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Chapter 1

Data Analysis and Understanding

1. In a typical introductory statistics course, the construction of a his-
togram from data boils down to the choice of the number of bins, k.
Equivalently, you can focus on the bin width, h, which would be found
by dividing the width of the sample range (a, b) by the number of bins:
h = (b − a)/k. Often you will be taught that the choice of k should
be any “convenient” value. In Section 9.1, we learn that the formula
h∗ = 1.06 sx n

−1/5 can be justified for normal data.

(a) Generate a normal random sample in R by

set.seed(246); x = rnorm(10000) .

The standard deviation, sx, is sd(x) = 1.012. Examine the de-
fault histogram in R by hist(x,col=2). What value of k is used?
(Hint: k = 16.) Show the corresponding h = 0.474. Look at
two other histograms choosing bin widths h/2 and 2h, using the
optional second argument breaks via

hist( x, breaks = seq(-4.5,4.5,.948), col=2 )

(b) The formula given above results in h∗ = 0.170. Examine the 3
histograms using h∗/2, h∗, and 2h∗.

(c) Discuss and evaluate your favorite histogram among these six.

Hint: Use the on-line R help by invoking help.start().

2. TBA

1



1.1 Exploring the Distribution of Data

1. TBA

1.1.1 Pearson’s Father-Son Height Data

1. TBA

1.1.2 Lord Rayleigh’s Data

1. TBA

1.1.3 Discussion

1. TBA

1.2 Exploring Prediction Using Data

1. TBA

1.2.1 Body and Brain Weights of Land Mammals

1. TBA

1.2.2 Space Shuttle Flight 25

1. TBA

1.2.3 Pearson’s Father-Son Height Data Revisited

1. TBA

1.2.4 Discussion

1. TBA
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1.3 Problems
1. A frequency histogram of continuous data is constructed by counting

the number of data points that fall into equally-spaced bins of width
h. h is called the bin width. Typically the bin edges are 0, ±h, ±2h,
±3h, and so on. If the bin count in the kth bin is denoted by νk, then
the frequency histogram is defined as

f̂(x) = νk , for x in the kth bin. (1.1)

(a) Show that the total area of the frequency histogram is nh, where
n =

∑
k νk. Hint: The histogram is made up of rectangular blocks

of width h and height vi.

(b) A probability histogram is defined to have total area of one.
Show that the following definition of a histogram has area equal
to one:

f̂(x) =
νk
nh

, for x in the kth bin. (1.2)

2. One of the most famous epidemiological cases occurred in 1854 when
Dr. John Snow successfully tracked down the source of an outbreak of
cholera in the London suburb of SoHo. He mapped the households of
some 500 victims over a 10-day period that lived within a quarter of mile
of each other. However, many tens of thousands had died of cholera in
England during the prior two decades. Dr. Snow believed contaminated
water was a primary cause. Just as in the space shuttle example, there
are choices of an appropriate time interval and the geographical extent
that can influence your conclusions. Using the descriptions and maps
conveniently assembled at

http://www.ph.ucla.edu/epi/snow/snowcricketarticle.html ,

discuss the evidence and choices that were and could have been made.
Hint: These data have been conveniently collected in CRAN Library
HistData by Michael Friendly. Look at the help file for dataset snow
and its example code.

3. (a) The Tukey power transformation of a variable x is xλ for any
nonzero λ ∈ R1. To better understand why the log(x) is used in

October 13, 2020 3 c© 2020 D. W. Scott
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place of x0 when λ = 0, we consider the linear re-expression of the
Tukey transformation given by the formula

xλ − 1

λ
. (1.3)

Since (1.3) is 0/0 when λ = 0, use l’Hôpital’s rule to find the
limit transformation as λ → 0. The scatter diagram using either
formula for fixed nonzero λ will be visually identical. Formula
(1.3) is referred to as the Box-Cox transformation; see Figure 1.1.

x
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e(
an

s)

0.5 1.0 1.5 2.0

λ = − 2
λ = − 1
λ = 0
λ = 1
λ = 2

0.1 0.2 0.5 1.0 2.0
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ra
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λ = − 2
λ = − 1
λ = 0
λ = 1
λ = 2

Figure 1.1: Box-Cox Transformation on natural and log scales

(b) Sometimes the transformation log(1+x) is in place of log(x) when
x ≥ 0 and x can take on the value 0. In this case, the original
and transformed values of 0 are both 0. Try this form on the
body-brain data and compare to Figure 1.4.
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Chapter 2

Classical Probability

2.1 Experiments with Equally Likely Outcomes
1. TBA

2.1.1 Simple Outcomes

1. TBA

2.1.2 Compound Events and Set Operations

1. Simple Set Operations: Find the following simple sets:

(a) If A ⊇ B, what is A ∪B?

