: Equivalent Sample Sizes Across Dimensions for the
Multivariate Normal Density, Based on Epanechnikov’s Criterion

d Equivalent Sample Sizes (Read Down Each Column)

1 10 100 1,000
2 39 838 18,053
3 172 7,967 369,806
4 838 83,776 8,377,580
5 4,446 957,834 206,359,075

I Rather pessemistic



Another Comparison of AMISE Across Dimesions

I Count the bins in a region of interest

I For normal data, this would be a sphere with radius rd
containing 99% of the probability mass; recall

Prob

(
d∑

i=1

Z 2
i ≤ r2d

)
= 0.99 ⇒ rd =

√
χ2
.99(d)

Table: Approximate Number of Bins in the Region of Interest for a
Multivariate Histogram of 1,000 Normal Points

d h∗d rd Number of Bins

1 0.35 2.57 15
2 0.62 3.03 75
3 0.88 3.37 235
4 1.11 3.64 573
5 1.30 3.88 1,254



A Special Case: d = 2 with Nonzero Correlation

I Have ignored the effect of correlation on h∗

I With f (x1, x2) = N(µ1, µ2, σ
2
1, σ

2
2, ρ)

R(f1) =
[
8π(1− ρ2)3/2σ31σ2

]−1
R(f2) =

[
8π(1− ρ2)3/2σ1σ

3
2

]−1
I Now can minimize the AMISE (h1, h2) and get

h∗i = 3.504σi (1− ρ2)3/8 n−1/4

AMISE ∗ =
0.122

σ1σ2
(1− ρ2)−3/4 n−1/2

I As expected, as the correlation increases, the bin widths
decrease to try to follow the steep sides of the bivariate
normal density; but the AMISE blows up as ρ→ ±1. Full
rank necessary!



Interesting Problem: Optimal Regular Bivariate Meshes

I There are 3 regular polygons one might use as bins for a
bivariate histogram. Is one better than the others? Why?

I squares, equilateral triangles, or hexagons

Figure: The 3 possible regular polygon meshes for bivariate histograms.



Optimal Regular Bivariate Meshes (Results)

I Scott (1988) showed that if parameterize the bins so that
have same area, h2, then

AMISE(h) =
1

nh2
+ ch2

[
R(fx) + R(fy )

]
where

c =

[
1

12
,

1

6
√

3
,

5

36
√

3

]
=

[
1

12
,

1

10.39
,

1

12.47

]
I Conclusions:

I triangles are the worst
I hexagons are best, but only a bit better than squares
I circles would be optimal, but cannot tile <2

I note data can always to scaled so that rectangular bins same
as squares



Optimal Regular Bivariate Meshes (Uses)
I Dan Carr (GMU) has advocated using histogram glyphs as an

alternative to bivariate scatter diagrams for massive datasets.
I He observed that it his idea did not work well using

square/rectangular bins, and that hexagonal bins broke the
visual North/South East/West vice
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Figure: Hexagon glyphs for the lagged Old Faithful duration data
and for the lipid dataset for 320 males with heart disease.



Applications: Modes and Bumps in a Histogram

I Many of our case studies display multimodal densities, an
“unexpected” feature of the data

I I.J. Good wrote an influential JASA paper on using
nonparametric density estimation to identify and evaluation
modes and bumps in his maximum penalized likelihood
estimate. In one dimension <1,
I a mode is a set (a collection of points) where f ′(x) = 0 and

f ′′(x) < 0
I a bump is a set (a collection of disjoint intervals) where

f ′′(x) < 0

I Thus bump-hunting is more general than estimating the mode

I A bump does not necessarily contain a mode, although a
mode is always located in a bump.



Bump-hunting Examples
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Figure: Histogram of U.S. penny thickness with one mode and a bump.
In the right frame, the histogram of the LRL dataset with h = 10 MeV is
plotted on a square root scale; the 13 bumps found by Good and Gaskins
are indicated by the line segments above the histogram.



