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Chapter IV: Frequency Polygons

I The discontinuities in the histogram limit its usefulness as a
graphical tool for multivariate data.

I The frequency polygon (FP) is a continuous density
estimator based on the histogram, with linear interpolation.

I However, once again Fisher (1932) did not like the frequency
polygon

The advantage is illusory, for not only is the form of the
curve thus indicated somewhat misleading, but the utmost
care should always be taken to distinguish the infinitely
large hypothetical population from which our sample of
observations is drawn, from the actual sample of obser-
vations which we possess; the conception of a continuous
frequency curve is applicable only to the former, and in
illustrating the latter no attempt should be made to slur
over this distinction.



Frequency Polygon Thoughts

I Fisher could not know there was a theoretical reason to prefer
the FP to the histogram

I In one dimension, the frequency polygon is the linear
interpolant of the mid-points of an equally spaced histogram.

I The frequency polygon extends beyond the histogram into an
empty bin on each end.

I The frequency polygon is easily verified to be a bona fide
density function, that is, nonnegative with integral equal to 1.

I Note that the FP curve actually has slope, as opposed to the
jumps of a histogram.



MISE Analysis of the Frequency Polygon

I We focus on a typical pair of adjacent histogram bins:
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Figure: The frequency polygon in a typical bin, (−h/2, h/2), which
is derived from two adjacent histogram bins B0 and B1.
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MISE Analysis of the FP (continued)

I Proceeding as with the histogram, we find

AMISE (h) =
2

3nh
+

49

2,880
h4R(f ′′); hence,

h∗ = 2[15/(49R(f ′′))]1/5n−1/5

AMISE ∗ = (5/12)[49R(f ′′)/15]1/5n−4/5

I Note the differences : h4, R(f ′′), n−1/5, and n−4/5.

I Recall the AMISE (h) for the histogram:

AMISE (h) =
1

nh
+

1

12
h2R(f ′)

I For example, with 800 normal data points, the optimal bin
width for the FP is 50% wider than the corresponding
histogram bin width.



Tentative Conclusions from the FP MISE Analysis

I The FP can better approximate regions in the pdf where the
derivative is large.

I The FP has problems where the second derivative is large
(peaks and tails)

I Surprisingly, the improvement is not just to the constant in
the AMISE , but a whole order due to better approximation in
the squared bias (h4 versus h2)

I Unlike the histogram, a known discontinuity (e.g. negative
exponential at x = 0) cannot be “fixed” because of
interpolation across bins.



Sensitivity of FP to bin width h = ch∗

I Again, we may use the AMISE (h) to see how close to h∗ we
want to be. For the FP

AMISE(ch∗)

AMISE(h∗)
=

c5 + 4

5c

Table: Sensitivity of AMISE to Error in Bin Width Choice h = ch∗

c Histogram FP Higher Order
(c3 + 2)/(3c) (c5 + 4)/(5c) (c9 + 8)/(9c)

1/2 1.42 1.61 1.78
3/4 1.08 1.13 1.20

1 1 1 1
4/3 1.09 1.23 1.78

2 1.67 3.60 28.89



AMISE for Histogram versus FP for Normal Data
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Figure: AMISE for histogram and frequency polygon for standard normal
density.



Equivalent Sample Sizes, Updated

I Compare 4 estimators of N(0, 1) data

Table: Sample Sizes Required for N(0, 1) Data So That
AMISE∗ ≈ 1/400 and 1/4000

Estimator Equivalent Sample Sizes

N(x̄ , 1) 57 571
N(x̄ , s2) 100 1,000
Optimal FP 546 9,866
Optimal histogram 2,297 72,634

I Much improved!



Normal Reference Rule for the FP

I For the normal density N(µ, σ2),

R(φ′′) = 3/(8
√
πσ5)

I Plugging into the expressions for h∗ and AMISE (h∗),

h∗ = 2.15σ n−1/5

AMISE (h∗) =
0.3870

σ
n−4/5

I Thus the data-based normal reference rule for the FP is

h∗ = 2.15 σ̂ n−1/5

I If you look back at the 4 histograms of a million normal data
point, the last one displayed h = 4h∗. This turns out to the
histogram from which the optimal FP should be constructed.



