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Introduction

I It is a pleasure to stand before you and share this material. I
hope this will be a highly interactive format, and that you will
feel free to raise your hand with questions of clarification.

I Classical parametric statistics has evolved to handle
nonparametric forms.

I Now we have entered the realm of big data, data sciences,
massive datasets, data mining, machine learning, and now
deep learning.

I Hal Varian, the chief economist at Google, opined:
The sexy job in the next 10 years will be statisticians.
People think I am joking, but who would have guessed
that computer engineers would have been the sexy job of
the 1990s?

I The material in this course is always the beginning of the new
statistics.



Introduction (continue)

I Our general approach is to build on the notion that all
statistical techniques are straightforward, if the underlying
density function is known — we shall estimate the unknown
multivariate pdf nonparametrically

I Our computer power increases the demand for tool that can
detect and summarize the structure in multivariate data

I NPDE is recognized as a useful tool in 1-D and 2-D; we will
demonstrate that is a powerful tool in high dimensions, with
particular emphasis on <3 and <4

I We will introduce the major ideas via the classical histogram,
the most widely applied and intuitive nonparametric density
estimator — then develop links between the histogram and
more statistically efficient method



Introduction (concluded)

I The nonparametric world is more complex that its parametric
counterpart — we have selected material that is
representative of the broad spectrum of theoretical results
available, with an eye on the potential user

I Visualization is a key aspect of effective multivariate
nonparametric analysis — most analyses and results can be
presented graphically (cf Tukey’s “exploratory data analysis”)

I Background assumed? I’ll try to keep it light.
I Mathematics: Taylor’s series, approximations, optimization
I Statistics: basic moments, variance, mean squared error,

Binomial, normal
I Advanced Statistics: will introduce clustering, classification



Chapter I: Representation and Geometry Data in <d

Key ideas:

I parametric analysis is most powerful (if model correct)

I nonparametric analysis is most flexible

I graphical analysis for discovering the unexpected
I options for graphical tools for visualizing structure in

multidimensional data:
I depicting the data points themselves
I displaying functions estimated from those points



Introduction

I classical linear multivariate statistical methods reply primarily
upon analysis of the covariance matrix — effective for
datasets with hundreds of variables

I “unparametric” methods may be loosely collected under the
heading of exploratory data analysis — a graph may provide a
more concise representation than a parametric model, because
hundreds of parameters may be involved

I nonparametric approaches are intermediate — but calibration
is hard since nonparametric estimates must be optimized
separately for each application

I on the other hand, we take the point of view that no
nonparametric estimate is wrong, just different aspects of the
solution are emphasized

I The “curse of optimality” might suggest that this is an
illogical point of view?



Historical Perspective

I Sir Francis Galton discovered the correlation coefficient
empirically, which had a strong influence on Karl Pearson

I Pearson is best known for his goodness-of-fit tests, frequency
curves, biometry, but Pearson was also a strong proponent of
the geometrical representation of data

I From his lectures in November, 1891, at a job interview at
Gresham College in London, we read from his syllabus this
cryptic note:
I Erroneous opinion that Geometry is only a means of popular

representation: it is a fundamental method of investigating
and analysing statistical material. (his italics)

I He also coined the words “histogram”, “chartograms”,
“sterograms”, “stigmograms”, ...



Fisher’s point of view

I But Fisher held a different point of view; see his comments on
diagrams in Statistical Methods for Research Workers (1932):

The preliminary examination of most data is facilitated by
the use of diagrams. Diagrams prove nothing, but bring
outstanding features readily to the eye; they are therefore
no substitute for such critical tests as may be applied to
the data, but are valuable in suggesting such tests, and in
explaining the conclusions founded upon them.

I Fisher and Pearson had long-standing feuds, which can be
traced to fundamental disagreements about parametric versus
nonparametric modeling and the underlying assumptions.

I An emphasis on optimization and the efficiency of statistical
procedures has been a hallmark of mathematical statistics
ever since.



Graphical Display of Multivariate Data Points

I one problem is coping with massive data sets

I becomes exponentially more difficult as the dimensionality of
the data increases, a phenomenon known as the curse of
dimensionality

I the goal of statistical data analysis is to extract the maximum
information from the data, and to present a product that is as
accurate and as useful as possible

I the data may, for example, be strongly non-normal, fall onto a
nonlinear subspace, exhibit multiple modes, or be asymmetric.