(b) If A ⊇ B, what is A ∩B?

(c) A ∩ Ac?

(d) A ∪ Ac?

2. Counting Events: List all possible events associated with a single
toss of a regular die (6-sided) with faces showing the digits 1, 2, 3, 4,
5, or 6. Hint: Record the result of each roll of the die by the digit on
the top.

3. Counting Events (Part II): Show

(a)
∑n

k=0

(
n
k

)
= 2n

5



(b)
∑n

k=0(−1)k
(
n
k

)
= 0

(c) What is the application to the previous die rolling problem?

4. TBA

2.2 Probability Laws

1. When rolling a pair of die, find

(a) the probability getting at least 1 six?

(b) their sum is less than 5?

2. TBA

2.2.1 Union and Intersection of Events A and B

1. TBA

2.2.1.1 Case (i):

1. TBA

2.2.1.2 Cases (ii) and (iii):

1. TBA

2.2.1.3 Case (iv):

1. TBA

2.2.2 Conditional Probability

1. TBA
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2.2.2.1 Definition of Conditional Probability

1. (a) If A ∩B = ∅, find P (A|B)?
(b) If B ⊂ A, find P (A|B)?

2. When rolling a pair of dice, define the events

A = {at least one die shows a 3}
B = {sum is at least 5}

Find

(a) P (B|A)?
(b) P (A|B)?

3. TBA

2.2.2.2 Conditional Probability With More Than Two Events

1. Conditional probability with 3 events: Suppose a shipment of
25 replacement iPhone screens contains 4 cracked displays. Three are
chosen sequentially at random from the shipment box. What is the
probability that the first two are OK but the third is broken?

2. Alternative Birthday Problem: How many individuals with ran-
dom birthdays (of 365 possible) would make the probability of at least
one duplicate birthday at least 90%?

3. Scrabble Problem: In the game of Scrabble, each player draws a tile
to see who draws the lowest letter to see who goes first. (If players tie
with the lowest letter, they draw again.) Here is a table of all 100 tiles,
including two blank (‘b’) tiles. A blank tile beats the letter ‘A.’

b A B C D E F G H I J K L M
2 9 2 2 4 12 2 3 2 9 1 1 4 2
2 11 13 15 19 31 33 36 38 47 48 49 53 55

N O P Q R S T U V W X Y Z
6 8 2 1 6 4 6 4 2 2 1 2 1
61 69 71 72 78 82 88 92 94 96 97 99 100
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(a) In a game with 4 players, what is the probability you would go first
if you drew the letter ‘J’? Hint: This is a conditional probability
given that you drew the letter ‘J’.

(b) For all 27 letters, what is the probability you not be immediately
eliminated from going first? Graph these probabilities. Hint: Un-
like part (a) where you cannot be tied, here you can be tied but not
eliminated.

4. TBA

2.2.3 Independent Events

1. Independent events identity: Suppose A1, A2, . . . , An are indepen-
dent events. Show

P

(
n⋃
i=1

Ai

)
= 1−

n∏
i=1

P (Ac
i ) .

2. TBA

2.2.4 Bayes Theorem

1. Equivalence of Independent Events: Prove that if {A,B} are in-
dependent events, then so are {A,Bc}, {Ac, B}, and {Ac, Bc}.

2. TBA

2.2.5 Partitions and Total Probability

1. TBA

2.3 Counting Methods
1. A statistics professor is writing a quiz that covers 5 topics. She plans to

reuse questions from previous semesters, one question per topic. If she
has 3, 2, 4, 1, and 3 questions for each topic, respectively, how many
different exams could she write?