Some More Practical FP Bin Width Rules

I In addition to the normal reference rule, we can easily
implement BCV and UCV

I BCV follows from the estimate of R(f ′′)

R̂(f ′′) =
1

n2h5

∑
k

(νk+1 − 2νk + νk−1)2 − 6

nh5
.

which when plugged into the AMISE expression results in

BCV(h) =
271

480nh
+

49

2880n2h

∑
k

(νk+1 − 2νk + νk−1)2

I Since UCV uses f̂−i (xi ), there is not such a simple formula



Comparison of BCV (h) for the Histogram and FP
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Figure: BCV for histogram and frequency polygon for German
income data.



Oversmoothed Bin Widths for the Frequency Polygon

I The criterion is to minimize R(f ′′) subject to various scale
constraints.

I For example, among densities supported on the interval
[−0.5, 0.5], the smoothest density is

f3(x) =
15

8
(1− 4x2)2 I[−0.5,0.5](x)

I On a general interval [a, b], this leads to the inequality

R(f ′′) ≥ 720

(b − a)5

I Applying this inequality to h∗ and re-arranging leads to

number of bins =
b − a

h∗
≥
(

147

2
n

)1/5



Oversmoothed Bin Widths (continued)

I As an example, with the large LRL dataset of 25,752 points,
the optimal FP requires at least 18 bins, while the optimal
histogram requires at least 37 bins.

I Next, among all densities with variance σ2, the smoothest
density is

f4(x) =
35

96σ

(
1− x2

9σ2

)3

I[−3σ,3σ](x) so that

R(f ′′) ≥ 35

243σ5

I Substituting this inequality into the expression for h∗ gives

h ≤
(

23,328

343

)1/5

σ n−1/5 = 2.33σ n−1/5 ≡ hOS

I Recall that the constant to 2.15 for N(µ, σ2) data.



Optimally Adaptive Meshes for the FP
I Using the following expression for the pointwise MSE

AMSE (x) =
2f (x)

3nh
+

49

2,880
h4f ′′(x)2

I We have the results

h∗(x) = 2[15f (x)/49f ′′(x)2]1/5n−1/5

AMSE ∗(x) = (5/12)[49/15]1/5[f ′′(x)2f (x)4]1/5n−4/5

AAMISE ∗ = (5/12)[49/15]1/5
{∫

[f ′′(x)2f (x)4]1/5dx

}
n−1/5

I Local adapting is always better by Jensen’s inequality

AAMISE ∗ ≤ AMISE ∗ since∫ [
f ′′(x)2f (x)4

]1/5
dx ≤

[∫
f ′′(x)2dx

]1/5



Optimally Adaptive Meshes for the FP

I Jensen’s inequality here is

E

[
f ′′(x)2

f (x)

]1/5
≤
[

E
f ′′(x)2

f (x)

]1/5
I Thus, asymptotically, the MISE of an adaptive FP is only

91.5% and 76.7% of the MISE of a fixed-bin-width FP for
normal and Cauchy data, respectively.



Optimal Adaptive Histogram for the FP

I Interesting, even though the FP interpolating
non-equally-spaced bins does not generally integrate to 1.
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Figure: Optimal adaptive frequency polygon meshes for the scaled
Beta(5,5) density. The histogram is drawn from which the FP
(dotted line) is derived. The tick marks for the adaptive mesh are
shown above each figure.



Modes and Bumps in a Frequency Polygon

I As we saw in the last chapter, an optimal histogram does not
zero in on the true modal bin

I But for a FP applied to a density with mode at x = 0, write

h∗ = cn−1/5 and define β ≡ −1

2
c5/2

f ′′(0)√
f (0)

I Then

lim
n→∞

Pr

(
ν0 = arg max

|j |≤k
νj

)
=

∫
y

k∏
j=−k
j 6=0

Φ(y + j2β)φ(y) dy

I Note that β is a measure of the “size” of the mode; a large
value of β means the mode is more prominent



Where is the Sample Mode for a Frequency Polygon?
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Figure: Probability distribution of the location of the sample mode as a
function of β for the choice k = 4. The values of β for normal and
Cauchy densities are 2.15 and 3.6, respectively, and are indicated by the
letters N and C.

I Can use this diagram to obtain a rough confidence interval for
the location of the true mode. Estimate β and compute the
probability the mode might be off by a bin or two.



