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Chapter VI: Kernel Density Estimators (KDE)

I The basic kernel estimator may be written compactly as

f̂ (x) =
1

nh

n∑
i=1

K

(
x − xi

h

)
=

1

n

n∑
i=1

Kh(x − xi )

where Kh(t) = K (t/h)/h, which is a simple rescaling (think of
h as the standard deviation)

I The second form makes it clear that the KDE is an equal
mixture of “kernels” centered on each data point (not a
parsimonious mixture!)

I The kernel function is usually centered at 0. The Gaussian
kernel is popular.



Alternative Motivations for Kernel Density Estimators

I From the vantage point of a statistician or instructor, the
averaging of shifted histograms seems a natural motivation for
kernel estimators.

I However, scientists from other disciplines may find it more
natural to think in terms of
I numerical analysis (finite differences)
I convolution smoothing (high pass/low pass filters signal

processing)
I approximating functions by orthogonal series

I we will briefly examine each of these



Numerical Analysis and Finite Differences
I Rosenblatt derived the kernel estimator as a one-sided finite

difference approximation to the derivative of Fn(·):

f̂ (x) =
Fn(x)− Fn(x − h)

h
=

1

nh

n∑
i=1

I[x−h,x)(xi )

=
1

nh

n∑
i=1

I(0,1]

(
x − xi

h

)
,

which a kernel estimator with K = U(0, 1].

I As E[Fn(x)] = F (x) for all x , then with the Taylor’s series

F (x − h) = F (x)− hf (x) +
1

2
h2f ′(x)− 1

6
h3f ′′(x) + · · ·

I Gives Bias{f̂ (x)} = E[f̂ (x)]− f (x) = −1
2hf
′(x) + O(h2)

I Giving the integrated squared bias is h2R(f ′)/4, like a
histogram (but 3 times larger!!)



Numerical Analysis and Finite Differences (cont’d)
I Rosenblatt next considered the two-sided finite difference

f̂ (x) =
Fn
(
x + h

2

)
− Fn

(
x − h

2

)
h

for which the bias turns out to be h2f ′′(x)/24; cf FP.

I The kernel here is U(−0.5, 0.5), which is centered at 0.
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Figure: Central difference estimates of the Buffalo snowfall data.



Smoothing by Convolution
I An engineer would smooth a noisy function, f , by convolving

with a smooth filter,

(f ∗ w)(x) =

∫ ∞
−∞

f (t)w(x − t) dt

I Recall fn is the generalized derivativer of the ecdf, Fn:[
dFn
dx

]
∗ w =

∫ ∞
−∞

[
1

n

n∑
i=1

δ(t − xi )

]
w(x − t) dt

=
1

n

n∑
i=1

[∫ ∞
−∞

δ(t − xi )w(x − t) dt

]

=
1

n

n∑
i=1

w(x − xi )

which is precisely a KDE with kernel Kh(·) = w(·)
I Engineers speak of low-pass filters and half-power points etc



Orthogonal Series Approximations

I Suppose the true density is supported on (0, 1) and is periodic

I So a Fourier series basis, φν(t) = exp (2πiνt) is appropriate

I We write the density as the Fourier series

f (x) =
∞∑

ν=−∞
fν φν(x)

where

fν =< f , φν >=

∫ 1

0
f (x)φ∗ν(x) dx

= E φ∗ν(X ) in statistical terms

hence f̂ν =
1

n

n∑
`=1

φ∗ν(x`) is an unbiased estimate



Orthogonal Series Approximations (continued)

I Note that the Fourier cofficients for the epdf are

fν =

∫ 1

0

[
1

n

n∑
`=1

δ(x − x`)

]
φ∗ν(x) dx =

1

n

n∑
`=1

φ∗ν(x`) = f̂ν

so that this orthogonal series estimator just reproduces the
epdf!!! Tarter proposed truncating the number of Fourier
coefficients included, while Wahba suggested applying a
smooth window to accomplish the same task.
I Tarter’s boxcar filter

wν(k) =

{
1 |ν| ≤ k

0 otherwise

I Wahba’s tapering window filter

wν(λ, p) =
1

1 + λ(2πν)2p
for |ν| ≤ n/2



Orthogonal Series Approximations (continued)

I Both forms of the weighted/truncated Fourier estimate may
be written explicitly as

f̂ (x) =
∑
ν

wν

[
1

n

n∑
`=1

φ∗ν(x`)

]
φν(x)

=
1

n

n∑
`=1

[∑
ν

wν φ
∗
ν(x`)φν(x)

]

=
1

n

n∑
`=1

[∑
ν

wν e
2πiν(x−x`)

]

where the bracketed quantity is the equivalent kernel.