October 13, 2020 8 c© 2020 D. W. Scott



2. TBA

2.3.1 With Replacement

1. TBA

2.3.2 Without Replacement (Permutations)

1. A research group meets once a month for a beer tasting excuse. One
person volunteers to pick the order that the 6 beers will be offered,
and to record the scores 1-6. Assuming the order in which the beers is
presented matters, how many orderings are there?

2. In the previous problem, suppose 3 of the beers are pale ales, while 3
are its stronger couisin, IPA’s. As a result, the pale ales will be offered
before the IPA’s. How many orderings are there?

3. TBA

2.3.3 Without Replacement Nor Order (Combinations)

1. In a department of statistics with 10 faculty members, the department
chair has determined she has sufficient funds for 3 to attend the joint
statistical meetings. Including herself, how many groups of 3 must she
consider?

2. In the previous problem, suppose the department chair determines she
must attend the meetings in order to represent the department. How
many groups must she consider in this scenario?

3. TBA

2.3.4 Examples

1. Some Poker Hands: For 5-card poker hands, find

• (a) ν(3 of a kind);

• (b) ν(full house);

• (c) ν(1 pair);
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• (d) ν(Jack high).

Note: ν(·) denotes the “number of ways.”

2. TBA

2.3.5 Extended Combinations (Multinomial)

1. Counting Committees: From a Board of Directors with 4 men and
5 women, how many committees can be formed with

• (a) 2 men and 3 women;

• (b) 5 members, with at least 3 women?

2. TBA

2.4 Countable Sets: Implications As n→∞
1. TBA

2.4.1 Selecting Even or Odd Integers

1. TBA

2.4.2 Selecting Rational Versus Irrational Numbers

1. TBA

2.5 Kolmogorov’s Axioms
1. A Probability Inequality: Prove P (A ∪B) ≤ P (A) + P (B).

2. A Decomposition of the Union of 3 Sets: What is P (A ∪B ∪C)
in terms of known probabilities of events A, B, C, A∩B, A∩C, B∩C,
A ∩ B ∩ C? Hint: You probably can guess what the formula is if you
draw a general Venn diagram with 3 intersecting circles. But use the
formula for P (U ∪ V ); then let U = A and V = B ∪ C to work it all
out.
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3. TBA

2.6 Reliability: Series versus Parallel Networks
1. TBA

2.6.1 Series Network

1. TBA

2.6.2 Parallel Network

1. TBA

2.7 Problems
1. Show that the formula (2.8) for case (iv) also covers cases (i)-(iii).

2. How does P (T |C) change depending on increasing P (C) versus the
PSA test characteristics?

3. Show P (A|B) + P (Ac|B) = 1, as does P (A|Bc) + P (Ac|Bc) = 1.

4. Examine how P (C|T ) improves as a function of P (C), P (T |C), and
P (T c|Cc).

5. Prove these and/or draw Venn Diagrams; Equations (2.4) and (2.5).

6. Show that for case (ii), P (B|A) in Equation (2.13) can be expressed in
terms of P (A) and P (B) to reach the same conclusion.

7. Show formula (2.22) is correct.

8. Prove that a series network is no more reliable than its weakest com-
ponent, while a parallel network is more reliable than its strongest
component.

October 13, 2020 11 c© 2020 D. W. Scott



October 13, 2020 12 c© 2020 D. W. Scott



Chapter 3

Random Variables and Models
Derived From Classical
Probability and Postulates

3.1 Random Variables and Probability Distri-
butions: Discrete Uniform Example

1. TBA

3.1.1 Toss of a Single Die

1. TBA

3.1.2 Toss of a Pair of Dice

1. TBA

3.2 Continuous Uniform Example: The Uni-
variate Probability Density Function

1. TBA
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3.2.1 Using the PDF to Compute Probabilities

1. TBA

3.2.2 Using the PDF To Compute Relative Odds

1. TBA

3.3 Summary Statistics: Central and Non-Central
Moments

1. TBA

3.3.1 Expectation, Average, and Mean

1. Suppose the domain of a continuous random variable, X, is (0,∞),
show

EX =

∫ ∞
0

Pr(X > x) dx.

Hint: Use integration by parts.

2. TBA

3.3.2 Expectation as a Linear Operator

1. TBA

3.3.3 The Variance of a Random Variable

1. Suppose you are given the two expectations EX and E[X(X − 1)] for
a random variable X. How can you use these to compute the variance
σ2
X?