Multivariate Frequency Polygons

I How to interpolate a bivariate histogram? Mesh of triangles
or use the linear blend.

Figure: Construction of a bivariate frequency polygon using
triangular meshes (left) and linear blend elements(right).

I The linear blend uses the four adjacenct values and the
formula (linear parallel to axes; quadratic along diagonal)

f (x , y) = a + bx + cy + dxy



Asymptotics of the Linear Blend Frequency Polygon
(LBFP)

I Hjort showed the error AMISE (h) takes the form

2d

3dnh1 · · · hd
+

49

2,880

d∑
i=1

h4i R(fii ) +
1

32

∑
i<j

h2i h
2
j R
(√

fii fjj

)
I This leads to the general optimal results

h∗i = O(n−1/(4+d)) and AMISE∗ = O(n−4/(4+d))

I The FP is also better than the Histogram in dimensions d > 1.



Rates in Higher Dimensions

d Histogram Frequency Polygon

1

2

3

4

5

6

7

8

n−2 3

n−2 4

n−2 5

n−2 6

n−2 7

n−2 8

n−2 9

n−2 10

n−4 5

n−4 6

n−4 7

n−4 8

n−4 9

n−4 10

n−4 11

n−4 12

Table: Asymptotic order of MISE for multivariate histogram and
frequency polygon density estimators. The rate of convergence decreases
as the dimension, d , increases. The arrows indicate identical rates for the
histogram and frequency polygon.



Rates in Higher Dimensions: Conclusions

I This is very encouraging. Bivariate and trivariate histograms
are widely used. This table suggests using a smoother density
estimator should carry forward up to 5-6 dimensions!

I For graphical reasons, the first definition of a FP is simpler to
work with because the resulting contours are comprised of
piecewise polygonal sections. CAD-CAM systems always
assume everything is made up of triangular meshes.



Application to Normal Data

I Using the triangular mesh with a bivariate normal data, that
the optimal bin widths are approximately equal to

h∗i = 2.105

(
1− 107

208
ρ2 + · · ·

)
σi n

−1/6, i = 1, 2

I For multivariate normal data with Σ = Id , the optimal
smoothing parameters in each dimension are equal with the
constant close to 2.

I Normal reference rule proposed by Scott is

Approximate normal FP reference rule : hi = 2 σ̂i n
−1/(4+d)



Bin Edge Problems

I The asymptotic theory indicates that the choice of bin origin
is asymptotically negligible.

I However, since FP bins are wider, the collection of possible
FP’s can vary quite a bit.

I We will consider Parzen’s Buffalo Snowfall data (n = 63) on
the next slides

I For certain choices of (h, t0), the histogram looks unimodal or
trimodal. What do you think?



Six Choices of h for the Buffalo Snowfall Data
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Figure: Histograms of the Buffalo snowfall data with bin origin t0 = 0,
and bin widths of 30, 15, 10, 7.5, 6, and 5 inches over the interval
(0, 150).



Six Choices of t0 for the Buffalo Snowfall Data
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Figure: Six shifted histograms of the Buffalo snowfall data. All have a bin
width of 12.5 inches, but different bin origins t0 = kh/6, k = 0, 1, . . . , 5.



Other Modifications of Histograms
I Wand advocates linear binning, where a data point does add 1

to just one bin, but splits it among the adjacent bins. This
results is a modest and fixed improvement in AMISE .

I Minnotte investigated adjusting the raw histogram counts so
that the usual FP preserves the area of the original histogram:

ν̃k =
∞∑

j=−∞
cj νk+j , where cj = 2

1
2 (2

3
2 − 3)|j | = 2

1
2 (−.1716)|j |

I Minnotte followed this up by using higher order splines with
these adjusted counts and found the convergence rates
improved accordingly.

I In 1-D, linear binning improved AMISE by 11% while
area-matching achieved 4.4%.

I Scott, Sagae, and Papkov investigated fitting splines that
matched the sample moments in all the bins. Again, higher
order splines converged at higher rates.



Polynomial histogram

I One of the attractions of a histogram is that you can compute
the bin counts on the fly (assuming you can construct a good
mesh a priori)

I Scott, Sagae, and Papkov investigated the value of compute
the sample moments in each bin at the same time.