Aside: Bump-hunting using mixture models

I Bumps may be thought of as clusters

I The mode in a bump may be thought of as its exemplar

I In practical bump-hunting situations, the density is often
modeled as a mixture of several component densities

f (x) =

q∑
i=1

wi φ(x
∣∣µi , σ2i ) where

q∑
i=1

wi = 1

I Interestingly, although there may be q clusters/components,
there may be only one mode, or anything in-between

I Thus, the mixture problem is even more general than
bump-hunting, since a normal mixture density can reveal more
clusters than bumps/modes

I However, unless widely separated components, the estimates
of the parameters {q,wi , µi , σ

2
i } are highly unstable



Rough and Ready Tests for Modes and Bumps

I natural to examine plots of (standardized) first and second
differences for evidence of modes and bumps, respectively

νk+1 − νk√
νk+1 + νk

and
νk+1 − 2νk + νk−1√
νk+1 + 4νk + νk−1

I since the bin counts can be approximately modeled as
independent Poisson random variables. For example,
var (νk+1 − νk) ≈ νk+1 + νk .

I Alternatively, we may focus on finite differences of the
rootgram, using the fact that the square root is the variance
stabilizing transformation for Poisson random variables, with
variance of 1/4:

√
νk+1 −

√
νk and

√
νk+1 − 2

√
νk +

√
νk−1

which have approximate variances 1/2 = 1
4 + 1

4 and
3/2 = 1

4 + (−2)2 14 + 1
4 , respectively



Good’s LRL Data and 13 Bumps Re-Visited

I Consider a plot of the second differences of the root bin
counts of the LRL histogram with h = 30 MeV. Red lines
indicated the 13 bumps found by Good and Gaskins. The
dashed line indicates the approximate 5% cutoff level for a
bump to be significant.
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I Under the null hypothesis that there is no bump, i.e., the
second difference is nonnegative, the one-sided 5% test level
will be at -1.645

√
3/2 =-2.015. (Missed bump at 1145 MeV?)



Properties of Histogram “Modes:” Some Theory

I Suppose, without loss of generality, that the true density f
has a mode at 0

I Construct a histogram where bin B0 = [−h/2, h/2)

I The bin count ν0 ∼ B(n, p0) ≈ P(λ0), which is the Poisson
density with λ0 = np0

I Asymptotically, the adjacent bin counts, (ν−k , . . . , ν0, . . . , νk),
are independent and normally distributed with νi ≈ N(λi , λi )

I Question: What is the probability that the histogram will
have a sample mode in bin B0?



Properties of Histogram “Modes:” (continued)

I Conditioning on the observed bin count in B0, we obtain

Prob

(
ν0 = arg max

|j |≤k
νj

)
=
∑
x0

Pr

(
ν0 = arg max

|j |≤k
νj

∣∣∣ν0 = x0

)
fν0(x0)

=
∑
x0

Pr(νj < x0; |j | ≤ k , j 6= 0)fν0(x0)

≈
∫
x0

k∏
j=−k
j 6=0

Φ

(
x0 − λj√

λj

)
φ

(
x0 − λ0√

λ0

)
1√
λ0

dx0

I Skipping a number of Taylor Series approximations to bin
probabilities, we obtain



Pr

(
ν0 = arg max

|j |≤k
νj

)
≈
∫
y

k∏
j=−k
j 6=0

Φ

(
λ0 − λj + y

√
λ0√

λj

)
φ(y) dy

≈
∫
y

k∏
j=−k
j 6=0

Φ

(
y − j2h5/2

√
n

2

f ′′(0)√
f (0)

+ · · ·

)
φ(y) dy

I In the case of an optimal histogram, h = cn−1/3, so that

lim
n→∞

[h5/2
√
n] = O(n−1/3)→ 0 hence,

lim
n→∞

Pr

(
ν0 = arg max

|j |≤k
νj

)
=

∫
y

Φ(y)2kφ(y)dy =
1

2k + 1
(!!)

I Tentative conclusion: The “optimal” AMISE histogram is too
flat near the mode!! Bins are too narrow.



Simulation Confirmation of This Result
Here is a simulation of optimally smoothed normal data with
n = 1,000,000, the average number of sample modes in the
histogram was 20! Now admittedly, most of these “modes” were
just small aberrations, but the result is rather unexpected.
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Figure: Rootgram of 2 histograms of a million normal points (h∗/2, h∗)



Properties of Histogram “Modes:” (continued)

I In the previous slides, we assumed there was a mode at x = 0

I Now we assume that there is not a mode at x = 0

I A similar analysis shows the probability that bin B0 is a mode
(which it is not!) converges to a fixed nonzero probability as
n→∞.