Multivariate Scatter Diagrams
I pairwise scatter diagrams — multivariate structure?
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Figure: Pairwise scatter diagrams of the Iris data with the 3 species
labeled.



JMP Visualizations of Iris Data



JMP Visualizations with Normal Fits



Heart Disease Example: Substantial overlap of classes
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Figure: Scatter diagrams of blood lipid concentrations for 320 diseased
and 51 nondiseased males.



Landsat IV Example: Overplotting problems n > 3000

Figure: Pairwise scatter diagram of transformed Landsat data from
22,932 pixels over a 5 by 6 nautical mile region. The range on all the
axes is (0, 255).



JMP Visualizations with Normal Fits



JMP Visualizations with Normal Fits



JMP Visualizations with Normal Fits



PRIM4 Example: Rotating Scatterplots (w/ brushing)

Figure: Pairwise scatterplots of the transformed PRIM4s data using the
ggobi visualization system. Two clumps of points are highlighted by
brushing. (Note: ggobi and xgobi and rggobi are to be replaced by ggvis.)



Scatterplots using glyphs (3 ≤ p ≤ 7): Iris example
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Figure: Glyph scatter diagram of the Iris data.



Scatterplots using glyphs (3 ≤ p ≤ 7): Iris example
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Figure: Glyph scatter diagram of the Iris data.



Other Ideas

I The Grand Tour — continuous projection from <p → <2

I Chernoff Faces — when each xi ∈ <p is important

I Star diagrams

I Parallel Coordinates — abandon Euclidean coordinates



Chernoff Faces: Economic Data 1925-1939
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Chernoff Faces: American Universities



Chernoff Faces: Economic Data 1929-1932

1929 1930 1931 1932



Parallel Coordinates
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Figure: Example of duality of points and lines between Euclidean and
parallel coordinates. The points are labeled 1 to 6 in both coordinate
systems.



Parallel Coordinates: Iris example

Sepal.Length Sepal.Width Petal.Length Petal.Width



Parallel Coordinates: Mount St. Helens Earthquakes

Longitude Latitude Depth Day Intensity



Limitations of Visualization of Points

I most valuable with small data sets, where individual points are
identifiable and interesting

I limited ability to display high-dimensional structure

I for large n, scatter diagrams emphasize tails/outliers

I point-based graphics do not provide a consistent picture of
the data as n→∞?



Graphical Display of Multivariate Functionals

Scatterplot smoothing by density functions

I the scatter diagrams points to the bivariate density function

I i.e. the raw data need to be smoothed in order to obtain a
consistent view

I as n→∞, the bivariate density function estimate gets better!

I the histogram is the simplest example of a scatterplot
smoother



United States Mortality Histogram
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Figure: Histogram of the U.S. mortality data in 1960. Rootgrams
(histograms plotted on a square-root scale) of the mortality data for 1960
— 2009. History: John Graunt’s Bills of Mortality (1662),



When the raw data are binned? (Because n large.)
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Figure: Histogram of LRL dataset. (I.J. Good’s “bump” example, with
n = 25,752 and 300 bins.)



Lagged Time Series Data (Old Faithful eruptions)
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Figure: Histogram of {xt} for the Old Faithful geyser dataset, and a
bivariate histogram of the lagged data (xt , xt+1).



Slice Trivariate Data (LANDSAT IV): f̂ (x1, x2, x3)
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Figure: Bivariate histogram slices of the trivariate Landsat data. Slicing
was performed at the quantiles of variable x1.



Scatterplot smoothing: Regression case (gas flow data)
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Complete Gas Flow Data: Function of Pressure
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Figure: Complete 3-D view of the gas flow dataset (cf 2nd from right).



Visualization of Multivariate Functions
Contour versus Perspective: preference?

X

Y

Z

I contour view: data in <2 and so are contours (equally
spaced vertical slices)

I perspective view: in <3, but only see 22
3 dimensions?

I what if data in <3?



Contour Surface and Level Sets

I Introduce a notation for a particular level set:

α-Contour : Sα = {x : f (x) = αfmax}, 0 ≤ α ≤ 1

I For normal data, the general contour surfaces are
hyper-ellipses defined by the equation

(x− µ)TΣ−1(x− µ) = −2 logα

I A representation of trivariate contour plot of f (x1, x2, x3)
would generally contain several “nested” surfaces, for
example, {S0.1, S0.3, S0.5,S0.7,S0.9}



Trivariate Normal Example: Stereo
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Figure: Stereo representation of 3 α-contours of a trivariate normal
density. Gently crossing your eyes should allow the 2 frames to fuse in
the middle.