Orthogonal Series Approximations (concluded)
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Figure: Examples of equivalent kernels for orthogonal series estimators.
The 4 Wahba kernels (bottom row) have been selected to match the
peak height of the corresponding Kronmal–Tarter–Watson kernels (top
row). The Kronmal–Tarter–Watson kernels are independent of sample
size; the Wahba examples are for n = 16.



Theoretical Properties: Univariate Case

I The kernel estimator is much easier to analyze than the
binned estimators, since it is the arithemtic mean of n iid
random variables

1

h
K

(
x − Xi

h

)
≡ Kh(x ,Xi )

I Therefore,

E{f̂ (x)} = EKh(x ,X ) and

var {f̂ (x)} =
1

n
var Kh(x ,X )



Theoretical Properties: Univariate Case (cont’d)

I Now

EKh(x ,X ) =

∫
1

h
K

(
x − t

h

)
f (t) dt =

∫
K (w)f (x − hw) dw

= f (x)

∫
K (w)− hf ′(x)

∫
wK (w) +

1

2
h2f ′′(x)

∫
w2K (w) + · · ·

I And

var Kh(x ,X ) = E

[
1

h
K

(
x − X

h

)]2

−
[

E
1

h
K

(
x − X

h

)]2

I We just computed the second term as [f (x)
∫
K (w) + · · · ]2,

while the first term is∫
1

h2
K

(
x − t

h

)2

f (t) dt =

∫
1

h
K (w)2f (x−hw) dw ≈ f (x)R(K )

h



Theoretical Properties: Univariate Case (cont’d)

I If the kernel satisfies the three constraints∫
K (w) = 1,

∫
wK (w) = 0, and

∫
w2K (w) ≡ σ2

K > 0

I then the expectation EKh(x ,X ) becomes

= f (x)

∫
K (w)− hf ′(x)

∫
wK (w) +

1

2
h2f ′′(x)

∫
w2K (w) + · · ·

= f (x)− 0 +
1

2
h2 σ2

K f ′′(x) + · · ·

so that the bias is O(h2) like the FP.

I In fact,

Bias(x) =
1

2
h2σ2

K f
′′(x)+O(h4) ⇒ ISB =

1

4
h4σ4

KR(f ′′)+O(h6)



Theoretical Properties: Univariate Case (cont’d)

I Similarly,

var (x) =
f (x)R(K )

nh
− f (x)2

n
+ O

(
h

n

)
⇒

IV =
R(K )

nh
− R(f )

n
+ · · · .

I Assembling, we have shown

AMISE =
R(K )

nh
+

1

4
h4σ4

KR(f ′′)

h∗ =

[
R(K )

σ4
KR(f ′′)

]1/5

n−1/5

AMISE ∗ =
5

4
[σKR(K )]4/5R(f ′′)1/5n−4/5



Comments

I It is easy to check that the ratio of AIV to AISB in the
AMISE∗ is 4:1 (versus 2:1 for a histogram)

I Since R(φ′′(x
∣∣0, σ2)) = 3/(8

√
πσ5), the normal reference rule

bandwidth with a normal kernel is

normal reference rule : h = (4/3)1/5σ n−1/5 ≈ 1.06 σ̂ n−1/5



Estimation of Derivatives

I Estimation of the derivative is straight-forward

f̂ (r)(x) =
d r

dx r
1

nh

n∑
i=1

K

(
x − xi

h

)
=

1

nhr+1

n∑
i=1

K (r)

(
x − xi

h

)
.

I To see how the variance and bias behave:

var {f̂ (r)(x)} ≈ n

(nhr+1)2
E

[
K (r)

(
x − X

h

)2
]
≈ f (x)R(K (r))

nh2r+1
;

Ef̂ ′(x) =
1

h

[
fx ∫ K ′ − hf ′x ∫ wK ′ +

h2

2
f ′′x ∫ w2K ′ − h3

6
f ′′′x ∫ w3K ′ + ·

]
where f

(r)
x ≡ f (r)(x).