I For example, if the sample mean in a bin is greater than
the midpoint, then intuitively the density estimate should be
increasing in that bin.

I Using just the bin count and bin mean, we define the linear
polynomial histogram (LPH)

f̂ (x) = f̂LPH(x) = a + bx for x ∈ B0 = (−h/2, h/2)



Polynomial histogram (continued)

I The area of the LPH is ah, so the conditional density over B0

is

f̂B0(x) = f̂ (x |x ∈ B0) =
a + bx

ah
x ∈ B0

I The LPH should match the area and bin mean, giving us the
two constraints∫

B0

f̂ (x)dx =
ν0
n

and∫
B0

x f̂B0(x)dx = x̄0 where x̄0 =
1

ν0

∑
xi∈B0

xi

I The solution to these equations is

a =
ν0
nh

and b =
12 ν0 x̄0
nh3



Linear Polynomial Histogram Theory

I Suppose f ′′ is absolutely continuous and R(f ′′′) <∞. Then
for the linear polynomial histogram estimator, f̂LPH(x),

AMISE(h) =
2

nh
+

1

720
h4R(f ′′); hence,

h∗ = 3601/5R(f ′′)−1/5n−1/5

AMISE∗ = (625/2304)1/5R(f ′′)1/5n−4/5

I Shares the asymptotics of a FP.

I Now the leading coefficient of AMISE ∗ is 0.565, which is
45.9% greater than for the frequency polygon.

I However, the optimal bin width is over twice as wide (2.056).

I Advantage over the frequency polygon is that these
asymptotics are all appropriate within the histogram bins,
not across adjacent bins. Thus the boundary problems do not
exist if known.



Polynomial Histogram Examples
I We compare the bin-by-bin LPH, a continuous version, and a

bin-by-bin quadratic polynomial histogram (QPH) for 3
sample sizes. The QPH incorporates the bin sample variances.
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Figure: For 3 sample sizes from a mixture density, examples of the
piecewise LPH, the continuous LPH, and the piecewise QPH
estimates.



How Much Information Is There In a Few Bins?

I My son and I re-visited some data published in USA Today on
10/13/2006.

I The data came from a phone survey of n = 1,207 subjects.

I Appeared on the front page in the daily graphical feature

USA TODAY Snaphots®.

I Men were asked how long they were romantically involved
before marriage. (Of any interest to any of you?)

I Only four bin counts: 181, 147, 651, and 228.
I Possible parametric models:

I Normal?
I Uniform?
I Negative exponential (with the interesting consequence that

being engaged for two years does not change the likelihood of
marriage...memoryless process)



How Much Information Is There In a Few Bins?

I We reproduce the original graphic, and two alternatives

0−6 mo 7−12 mo 1−3 yrs >3 yrs

Time Before Marriage

P
er

ce
nt

ag
e

0
10

20
30

40
50

60
Romance Before Vows

5.0%

12.2%

53.9%

18.9%

Time To Marriage (Yrs)

P
er

ce
nt

ag
e 

pe
r 

6 
M

on
th

s

0 1 2 3 4 5

0
5

10
15

20

15
.0

%
12

.2
%

13
.5

%

4.
7%

Time to Marriage (Yrs)

D
en

si
ty

 V
al

ue

0 1 2 3 40.
0

0.
1

0.
2

0.
3

0.
4

Figure: (Left) Barchart of raw improperly normalized binned
marriage survey data. (Middle) Example of a barchart that is
properly normalized. (Right) A penalized histogram of the data
matching the 4 bin proportions.

I Check totals; width of 4th bin?



Wrapping Up

I Frequency polygons are but one possible modification of the
basic histogram.

I The statistical efficiency of the FP is much improved over the
histogram, getting ever closer to the magic O(n−1)
parametric rate of convergence

I The computational efficient of the FP and essentially the
same as for the histogram

I The FP suffers from possible boundary effects

I The wider histogram bins used in the construction of the FP
can make the choice of the bin origin t0 more relevant for
graphical purposes.

I We examine this question of the choice of t0 in the next
chapter.



Chapter V: Averaged Shifted Histograms

I Scott proposed a simple device for eliminating the bin edge
problem of the frequency polygon while retaining many of the
computational advantages of a density estimate based on bin
counts.

