Nonparametric Function Estimation Stat $550^{1} \quad$ Chapter 9 Special Topics

David W Scott ${ }^{2}$

Rice University

November 7
Fall 2023
Rice University
${ }^{1}$ A course based upon the 2nd edition of Multivariate Density Estimation; Theory, Practice, and Visualization, John Wiley \& Sons, 2015
${ }^{2}$ www.stat.rice.edu/~scottdw/

Chapter IX: Other Applications

- An abbreviated sampling of advanced applications
- Classification, Discrimination, and Likelihood Ratios
- The lipid data re-visited
- Risk analysis of plasma lipid dataset.

Figure: (Upper left) Normal fit "-" group. (Upper right) Normal fit " + " group. (Middle left) Overlay of 2 normal fits. (Middle right) Overlap of ASH of f_{+}[biweight kernel $\left.h=(21.7,0.33)\right]$ and normal fit to " + " group. (Lower left) Contours of parametric $\log _{10}(L R)$. (Lower right) $\log _{10}(L R)$ nonparametric estimate.

Likelihood Ratio Views Lipid Data: Parametric vs Nonparametric

Figure: Perspective plots of the $\log _{10}$ likelihood ratio surfaces in previous Figure. The range of the vertical axes is $(-0.91,0.91)$ in both frames, corresponding to a range of odds in favor of disease from 0.15:1 to 8.1:1.

LANDSAT Classification

Table: Classification Cross-Tabulations Based on Trivariate Gaussian and ASH Fits to the Landsat Data ${ }^{\text {a }}$

	PRED	Sunflwr	Wheat	Barley	\% Right	Smoothed
NORM	Sunflwr	1,191	9	0	99.3\%	100.0\%
	Wheat	10	665	335	65.8\%	80.3\%
TRUTH:	Barley	10	314	1,066	76.7\%	93.7\%
ASH	Sunflwr	1,194	5	0	99.5\%	100.0\%
	Wheat	7	773	230	76.5\%	93.7\%
TRUTH:	Barley	3	361	1,026	73.8\%	89.9\%

${ }^{a}$ The first 3 columns summarize the predictions of the classifier using the training data. (book)(Classification!majority prediction) (book)(Classification!prediction) The last column summarizes the rates using a classification rule based on a majority rule of a pixel and its 8 neighbors.

Mixture: MCLUST Library (lipid example)

Figure: Mclust (2005 version) applied to log-lipid dataset ($n=320$).
frametitleClustering: The Mode Tree (Geyser Data)

Figure: A mode tree and dendrogram of the geyser eruption times. The dendrogram is the hierarchical clustering tree based on average linkage.

Clustering: The 2-D Mode Tree (Lagged Geyser Data)

Figura. Rivariato modo tron of tho larood ooveor datacot Contrure if tho

Surprise: Number of Modes Not Monotone With h

A simple example where an equal mixture of 3 bivariate normal kernels at the corners of an equilateral triangle can have 1,3 , or 4 modes!

Figure: Contours of a bivariate Gaussian kernel density estimator with $n=3$ points (black dots) on the unit circle forming an equilateral triangle. A highly nonlinear set of contour levels are displayed, so that the contours near the modes are emphasized.

Clusters in Images

Figure: Gray scale images of the three MRI variables $\left(t_{1}, t_{2}, s d\right)$.

Hill-Climbing to Local Modes

Figure: (Left) ASH contours of $\left(t_{1}, t_{2}\right)$ of an MRI image with 24,476 pixels. (Center) Hill-climbing of individual pixel values to the nearest mode. (Right) The 70 modes found are superimposed on two contours.

Tumor Detection

Figure: MRI images and subsets.

Data With Holes in \Re^{3}

Figure: Pairwise scatterplots of 5,000 trivariate simulated points with a hole. The hole is actually a region of lower density rather than a region around the origin with no data.

$$
0
$$

$$
0
$$

0

LANDSAT Images and Histogram Equalization

Figure: Histograms of raw data from Landsat scene and transformed data that are more nearly uniform. The increased dynamic range in the gray

THANK YOU!!

Any questions: scottdw@rice.edu