I If K is symmetric, ∫ w rK ′ = 0 for even r . while ∫ wK ′ = −1
and ∫ w3K ′ = −3σ2

K integrating by parts.



Estimation of Derivatives: Theoretical Summary
I Combining these results gives us

AMISE (f̂ (r)) =
R(K (r))

nh2r+1
+

1

4
h4σ4

KR(f (r+2))

h∗r =

[
(2r + 1)R(K (r))

σ4
KR(f (r+2))

]1/(2r+5)

n−1/(2r+5)

AMISE ∗(f̂ (r)) =
2r + 5

4
R(K (r))

4
2r+5

[
σ4
KR(f (r+2))/(2r + 1)

] 2r+1
2r+5

n
−4

2r+5

I The bias term remains O(h4), but each additional derivative
order introduces 2 extra powers of h in the variance.

I The optimal smoothing parameters h∗ for the first and second
derivatives are O(n−1/7) and O(n−1/9), respectively, while the
AMISE∗ is O(n−4/7) and O(n−4/9).

I Each order of derivative is as hard as adding 2 dimensions to
the density!



Choice of Kernel

I Turns out that any probability density with mean 0 that is
symmetric and unimodal is good enough to be a kernel.

I Common choices are N(0, 1) and Beta(k + 1, k + 1) shifted to
the interval (−1, 1):

K (t) ∝ (1− t2)k+

I For small values of k , these are often named
I k = 0 Rosenblatt’s U(−1, 1) kernel
I k = 1 Epanechnikov’s kernel (oversmoothed)
I k = 2 Tukey’s biweight kernel
I k = 3 Triweight kernel (used by Bill Cleveland in lowess)

I In fact, the limit of these kernels is N(0, 1), properly rescaled.



Higher-Order Kernels

I Recall the bias of the KDE is 1
2h

2σ2
K f
′′(x)

I Can you zero this out by choosing a kernel with σ2
K = 0?

I Answer: Not if K (t) ≥ 0.

I But if allow negative kernels, can choose an order-p kernel
satisfying∫

K = 1;

∫
w iK = 0, i = 1, · · · , p−1; and

∫
wpK 6= 0

I Letting µi ≡
∫
w iK (w)dw , the bias becomes

Bias{f̂ (x)} =
1

p!
hpµpf

(p)(x) + · · ·



AMISE with Higher-Order Kernels

I The variance expression is unchanged, so have

AMISE (h) =
R(K )

nh
+

1

(p!)2
µ2
p R(f (p)) h2p

h∗ =

[
(p!)2R(K )

2pµ2
pR(f (p))

]1/(2p+1)

n−1/(2p+1)

AMISE ∗ = 2p+1
2p

[
2p µ2

p R(K )2pR(f (p))/(p!)2
]1/(2p+1)

n−2p/(2p+1)

I Note that as p increases, the rate of convergence approaches
the magical O(n−1)

I In practice, do not see much gain for p > 4



Some Examples of Higher-Order Kernels

Table: Some Simple Polynomial Higher-Order Kernels

p Kp on (−1, 1) N(0, 1) AMISE∗

2 3
4 (1− t2) 0.320n−4/5

4 15
32 (1− t2)(3− 7t2) 0.482n−8/9

6 105
256 (1− t2)(5− 30t2 + 33t4) 0.581n−12/13

8 315
4,096 (1− t2)(35− 385t2 + 1, 001t4 − 715t6) 0.681n−16/17



Some Examples of Higher-Order Kernels
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Figure: Examples of higher-order kernels that are low-order polynomials.
The right panel shows the corresponding N(0, 1) AMISE∗ curves on a
log–log scale.



Some Examples of Higher-Order Kernels
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Some Examples of Higher-Order Kernels
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Figure: Positive and negative ASH estimates of the steel surface data.
Kernels used were K2 and K4.



Some Examples of Higher-Order Kernels
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smoothing parameters. The ASH estimate is depicted in its histogram
form. Notice the estimate gets rougher as h increases. Unusual.