Bivariate Slices of Smoothed Histogram n = 1000, N(0, I3)

z =  −1.8 z =  −1.2 z =  −0.6

z =  0 z =  0.6 z =  1.2

Note: These are not the conditional densities,

f̂ (x , y , z |z = z0) but the slices f̂ (x , y , z0)

which are the un-normalized slices.



What if normalize?

z =  −3 z =  −2.6 z =  −2.2

Figure: Normalized slices in the left tail of the smoothed histogram.

I These are very rough in the tails, since not much data

I If do not normalize, easy to tell if in the middle or in the tails



Other Visualization Examples of these data.



Density Slicing with 4 Variables

In <4, the α-level contours of interest are based on the slices:

Sα,t = {(x , y , z) : f (x , y , z , t) = αfmax},

I For a fixed choice of α, as the slice value t changes
continuously, the contour shells will expand or contract
smoothly, finally vanishing for extreme values of t.

I A single theoretical contour of the N(0, I4) density is a sphere
who radius is greatest when t = 0, the shrinks and vanishes as
t moves away from 0.

I With several α-shells displayed simultaneously, the contours
would be nested spheres of different radii, appearing at
different values of t, but of greatest diameter when t = 0.



Example of Iris Data, Sliced at Sepal Width = 3.4 cm

sepal length

petal length

petal width

setosa

versicolor

virginica

(sliced at sepal width = 3.4 cm)

Figure: Two α-level contour surfaces from a slice of a five-dimensional
smoothed histogram (ASH) for α = 4% and 10%.



Detailed slices of previous figure

x = 4 x = 4.15 x = 4.3 x = 4.45 x = 4.6 x = 4.75 x = 4.9 x = 5.05

x = 5.2 x = 5.35 x = 5.5 x = 5.65 x = 5.8

x = 5.95 x = 6.1 x = 6.25

x = 6.4 x = 6.55 x = 6.7 x = 6.85 x = 7 x = 7.15 x = 7.3 x = 7.45

Figure: A detailed breakdown of the 3-D contours taken from the ASH
estimate f̂ (x , y , z , t = 3.4) as the sepal length, x , ranges from 4.00 to
7.45 cm.



Iris data, excluding sepal width and classes.
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Figure: Analysis of 3 of the 4 Iris variables, omitting sepal width entirely.
The contour (α = 0.17) does not clearly show 3 groups?



Iris data, excluding sepal width and classes.

x
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Figure: The higher contour level, α = 0.44, perhaps hints at 3 groups?



Slicing with 5 Variables (or more)

I With more than 4 variables, the most appropriate sequence of
slicing is not clear.

I With exactly 5 variables, bivariate contours of (x4, x5) may be
drawn; then a sequence of trivariate slices may be examined
tracing along one of these bivariate contours.

I With more than 5 or 6 variables, deciding where to slice at all
is a difficult problem because the number of possibilities grows
exponentially.

I Will try projection-based methods later



Overview of Contouring and Surface Display (<2)
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Figure: A portion of a bivariate contour at the α = 0 level of a smooth
function measured on a regular grid and using linear interpolation (dotted
lines).



Contouring in <3 with 2-D slices: Stereo View

0

Figure: Simple stereo representation of four 3-D nested shells of the
Mount St. Helens earthquake data.



Contouring in <3 by Marching Cubes

+ +
+

Figure: Examples of marching cube contouring algorithm. The corners
with values above the contour level are labeled with a + symbol.



The Normal Bell-Shaped Curve in Higher Dimensions

I Volume of a sphere in <d of radius a:

Vd(a) =
adπd/2

Γ
(
d
2 + 1

)
I Fraction Hypercube Volume in an Inscribed Hypersphere:

Dim d 1 2 3 4 5 6 7

Fraction 1 0.785 0.524 0.308 0.164 0.081 0.037

I Fraction of volume between hypersphere of radius r and r − ε:

Vd(r)− Vd(r − ε)
Vd(r)

=
rd − (r − ε)d

rd
= 1−

(
1− ε

r

)d
−−−→
d→∞

1

(Hence all volume concentrated at hyper-surface.)