2. TBA

3.3.4 Standardized Random Variables

1. TBA
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3.3.5 Higher Order Moments

1. TBA

3.3.6 Moment Generating Function

1. TBA

3.3.7 Measurement Scales and Units of Measurement

1. TBA

3.3.7.1 The Four Measurement Scales

1. TBA

3.3.7.2 Units of Measurement

1. TBA

3.4 Binomial Experiments
1. TBA

3.5 Success Waiting Time: Geometric PDF
1. TBA

3.6 Waiting Time For r Successes: Negative Bi-
nomial

1. TBA

3.7 Poisson Process and Distribution
1. TBA

October 13, 2020 15 c© 2020 D. W. Scott



3.7.1 Moments of the Poisson PMF

1. TBA

3.7.2 Examples

1. An organic honey seller has found that she makes 8 sales on an average
Saturday farmer’s market over a 4-hour morning. On a slow Saturday,
she sells less than 4. What is the probability of a slow Saturday if X
is Poisson?

2. TBA

3.8 Waiting Time for Poisson Events: Negative
Exponential PDF

1. An organic honey seller has found that she makes 8 sales on an average
Saturday farmer’s market over a 4-hour morning. She is thinking of
going home early because she has had no sales since 8 a.m. and it now
11 a.m. Use the random variable T to measure the time to the first sale
(of honey), assuming λ = 8/4 sales per hour. What is P (T ≥ 3.0hrs)?

2. Suppose the lifetime of a light bulb follows a negative exponential dis-
tribution with a mean of 1000 hours. Find the probability the light
bulb

(a) lasts 1000 hours?

(b) lasts 2000 hours?

(c) burns out before 500 hours?

3. TBA

3.9 Normal or Gaussian Distribution

1. Suppose your laptop battery will run for X hours before recharging,
where X ∼ N(7, 1/22). Find
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(a) The probability it will run more than 9 hours?

(b) At least 8 hours?

(c) Between 6 and 7 hours?

2. TBA

3.9.1 Standard Normal Distribution

1. What is the probability a Gaussian random variable is further than
1, 2, 3, 4, 5 or 6 standard deviations of its mean? (Hint: Use the R
function pnorm(q,mu,sd).)

2. TBA

3.9.2 Sums of Independent Normal Random Variables

1. TBA

3.9.3 Normal Approximation to the Poisson Distribu-
tion

1. Plot the PMF of a Poisson PMF with m = 36, and overlay the approx-
imating Gaussian PDF given by Eqn (3.44). Explain why these curve
are close (without having to rescale the vertical scales) simply know-
ing that the former sums to 1 and latter integrates to 1. (Note the R
function dnorm(x,mu,sd) computes the Gaussian/Normal PDF.)

2. TBA

3.10 Problems

1. Throw 3 dice and label the results X1, X2, and X3. What is the PMF
of the total number of pips, X = X1 +X2 +X3?

2. Find the skewness and kurtosis coefficients in terms of µ and the non-
central moments µ′2, µ′3, and µ′4.
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3. If X ∼ NegBinom(r, p), find its MGF, and its mean and variance.

4. Use Mathematica to find the Taylor Series approximation to the differ-
ence of the exact MGF in Equation (3.52) and the MGF of a standard
Normal. (We used a Taylor Series in the exponent when deriving Equa-
tion (3.53).

5. Use the MGF technique to prove the result in Equation (3.50). You
should use the results from Section 5.4.1.
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Chapter 4

Bivariate Random Variables,
Transformations, and Simulations

4.1 Bivariate Continuous Random Variables

1. Let f(x, y) be a uniform PDF over the region bounded by straight
lines connecting the 5 points (0, 0), (4, 0), (4, 1), (2, 1), back to (0, 0).
Remark: These problems cover all of this Section.

(a) What is the PDF f(x, y)?

(b) Find the marginal pdf of X and its mean and variance?

(c) Same for Y ?

(d) What is m(x) = E[Y |X = x]? Sketch it over the support of
(X, Y ).
(Hint: This will be defined in a piecewise fashion.)

(e) What is conditional variance of m(x)? Compare it to the uncon-
ditional variance of Y ? Sketch m(x) and add the 2 curves that are
the conditional mean plus/minus one conditional standard devia-
tion.