Optimal Kernels

I The best kernel minimizes AMISE ∗

AMISE ∗ ∝ [σKR(K )]4/5

I Leading to the optimization problem

min
K

R(K ) s/t σ2
K = σ2

I The solution is

K ∗2 (t) =
3

4
(1− t2)I[−1,1](t)

I Any other kernel requires slightly more data to achieve the
same AMISE

σKR(K )

σK∗
2
R(K ∗2 )

=
σKR(K )

3/(5
√

5)



Table: Some Common and Some Unusual Kernels and Their Relative
Efficiencies. All kernels are supported on [−1, 1] unless noted otherwise.

Kernel Equation σKR(K ) Eff.

Uniform U(−1, 1) 0.2887 1.0758
Triangle (1− |t|)+ 0.2722 1.0143
Epanechnikov 3

4 (1− t2)+ 0.2683 1
Biweight 15

16 (1− t2)2
+ 0.2700 1.0061

Triweight 35
32 (1− t2)3

+ 0.2720 1.0135
Normal N(0, 1) 0.2821 1.0513
Cosine arch π

4 cosπ2 t 0.2685 1.0005
Indifferent FP See Problem 0.2750 1.0249

Dble. exp. 1
2e
−|t|, |t| ≤ ∞ 0.3536 1.3176

Skewed 2860(t + 2
7 )3

+( 5
7 − t)9

+ 0.2835 1.0567
Dble. Epan. 3|t|(1− |t|)+ 0.3286 1.2247

Shifted exp. e−(t+1), t > −1 0.5743 1.8634

FP See Theorem 0.3405 1.2690



Equivalent Kernels

I It is easy enough to use the formulae for h∗ so the kernel
estimates are essentially the same for different kernels:

h∗1
h∗2

=

[
R(K1)/σ4

K1

R(K2)/σ4
K2

]1/5

=
σK2

σK1

[
σK1R(K1)

σK2R(K2)

]1/5

.

I Recall that the factors σKR(K ) are essentially the same for all
kernels, we may use the approximation

Equivalent kernel rescaling: h∗2 ≈
σK1

σK2

h∗1.



Table: Factors for Equivalent Smoothing Among Popular Kernelsa

From \ To Normal Uniform Epan. Triangle Biwt. Triwt.

Normal 1 1.740 2.214 2.432 2.623 2.978
Uniform 0.575 1 1.272 1.398 1.507 1.711
Epanech. 0.452 0.786 1 1.099 1.185 1.345
Triangle 0.411 0.715 0.910 1 1.078 1.225
Biwt. 0.381 0.663 0.844 0.927 1 1.136
Triwt. 0.336 0.584 0.743 0.817 0.881 1

aTo go from h1 to h2, multiply h1 by the factor in the table
in the row labeled K1 and in the column labeled K2.



Boundary Kernels
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Figure: (Left frame) Examples of the “floating” boundary kernels Kc(t),
where −1 < c < 0. (Right frame) Assuming the boundary x ≥ 0, each
kernel Kc(t) is drawn centered on the data point, xi = −c , which is
indicated by the dashed vertical line.



Zero Constrained Boundary Kernels
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Figure: Examples of “zero” boundary kernels as in Figure ??.



Boundary Kernels Applied

−1 0 1 2 3 4 5 6

0.
0

0.
5

1.
0

Neg exp den

Floating ker

Zero kernel

Biweight ker

−.04  0  .04  .08
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0
1.

2 Beta(3,9) density

Floating kernel

Zero kernel

Biweight ker

Figure: (Left frame) Example with negative exponential data—with and
without boundary modification for n = 100 and h = 0.93. The “floating”
and “zero” boundary kernels are defined in Equations (??) and (??),
respectively. (Right frame) Example with Beta(3,9) density in a
neighborhood of 0 for n = 100 and h = 0.11.



Application of Both Boundary Kernels
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Figure: Density estimate of 857 fastest times in the 1991 Houston
Tenneco Marathon. The data are the ratio to the leader’s time for the
race. Different boundary kernels were used on each extreme. A histogram
is shown for comparison.



Product Kernels

I The general form of a product kernel estimator is given by

f̂ (x) =
1

nh1 · · · hd

n∑
i=1


d∏

j=1

K

(
xj − xij

hj

) .