Tail Probabilities of Multivariate Normal

Table: Probability Mass Not in the “Tail” of a Multivariate Normal
Density, i.e., inside the 1% contour, S0.01

d 1 2 3 4 5 6 7

1000p 998 990 973 944 899 834 762

d 7 8 9 10 15 20

1000p 762 675 582 488 134 20



Distance from Origin of Normal Data

I If X ∼ N(0, Id), then the origin is “most likely”

I All directions are equally likely by symmetric

I The distance (squared) of a point from the origin

D2 =
d∑

j=1

X 2
j ∼ χ(d)

Hence, a little approximation gives

D ≈ N
(√

d , 12

)
For example, for X ∈ <100, 99% of the data points satisfy

8.2 < D < 11.8 surprising!!??



Distribution of point closest to the origin

Pr(D ≤ c) = 1− Pr(D > c) = 1− Pr(D1 > c ,D2 > c , . . . ,Dn > c)

= 1− Pr(D1 > c)n = 1− Pr(D2
1 > c2)n = 1− Pr(χ2

d > c2)n

= 1−
(
1− Pr(χ2

d ≤ c2)
)n
.

Thus applying Leibniz’s rule,

fD(c) =
d

dc
Pr(D ≤ c) = n

(
1− Pr(χ2

d ≤ c2)
)n−1 × 2cfχ2

d
(c2)



Examples (Implications for Biometrics?)
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Figure: Densities of distance of closest point to the origin for sample sizes
n = 104 and 106, for various dimensions 9 ≤ d ≤ 100.



Chapter II: Nonparametric Estimation Criteria

I The focus of nonparametric estimation is different from that
of parametric estimation f (·|θ):

θ versus the entire density function f (·)

I A good value θ̂ should result in f (·|θ̂) ≈ f (·) = f (·|θ)

I Pearson-Fisher debate on the problem of specification and
estimation

I An incorrectly specified pdf results in a bias that will not
disappear as n→∞ (curse of optimality/robustness)

I nonparametric methods eliminate the need for model
specification — loss of efficiency need not be too great



Estimation of the Cumulative Distribution Function

I F (x) = Pr(X ≤ x)

I empirical cumulative distribution function (ecdf), defined as

Fn(x) =
#{xi ≤ x}

n
=

#xi ∈ (−∞, x ]

n
=

1

n

n∑
i=1

I(−∞,x](xi ) ,

I since nFn(x) is a binomial random variable with p = F (x),

EFn(x) = EI(−∞,x](X ) = 1× Pr(X ∈ (−∞, x ]) = F (x)

I Furthermore, since nFn(x) is a binomial random variable,
B(n, p), with p = F (x), then

Var{Fn(x)} = p(1− p)/n so Fn(x) is best !!

I Prefer cdf or pdf??? If cdf, all done !!! Answer clearer in <d .



Empirical CDF in 1 Dimension

Can you see the major feature in these data?
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Figure: Empirical cumulative distribution function of the Old Faithful
geyser dataset.



Empirical CDF in 2 Dimensions
Can you see the major feature in these data?
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Figure: Empirical bivariate cdf of the lagged Old Faithful data {xt , xt+1}



Direct Nonparametric Estimation of the Density

I Conclusion: pdf much easier to understand graphically than
the cdf:

f (x) = F ′(x)

I Use the “best” nonparametric cdf estimator, Fn(x), to obtain
empirical probability density function (epdf):

fn(x) =
d

dx
Fn(x) =

1

n

n∑
i=1

δ(x − xi )

where δ(t) is the Dirac delta function.

I this is the (discrete) “bootstrap” pdf — but graphically ugly

I Question: Does there exist a “best” minimum variance
unbiased estimator of f (x)? Answer: Rosenblatt (1956): NO

I You may be familiar with some popular biased estimators:
ridge regression, Stein estimators,...



Example: Thickness of U.S. pennies over 50 years.
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Figure: A histogram and empirical pdf (pointing down) of the U.S. penny
thickness dataset.