I Rather than choosing among alternative choices of t0, simply
average the shifted frequency polygons.

I Note the average of piecewise linear functions is also piecewise
linear (ASFP).

I Almost equivalent is to average shifted histograms and then
treat that piecewise constant function as a histogram to
linearly interpolated with a FP. Easier to analyze.



Construction of Averaged Shifted Histogram (ASH)

I Consider a collection of m histograms, f̂1, f̂2, . . . , f̂m, each with
bin width h, but with bin origins

t0 = 0,
h

m
,

2h

m
, . . . ,

(m − 1)h

m

I The (naive or unweighted) averaged shifted histogram is
defined as

f̂ (·) = f̂ASH(·) =
1

m

m∑
i=1

f̂i (·)

I The ASH will look like a histogram but with bin width h/m



ASH with Buffalo Snowfall Data (How Many Modes?)
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Figure: Naive averaged shifted histograms of the Buffalo snowfall data
with bin width h = 12.5 inches.



Multivariate Averaged Shifted Histograms

I Multivariate ASHs are constructed by averaging shifted
multivariate histograms, each with bins of dimension
h1 × h2 × · · · × hd .

I If every possible multivariate histogram is constructed by
coordinate shifts that are multiples of
δi ≡ hi/mi , i = 1, . . . , d , then the multivariate ASH is the
average of m1 ×m2 × · · · ×md shifted histograms.

I In the bivariate case, we have

f̂ASH(·, ·) =
1

m1m2

m1∑
i=1

m2∑
j=1

f̂ij(·, ·)



ASH Examples of the Blood Fat - Heart Disease Data
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Figure: Bivariate averaged shifted histograms of the lipid dataset for 320
diseased males; m = 1, 2, 3, and 3 again for the contour plot



Details of the Univariate ASH

I Let δ ≡ h/m denote the “apparent” bin width of the ASH

I The univariate ASH is piecewise constant over the intervals
[kδ, (k + 1)δ) where δ ≡ h/m

I It will be convenient to refer to these narrower intervals as the
bins Bk and let

vk = bin count in bin Bk , where Bk ≡ [kδ, (k + 1)δ)

I To obtain a bin count for the original histogram, we add m
adjacent bin counts at the finer resolution.



Details of the Univariate ASH (continued)

I Consider the ASH estimate in bin B0, which is the average of
the m shifted histograms

v1−m + · · ·+ v0
nh

,
v2−m + · · ·+ v0 + v1

nh
, . . . ,

v0 + · · ·+ vm−1
nh

I Hence, a general expression for the naive ASH is

f̂ (x ;m) =
1

m

m−1∑
i=1−m

(m − |i |)vk+i

nh

=
1

nh

m−1∑
i=1−m

(
1− |i |

m

)
vk+i for x ∈ Bk



Details of the Univariate ASH (continued)

I The weights on the bin counts take on the shape of an
isosceles triangle with base (−1, 1).

I Other shapes (that are smoother) may be preferred

I The general ASH uses arbitrary weights, wm(i):

General ASH : f̂ (x ;m) =
1

nh

∑
|i |<m

wm(i) vk+i for x ∈ Bk

I A convenient way to define general weights is to sample a bf
kernel, which is any probability density defined on (−1, 1):

wm(i) = m × K (i/m)∑m−1
j=1−m K (j/m)

i = 1−m, . . . ,m − 1

e.g. K (t) =
15

16
(1− t2)2+ =

15

16
(1− t2)2I[−1,1](t)



Pseudo-Code for the ASH

BIN1(x , n, a, b, nbin) Algorithm: (* Bin univariate data *)

δ = (b − a)/nbin
for k = 1, nbin {vk = 0}
for i = 1, n{

k = (xi − a)/δ + 1 (* integer part *)
if (k ∈ [1, nbin]) vk = vk + 1}

return ({vk})



Pseudo-Code for the ASH

ASH1 (m, v , nbin, a, b, n,wm) Algorithm: (* Univariate ASH *)

δ = (b − a)/nbin
h = mδ
for k = 1, nbin{fk = 0}
for k = 1, nbin{

if(vk = 0) next k
for i = max (1, k −m + 1),min (nbin, k + m − 1){

fi = fi + vkwm(i − k)}}
for k = 1, nbin{fk = fk/(nh); tk = a + (k − 0.5)δ}
return (x = {tk}, y = {fk}) (* Bin centers and ASH heights *)

These functions and more are available on my web site and in the
R ash library.