(f) What is the covariance of X and Y ? The correlation?

2. TBA
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4.1.1 Joint CDF and PDF Functions

1. TBA

4.1.2 Marginal PDF

1. TBA

4.1.3 Conditional Probability Density Function

1. TBA

4.1.4 Independence of Two Random Variables

1. TBA

4.1.5 Expectation, Correlation, and Regression

1. TBA

4.1.5.1 Covariance and Correlation

1. Suppose X is a discrete random variable that takes on the values
−2,−1, 1, 2 with equal probabilities px = 1/4. If Y = X2, compute
the correlation between X and Y . Hint: Compute the means and vari-
ances of X and Y , and finally their covariance.

2. Repeat the previous problem but with Y = X3.

3. TBA

4.1.5.2 Regression Function

1. TBA

4.1.6 Independence of n Random Variables

1. TBA
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4.1.7 Bivariate Normal PDF

1. TBA

4.1.8 Correlation, Independence, and Confounding Vari-
ables

1. TBA

4.2 Change of Variables
1. TBA

4.2.1 Examples: Two Uniform Transformations

1. TBA

4.2.2 One-Dimensional Transformations

1. Let X be a standard Gaussian r.v. and let Y = exp(X) be the trans-
formed r.v. The PDF of Y is called the log-normal. Using the change-
of-variables technique, find the formula for fY (y)? Plot the PDF for
0 ≤ y ≤ 5.

2. If X is distributed Unif(0, 1), what is the CDF of Y = eX? Find the
PDF and plot it.

3. If X is distributed as negative exponential with paramter λ = 1, what
is the CDF of Y = log X? Find the PDF and plot it.

4. TBA

4.2.2.1 Example 1: Exponential PDF

1. TBA

4.2.2.2 Example 2: Cauchy PDF

1. TBA
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4.2.2.3 Example 3: Chi-Squared PDF With 1 Degree of Freedom

1. TBA

4.2.3 Two-Dimensional Transformations

1. TBA

4.3 Simulations

1. TBA

4.3.1 Generating Uniform Pseudo-Random Numbers

1. TBA

4.3.1.1 Reproducibility

1. TBA

4.3.1.2 RANDU

1. TBA

4.3.2 Probability Integral Transformation

1. We want to generate samples from the Beta(1, 3) PDF

f(x) = 3(1− x)2 ,

where the support is 0 < x < 1, using the Probability Integral Trans-
formation.

(a) Show the CDF is F (x) = 3x− 3x2 + x3

(b) Find the closed form solution for x in u = F (x), given a random
number u ∼ U(0, 1). (Note: Obtaining x = F−1(u).)

October 13, 2020 22 c© 2020 D. W. Scott



(c) Generate a sample of size n = 104 and plot a histogram and
superimpose the PDF. How does it look to you? Hints:

> hist( 1-(1-runif(1e4))**(1/3), prob=50, T, col=2 )
> xs = seq(0,1,.01); lines( xs, 3*(1-xs)**2, col=4, lwd=3
)

2. TBA

4.3.3 Event-Driven Simulation

1. TBA

4.4 Problems

1. An alternative and informal derivation of Equation (4.5) may be illu-
minating. As we did in Figure (3.5), we write

P (X ≈ x) = P
(
X ∈

(
x− ∆

2
, x+ ∆

2

))
= P

(
X ∈

(
x− ∆

2
, x+ ∆

2

)
, Y ∈

(
−∞,∞

))
=

∫ ∞
y=∞

[∫ x+∆/2

s=x−∆/2

fX,Y (s, y) ds

]
dy

≈
∫ ∞
y=∞

[
fX,Y (x, y) ·∆

]
dy .

Since P (X ≈ x) ≈ ∆ · fX(x), verify this sequence of equations and
show that Equation (4.5) follows. Draw the relevant bivariate event.