Error Criteria for Density Estimates

I “optimality” is not an absolute concept, but intimately linked
to the choice of a criterion

I criterion preference is largely subjective

I in the parametric world, use the mean squared error (MSE)
criterion:

MSE{θ̂} = E[θ̂ − θ]2 = Var{θ̂}+ Bias2{θ̂}

I can use this same criterion to evaluate f̂ (x) for fixed x :

MSE{f̂ (x)} = E[f̂ (x)− f (x)]2 = Var{f̂ (x)}+ Bias2{f̂ (x)}

I If do this for every x , then an infinite-dimensional problem!



Global Error Criteria for Density Estimation

I For some the most intuitively appealing global criterion is the
L∞ norm:

sup
x

∣∣∣f̂ (x)− f (x)
∣∣∣

I At the other end of the spectrum is the L1 norm:∫ ∣∣∣f̂ (x)− f (x)
∣∣∣ dx

I Neither of these criteria is as easily manipulated as the L2
norm, which in this context is referred to as the integrated
squared error (ISE):

ISE =

∫ [
f̂ (x)− f (x)

]2
dx

I Others: Helling distance, Akaike’s informatin criterion, Lp
norms, Kullback-Leibler divergence,...



ISE and MISE and IMSE Criteria

I The ISE is a complicated random variable that depends on the
true unknown density function, the particular estimator, the
sample size, and the particular realization of n points.

I It will be sufficient to examine the average of the ISE over
these realizations; that is, the mean of the random variable
ISE or mean integrated squared error (MISE):

MISE ≡ E
[
ISE
]

= E

{∫ [
f̂ (x)− f (x)

]2
dx

}
=

∫
E
[
f̂ (x)− f (x)

]2
dx =

∫
MSE{f̂ (x)} dx ≡ IMSE ,

where the interchange of the integral and expectation
operators is justified by an application of Fubini’s theorem.



IMSE and MISE Criteria

I The last quantity is the IMSE, which is an abbreviation for the
integrated mean squared error.

I Thus the MISE error criterion has two different though
equivalent interpretations:
I it is a measure of the average global error;
I it is also a measure of the accumulated pointwise error.

I Question: Is this equality true or false? (A bit advanced...)

E

{∫ [
f̂ (x)− f (x)

]2
dx

}
?
=

∫
E
[
f̂ (x)− f (x)

]2
f (x) dx ,

which is a weighted average MSE criterion.



MISE for Parametric Estimators

I Since MISE is not a familiar criterion, will do a few examples
with parametric estimation: usual O(n−1) convergence?

I Uniform density f = U(0, θ), where θ = 1 is estimated by the
maximum likelihood estimator θ̂ = x(n), the nth-order statistic.

I ISE =
(

1
x(n)
− 1
)2
· x(n) + (0− 1)2 ·

(
1− x(n)

)
= 1

x(n)
− 1

I Since f (x(n)) = nxn−1(n) , for 0 < x(n) < 1, it follows that

MISE =

∫ 1

0

(
1

x(n)
− 1

)
· n xn−1(n) dx(n) =

1

n − 1
= O(n−1)



Best Estimators of U(0, θ)

I Well known that the unbiased estimator of θ is

θ̂ =
n + 1

n
x(n)

I If consider estimators of the form θ̂ = c x(n), then

MISE(c) =

{
n/[(n − 1)c]− 1 c < 1[
2− ncn−1 + (n − 1)cn

]
/[(n − 1)cn] c > 1

for which

c∗ = 21/(n−1) ≈ 1 +
log(2)

n
=

n + 0.693

n



General Parametric MISE Method

I First use of Taylor Series:

I(θ̂) =

∫ [
f (t|θ̂)− f (t|θ)

]2
dt =

∑
k

1

k!
(θ̂ − θ)k I(k)(θ)

I Easy to check that I (θ) = 0 and I ′(θ) = 0; hence,

AMISE(θ̂) = E[I(θ̂)] =
1

2
var (θ̂) I′′(θ) + · · · .

where A = asymptotic.



Parametric AMISE for N(µ, σ2) pdf

I Start with a bivariate Taylor Series of the estimator N(x̄ , s2)
around N(0, 1) (see book for details)

I For standard normal, the result is that

AMISE{φ(x̄ , s2)} = AMISE{φ(x̄ , 1)}+ AMISE{φ(0, s2)}

I The numerical result

AMISE{φ(x̄ , s2)} =
1

4n
√
π

+
3

16n
√
π

=
7

16n
√
π

I This is O(n−1) as usual

I Thus knowing µ is better than knowing σ2. Why?