Triangle Epanechnikov Biweight Triweight

Figure: Product kernel examples for 4 kernels.

a



Multivariate Rules of Thumb

I We won’t go into the AMISE details, but those results are
useful

normal reference rule : h∗i =

(
4

d + 2

)1/(d+4)

σi n
−1/(d+4)

I The coefficient ranges over the interval (0.924, 1.059), with a
limit equal to 1 as d →∞; hence, an easy-to-remember
formula is

Scott’s rule in <d : ĥi = σ̂i n
−1/(d+4)



More General Kernels

I Let H be a d × d nonsingular matrix and K : Rd → R1 be a
kernel satisfying conditions given below.

I Then the general multivariate kernel estimator is

f̂ (x) =
1

n|H|

n∑
i=1

K (H−1(x− xi )) .

I Kernel conditions ∫
<d

K (w) dw = 1∫
<d

wK (w) dw = 0d∫
<d

wwTK (w) dw = Id



Easy Out

I Consider the kernel N(0,Σ) K (t) ∝ exp
(
−1

2ttΣ−1t
)

I Recall the eigen (spectral) representation of Σ, which gives us
several useful formulae

Σ = ΓΛΓt

Σ−1 = ΓΛ−1Γt

Σ−1/2 = ΓΛ−1/2Γt

where Λ contains eigenvalues and Γ contains eigenvectors

I Then a typical term in the KDE becomes

exp
(
−1

2 (x− xi )
tΣ−1(x− xi )

)
= exp

(
−1

2yty
)

letting y = Σ−1/2(x− xi )

I So equivalent to use a product kernel on the transformed data!



When is an Estimator Nonparametric?
I Terrell showed that all density estimators, even parametric

estimators may be expressed as a kernel estimator

I Without going into details, the kernel estimator form of the
MLE N(x̄ , 1) is

K (x , y ,Fn) =
1 + (y − x̄)(x − x̄)√

2π
e−

1
2

(x−x̄)2

so that the density estimate may be written as

f̂ (x) =
1

n

n∑
i=1

1 + (xi − x̄)(x − x̄)√
2π

e−(x−x̄)2/2 =
1√
2π

e−(x−x̄)2/2

I Terrell showed that a parametric kernel was not local; that
is, the influence of the point x on y could be large, even when
they were far apart

I A nonparametric kernel is local; for example, what happens
in one histogram bin has almost no impact anywhere else.



Brief Overview of Cross-Validation (BCV and UCV)

I The same ideas that worked for the histogram work for kernel
estimators

I For example, a plug-in estimator of R(f ′′) is

R(f̂ ′′h ) =
3

8
√
πn2h5

n∑
i=1

n∑
j=1

(
1−∆2

ij +
1

12
∆4

ij

)
e−

1
4

∆2
ij

where

∆ij =
xi − xj

h

I As with the histogram, this is a little too big

ER(f̂ ′′h ) = R(f ′′) +
R(K ′′)

nh5
+ O(h2)

so we subtract off that constant term



UCV and BCV Formulae

I For a N(0, 1) kernel, the magic formulae are

UCV (h) =
1

2nh
√
π

+
1

n2h
√
π

∑
i<j

(
e−∆2

ij/4 −
√

8 e−∆2
ij/2
)

BCV (h) =
1

2nh
√
π

+
1

64n2h
√
π

∑
i<j

(
∆4

ij − 12∆2
ij + 12

)
e−∆2

ij/4

I Given their quite different motivations, it is remarkable how
similar these are?

I Charles Taylor also proposed a bootstrap risk estimator:

BMISE∗(h) =

1 +
√

2
n

∑
i<j

[
√

2 e−
∆2

ij

4 − 4√
3
e−

∆2
ij

6 + e−
∆2

ij

8

]
2nh
√
π



Examples
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Figure: UCV and BCV estimates of the steel surface data (n = 15, 000)
using the triweight ASH. The UCV bandwidth was tied at 1.2 and 1.3,
while the BCV bandwidth was 1.2 (shown): both estimates were virtually
identical.