2. Show that the sequence of pseudo-random variables {(xn, xn+1, xn+2), n =
1, 2, . . . } defined in Equation (4.32) satisfy the equation

xn+2 = 6xn+1 − 9xn mod 231 ;

hence, the points (yn, yn+1, yn+2), where yn = xn/2
31, fall on 15 planes

in R3.
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3. Use the bivariate change-of-variables approach to find the PDF of a
bivariate normal, where the r.v.’s are not in standard form. Conclude
the correlation coefficient is unchanged. Hint: You know fX,Y (x, y)
where X and Y are in standard form. Define two new r.v.’s, U = µx +
σxX and V = µy+σyY . Note that U ∼ N(µX , σ

2
X) and V ∼ N(µY , σ

2
Y ).

Find gU,V (u, v), which is the general form of the bivariate Normal PDF
with all 5 parameters.
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Chapter 5

Approximations and Asymptotics

5.1 Why Do We Like Random Samples?

5.1.1 When u(X) Takes a Product Form

5.1.2 When u(X) Takes a Summation Form

5.2 Useful Inequalities

5.2.1 Markov’s Inequality

5.2.2 Chebyshev’s Inequality

1. Using Chebyschev’s inequality to find n: Supposedly Asian Elephants
are 200 pounds at birth. We think σ = 5 pounds. How large a sample
n should we collect so that the probability X̄ is within one (1) pound
of µ is at least 99%?

2. TBA
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5.2.3 Jensen’s Inequality

5.2.4 Cauchy-Schwarz Inequality

5.3 Sequences of Random Variables

5.3.1 Weak Law of Large Numbers

5.3.2 Consistency of the Sample Variance

5.3.3 Relationships Among the Modes of Convergence

5.3.3.1 Proof of Result (5.21)

5.3.3.2 Proof of Result (5.22)

5.4 Central Limit Theorem

5.4.1 Moment Generating Function for Sums

1. The MGF technique and the CLT:

(a) Show by the MGF technique that the random variable Y =
∑n

i=1Xi

will be exactly χ2(n) if the Xi are a random sample from the χ2(1)
PDF.

(b) May we conclude the PDF χ2(n) is approximately Gaussian?

2. Analyzing the Average of a Normal Random Sample

• Use the moment generating function technique to find the exact
PDF of the random variable X̄ for a N(µ, σ2) random sample.

• First, use Mathematica to compute the MGF of a N(µ, σ2) r.v.:

MX(t) = E[etX ]

= exp

(
µ t+

1

2
σ2 t2

)
.
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• Next use the MGF approach to find the PDF of X̄. Hint:

MX̄(t) = E[etX̄ ]

= E[e(t/n)(X1+X2+···+Xn)]

= E
n∏
`=1

e(t/n)X` =
n∏
`=1

E[e(t/n)X` ] =
n∏
`=1

MX`
(t/n)

= [MX(t/n)]n .

3. Analyzing the Average of a Cauchy Random Sample

• We wish to attempt to use the moment generating function tech-
nique to see if we can find the PDF of the random variable X̄ for
a Cauchy random sample. This cannot be done, as the Cauchy
PDF, where

fX(x) =
1

π(1 + x2)
x ∈ R

does not have a well-defined MGF. Instead, we need to use the
Fourier (rather than LaPlace) transform, which is called the Char-
acteristic Function (CF) in statistics.

• First, use Mathematica to compute the CF of a Cauchy r.v.:

CFX(t) = E[eitX ] where i =
√
−1

=

∫ ∞
−∞

eitx
1

π(1 + x2)
dx

= e−|t| .

• Next use the CF approach to find the PDF of X̄. Hint:

CFX̄(t) = E[eitX̄ ] = E[ei(t/n)(X1+X2+···+Xn)]

= E
n∏
`=1

ei(t/n)X` =
n∏
`=1

E[ei(t/n)X` ] =
n∏
`=1

CFX`
(t/n)

= [CFX(t/n)]n .

• Bonus: Use the CF approach to show that if U ∼ Unif(−π/2, π.2),
then X = tan(U) is Cauchy.
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5.4.2 Standardizing the Sum Sn

1. An old way of generating (approximately) N(0, 1) samples was to use
the formula

Y =
12∑
i=1

Ui − 6 .

(a) Why should this work if Ui ∼ U(0, 1)?
Hints: Compute the moments of Y and invoke the CLT.

(b) Try it 1000 times and plot a histogram of the pseudo-random
sample. Hint:

> y=NULL; for(i in 1:1000) {y=c(y,sum(runif(12))-6)}; hist(y,40,T,col=2)

2. The Central Limit Theorem says that for any random sample {Xi},

Yn =
1√
n

n∑
i=1

(
Xi − µX
σX

)
D−→ N(0, 1) .