I Notice that x̄ and s2 are maximum-likelihood estimators, and
not derived from the AMISE criterion



Data-Based Parametric Estimation Criteria
I Where does maximum likelihood come from?

I Let the parametric estimator will be denoted by fθ(x), but the
true density will be denoted by g(x). This reflects the fact
that the model may not be (exactly) correct, only an
approximation.

I Answer: MLE is an unbiased estimate of minimizer of the
Kullback-Leibler divergence

dKL(fθ, g) =

∫
g(x) log

g(x)

fθ(x)
dx ≥ 0

=

∫
g(x) log g(x) dx −

∫
g(x) log fθ(x) dx

= constant − E [log fθ(X )] ; thus an estimate is

d̂KL(fθ, g) = constant− 1

n

n∑
i=1

log fθ(xi ) ,

which when minimized, is exactly the MLE criterion.



Is There a Data-based Estimator for Hellinger distance?

I Hellinger distance is defined by

dH(fθ, g)2 =

∫ [√
fθ(x)−

√
g(x)

]2
dx ≥ 0 .

I There is no obvious quantity to substitute for the unknown
g(x), save a nonparametric estimate such as a histogram.

I Aside from the computational complexity of performing the
numerical minimization, different choices of the histogram
would result in different estimates of θ. And no good for <d .

I Same problems if focus on the L1 criterion,
∫
|fθ(x)− g(x)| dx

I Dimensional analysis shows both Hellinger and L1 are
dimensionless, which would be nice to have.



Data-Based Criterion for integrated squared error
I Expanding the ISE into the sum of 3 integrals:

ISE(θ) =

∫
[fθ(x)− g(x)]2 dx

=

∫
fθ(x)2 dx − 2

∫
fθ(x) g(x) dx +

∫
g(x)2 dx

=

∫
fθ(x)2 dx − 2 Efθ(X ) + constant

I Assuming that the model is square integrable in a convenient
form, and choosing the obvious unbiased estimator for the
expectation term, we arrive at the fully data-based criterion

θ̂ = arg min
θ

ÎSE(θ) = arg min
θ

[∫
fθ(x)2dx − 2

n

n∑
i=1

fθ(xi )

]

I Called the L2E estimator (Scott, 2001, Technometrics, 43,
274–285). Works equally well in <d .



Example of L2E

I Consider fitting a normal density, φ(x
∣∣µ, σ2), to the Rayleigh

data (n = 15) that measured the weight of a standard volume
of nitrogen (Tukey, 1977).

I The criterion is given by

θ̂ = arg min
θ

L2E (θ) = arg min
θ

[
1

2
√
πσ
− 2

n

n∑
i=1

φ(xi |µ, σ2)

]

I Also considered a 4-parameter mixture model for fθ(x)

fθ(x) = w φ(x |µ1, σ2) + (1− w)φ(x |µ2, σ2)



Example continued (Discovery of the nobel gas argon)
Lord Rayleigh’s recognition of the 2nd cluster resulted in his
winning the 1904 Nobel Prize in Physics.
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Figure: (L) Histogram with MLE and L2E normal fits to the Rayleigh
data. (R) L2E normal mixture fit to blurred data with common variance.



Nonparametric Families of Distributions

Pearson Family of Distributions: Pearson’s influence on
nonparametric density estimation is twofold:

I He coined the word histogram

I He introduced and studied density functions that are solutions
to the differential equation

d log f (x)

dx
=

x − a

b + cx + dx2

I Identified 7 types of solutions to this equation, depending on
the roots of the denominator and which parameters were 0.

I Interestingly, this class contains most of the important
classical distributions: normal, Student’s t, Beta, and
Snedecor’s F .

I Pearson proposed using the first 4 sample moments to
estimate the unknown constants (a, b, c , d); i.e. data-based



Nonparametric Families of Distributions (continued)

I Johnson family

I Marshall and Olkin
I Question: When is an estimator nonparametric?

I Is the Pearson family nonparametric? (4 parameters?)
I It has proven surprisingly difficult to formulate a working

definition for what constitutes a nonparametric density
estimator.

I A heuristic definition may be proposed based on the necessary
condition that the estimator “work” for a “large” class of true
densities.

I Does a nonparametric estimator require an infinite number of
parameters? (Answer later.)

I A histogram is a nonparametric density estimator. But a
histogram has only 1 parameter (the bin width)?