ASH Examples with Biweight Kernel Weights
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Figure: Examples of ASH with biweight kernel applied to the Buffalo
snowfall and German household income data sets.



Some Brief Asymptotics for the ASH

I For the naive ASH (isosceles triangle kernel), we have

AMISE =
2

3nh

(
1 +

1

2m2

)
+

h2

12m2
R(f ′)

+
h4

144

(
1− 2

m2
+

3

5m4

)
R(f ′′).

I Plugging in m = 1 gives the histogram result precisely.

I Plugging in m =∞ completely remove the histogram-like bias
based on R(f ′)

I However, any m > 5 or 10 essentially does the same.

h∗m=∞ =
[
24/(nR(f ′′))

]1/5 (
= 2.576σ n−1/5 for N(µ, σ2)

)



Equivalent sample sizes with ASH

I Equivalent Sample Sizes Required for AMISE ≈ 1/400 for
N(0, 1) Data:

Estimator N(x̄ , s2) ASH FP-ASH FP Histogram

Sample Size 100 436 436 546 2,297

I The AMISE for the FP-ASH (naive version) has no
histogram-like bias:

AMISE (h) =
2

3nh
+

h4

144

(
1 +

1

m2
+

9

20m4

)
R(f ′′)

I Inserting m = 1 gives the ordinary frequency polygon formula.

I The AMISE of the linear blend of the naive ASH equals

2d

3dn h1 · · · hd
+

1

720

d∑
i=1

δ4i R(fii )+
1

144

∫
<d

[
d∑

i=1

h2i

(
1 +

1

2m2
i

)
fii

]2



The Limiting ASH as a Kernel Estimator

I The parameter m in the ASH is a nuisance parameter, but
much less so than the bin origin.

I We study the limiting behavior of the ASH as m→∞
I Suppose h and n fixed and m increasing

I Isolate the effect of a single data point xj ∈ Bk+i on the ASH

estimate f̂ (x), at a fixed point x ∈ Bi

1− |i |
m

= 1− |i | · δ
m · δ

= 1−
|x − xj |

h
+O

(
δ

h

)
, if |x − xj | < h

I This may be summarized by the new density formula

lim
m→∞

f̂ (x ;m) =
1

nh

n∑
j=1

(
1−
|x − xj |

h

)
I[−1,1]

(
x − xj

h

)
,



Limiting ASH as a Kernel Estimator

I Defining a kernel function K (·) to be an isosceles triangle
density,

K (t) = (1− |t|)I[−1,1](t) ,

I the limiting ASH may be written as

f̂ (x) =
1

nh

n∑
i=1

K

(
x − xi

h

)
I The multivariate kernel corresponding to the multivariate

naive ASH is

f̂ (x) =
1

nh1h2 · · · hd

n∑
i=1


d∏

j=1

K

(
xj − xij

hj

) ,

the so-called product kernel estimator.



Example with the Silica Data (n = 22)
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Figure: Triangle kernel estimates of the silica dataset showing the
individual kernels.



Wrapping Up

I The product kernel estimator does not result in a kernel
density estimator where the dimensions factor as well (i.e.
independent). Why? Because of the summation.

I Kernel methods go back to Fix and Hodges (1956),
Rosenblatt (1956), Parzen (1962), then an explosion of
authors and research, including yours truly with the histogram
in 1979 and the discrete maximum penalized likelihood
estimator in 1980. Papers on the FP, ASH, oversmoothing
appeared shortly thereafter.

I The first edition of Multivariate Density Estimation appeared
in 1992. The second edition in 2015.



Wrapping Up (continued)

I The ASH is a form of discrete convolution of weights and bin
counts.

I Chamayou independently described the ASH in 1980.

I Härdle and Scott generalized the ASH into Weighted Average
of Shifted Points, or WARP’ing.

I The ASH has been used by Wegman to smooth parallel
coordinate plots.

I Debbie Swayne used the 1-d ASH in xgobi to show the density
of points computed in the grand tour. John Salch extended
this idea to projections in 2 and 3 dimensions and
demonstrated the visualization on an SGI workstation