Buffalo Snowfall Data Example
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Figure: Normal kernel cross-validation algorithms and density estimates
for the snowfall data (n = 63). The CV bandwidths are indicated by
arrows and the oversmoothed bandwidth by the dashed line. The UCV,
BCV, and oversmoothed density estimates are represented by the dashed,
solid, and dotted lines, respectively.



Old Faithful Geyser Data Example
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Figure: Normal kernel cross-validation algorithms and density estimates
for the geyser dataset (n = 107). The CV bandwidths are indicated by
arrows and the oversmoothed bandwidth by a solid line. The UCV, BCV,
and oversmoothed density estimates are represented by the dashed, solid,
and dotted lines, respectively.



Better Plug-In Cross-Validation
I Start with a slightly longer version of AMISE (h):

AMISE (h) =
R(K )

nh
+

1

4
h4µ2

2R(f ′′)− 1

24
h6µ2µ4R(f ′′′)

I Need to find estimates of R(f ′′′) as well as R(f ′′)

I Hall, Marron, Sheather, Jones introduce two auxiliary
smoothing parameters, λ1 and λ2 and separate kernel
estimates just for those functionals, resulting in the risk
estimator

AM̂ISE (h) =
R(K )

nh
+

1

4
h4µ2

2R̂λ1(f ′′)− 1

24
h6µ2µ4R̂λ2(f ′′′)

I Rather than plotting, have the approximation

ĥPI =

[
Ĵ1

n

]1
5

+

[
Ĵ1

n

]3
5

· Ĵ2 ; Ĵ1 =
R(K )

µ2
2R̂λ1(f ′′)

, Ĵ2 =
µ4R̂λ2(f ′′′)

µ2R̂λ1(f ′′)



How Well Does This Work In Practice? Simulations
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Figure: Twenty-one examples of the AMISE approximation of the plug-in
rule with N(0, 1) data and a normal kernel. The plug-in bandwidth for
each simulation is shown by the blue dot on the risk curve. The vertical
dotted line indicates the normal reference rule (with σ = 1). Note that
the horizontal axis is the same for each sample size, but the vertical scale
(not labeled) zooms in on the relevant area.



How Well Does This Work In Practice? Examples
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Multivariate Cross-Validation (Simulation)

●
●

UCV

0.2 0.3 0.4 0.5 0.6

0.
2

0.
3

0.
4

0.
5

0.
6

●
●
●

BCV

0.2 0.3 0.4 0.5 0.6

●
●
●

bootstrap

0.2 0.3 0.4 0.5 0.6

●

Figure: Estimated MISE( hx , hy ) using UCV, BCV, and the bootstrap
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each criterion is below the diagonal.



Multivariate Cross-Validation (Blood Fat Data)
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Convergence Rates (Relative)
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Adaptive Kernel Smoothing

I There are two different (and intuitive) ways of defining an
adaptive kernel estimator compared to the fixed bandwidth

f̂ (x) =
1

nhd

n∑
i=1

K

(
x− xi
h

)
=

1

n

n∑
i=1

Kh(x− xi )

I (1) A different (but fixed) bandwidth at each x:

f̂1(x) =
1

n

n∑
i=1

Khx(x− xi ) where hx ≡ h(x, x, f )

I (2) A different bandwidth at each data point xi :

f̂2(x) =
1

n

n∑
i=1

Khi (x− xi ) where hi ≡ h(xi , xi , f )



Sain and Scott Example of f̂2(x) (lipid data)
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Figure: (Left) Twelve contours of the UCV-calibrated (ĥ = 0.276)
bivariate Gaussian fixed-kernel estimate of the standardized log
cholesterol and triglyceride data. (Middle) Seven clusters from k-means.
(Right) The adaptive kernel estimator. The 7 bandwidths range from
0.174 to 2.36. The mode is 54% greater than in the left frame. The 19
contour levels are the same as in the left frame plus 7 more at higher
levels.



Wrapping Up

I Kernel estimates are very general and very effective in
dimensions 1–5.

I The ASH is a useful way to actually compute because of the
pre-binning

I There are some FFT tricks, but these require lots of padding
with zero’s and full estimation (whereas, the ASH can
estimates slices without going to the full dimension)

I In the interest of time, we skipped over interesting topics
I oversmoothing
I zero-bias estimation
I nearest-neighbor density estimation (another adaptive

procedure)