I The probability is smaller the larger the magnitude of f ′(0).

I Note the simulation showed false modes only near the mode
and in the tails where φ′(x) ≈ 0, and not where the slope is
large

I The bottom line is that histograms which are “optimal” with
respect to MISE may not be “optimal” for other purposes.



Optimal Histogram Bandwidths for Modes

I What is the bandwidth that provides better estimates of the
derivative of the unknown density?

I Want the finite difference derivative estimate to be close to
the true f ′(x):

f̂ ′(x) =
f̂0 − f̂−1

h
=
ν0 − ν−1

nh2
− h/2 < x < h/2 .

I Finding the AMISE of f̂ ′(x), the final result is

AMISEf̂ ′(h) =
2

nh3
+

1

12
h2R(f ′′); therefore,

h∗ = 62/5 R(f ′′)−1/5 n−1/5

AMISE∗ = 5 · 6−6/5R(f ′′)3/5n−2/5.

I If f ∼ N(µ, σ2), then h∗ ≈ 2.8σ n−1/5 (not n−1/3)

I Notice the result uses R(f ′′) rather than R(f ′); intuition?



Simulations of Normal reference rule for histogram
derivative: Start by using h∗ for the density
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Near x=0
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2.90 2.95 3.00 3.05 3.10

Near x=3

Figure: For 10 N(0, 1) samples of size n = 107, (vertically shifted)
blowups of portions of the ten histograms using h∗ = 0.01625 in the
vicinity of x = 0, 1, and 3. Each histogram snippet shows the bin of
interest and 7 bins on either side.



Simulations of Normal reference rule for histogram
derivative: Next use h∗ for the derivative
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Near x=0
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Figure: For the same 10 N(0, 1) samples of size n = 107, (vertically
shifted) blowups of portions of the ten histograms using h∗ = 0.1115 in
the vicinity of x = 0, 1, and 3. Each histogram snippet shows the bin of
interest and 3 bins on either side.



Simulations of Normal reference rule for estimating φ′(x)
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Figure: For a standard normal sample n = 105 points, comparison of the
histogram “derivative” estimates using the optimal density and derivative
bandwidths.



A Useful Bimodal Mixture Density to Understand
I A useful density to understand estimation difficulties

fM(x) =
3

4
φ(x
∣∣0, 1) +

1

4
φ(x
∣∣3, 1

32
)

I Designed so that f (0) ≈ f (3), but f ′′(0) 6= f ′′(3)
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Figure: Three histograms of 1,000 points from the two-component
mixture. The bandwidths (from left to right) are optimal for the left
component, the mixture, and the right component, respectively.



Wrapping Up: Other Error Criteria: L1, L4, L6, L8, and L∞

Table: Optimal Bandwidths for N(0, 1) Data with Different Lp Criteria

Error Criterion Optimal Bin Width Expected Error

L1 (upper bound) 2.72n−1/3 1.6258n−1/3

L1 (numerical) 3.37n−1/3 1.1896n−1/3

L2 3.49n−1/3 (0.6555n−1/3)2

L4 3.78n−1/3 (0.6031n−1/3)4

L6 4.00n−1/3 (0.6432n−1/3)6

L8 4.18n−1/3 (0.6903n−1/3)8

I Increasing the order p gives more weight to the high-density
regions, and less in the tails. Thus, wider bins.

I Again, any fixed-bandwidth criterion will pay most attention
to regions where the density is rough; that region is not
necessarily in the tails.



Concluding Thoughts about Histograms

I The histogram is the most commonly used nonparametric
probability density estimator.

I The histogram turns out not to be the most statistical
efficient estimator.

I However, the histogram is the most computationally efficient
estimator.

I If analyzing massive datasets, the loss of statistical efficiency
may not be important.

I That said, there are better estimators for data in dimensions
<1 −→ <5 that we will study next.

I Lots of room to teach histograms in introductory courses in
an improved manner.