If, in fact, the sample is itself Normal, i.e. Xi ∼ N(µX , σ
2
X), use the

MGF technique to show that Yn is exactly N(0, 1) for all sample sizes
n.

3. Where we derive a general formula for the first two moments
of a linear combination of independent, but not identically
distributed, random variables. Given n independent r.v.’s Xi with
means µi and variances σ2

i , consider the random variable

Y =
n∑
i=1

(
aiXi + bi

)
,

where ai and bi are known constants.

(a) Find the mean of Y .

(b) Find the variance of Y .

Hint: Define Yi = Xi − µi and show Y − µY =
∑

i ai Yi. Then
easy to compute the variance of Y , since the Y ′i s are independent
with EYi = 0 and EY 2

i = σ2
i .
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4. This problem is a generalization of the previous problem.
Here, we derive the formula for the first two moments of
a linear combination of dependent, and non-identically dis-
tributed, random variables. The n r.v.’s Xi have means µi and
variances σ2

i , and the correlation coefficient between Xi and Xj is ρij.
Note that cov(Xi, Xj) = σiσjρij. Consider the random variable

Y =
n∑
i=1

(
aiXi + bi

)
, where ai and bi are known constants.

(a) Find the mean of Y .

(b) Find the variance of Y .

(c) What is the variance of Y when n = 2?

Hint: Let Yi = Xi − µi; hence, Y − µY =
∑

i ai Yi. Then it is easier
to compute the var(Y ), since the Y ′i s satisfy EYi = 0, EY 2

i = σ2
i , and

cov(Yi, Yj) = E[YiYj] = σiσjρij as well.

5. Consider a random sample of n Bernoulli events, that is, Xi ∼ B(1, p).

(a) Show X2
i = Xi. Then show

S2 =
1

n− 1

n∑
i=1

(
Xi − X̄

)2
=

n

n− 1
X̄
(
1− X̄

)
.

(b) By computing the first two non-central moments of X̄, show that

E S2 = σ2
X = p(1− p) , i.e., S2 is unbiased for σ2

X .

Hint: First show that EX̄ = µX̄ = µX = p and EX̄2 = V ar X̄ +
(EX̄)2.

6. TBA
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5.4.3 Proof of Central Limit Theorem

5.5 Delta Method and Variance-Stabilizing Trans-
formations

5.6 Problems
1. Prove Equation (5.8) assuming f(x) =

∏n
i=1 fXi

(xi), i.e. {X1, X2, . . . , Xn}
is an i.i.d. sample. Note: This is a stronger assumption than required.

2. Show Chebyshev’s inequality can also be expressed as

P (|X − µX | > c) ≤ σ2
X

c2
.

3. Show the delta method given in Equation (5.37) for a Poisson r.v. with
g(x) =

√
x gives the same answer as in Equation (5.36).
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Chapter 6

Parameter Estimation

6.1 Desirable Properties of an Estimator

1. TBA

6.2 Moments of the Sample Mean and Variance

1. TBA

6.2.1 Theoretical Mean and Variance of the Sample Mean

1. TBA

6.2.2 Theoretical Mean of the Sample Variance

1. TBA

6.2.3 Theoretical Variance of the Sample Variance

1. TBA

6.3 Method of Moments (MoM)

1. TBA
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6.4 Sufficient Statistics and Data Compression

1. For a random sample of size n from the Geometric PMF, Geom(p):

(a) Find the sufficient statistic, T (X), for the parameter θ = p.

(b) Find a Method of Moments estimator for p.

2. Consider the Gamma(α, β) PDF, which may also be found in the Ap-
pendix. What are the two sufficient statistics, T1(X) and T2(X), for
the parameters α and β?

3. TBA

6.5 Bayesian Parameter Estimation

1. TBA

6.6 Maximum Likelihood Parameter Estimation

1. For a random sample of size n from the Geometric PMF, Geom(p):

(a) Find the MLE p̂MLE.

(b) Show that it truly is a maximum.

2. Consider a random sample of size n from the Unif(θ, 1) PDF, where
θ < 1.

(a) What is the likelihood function L(θ |X)?

(b) What is the MLE for θ?

3. TBA

6.6.1 Relationship to Bayesian Parameter Estimation

1. TBA
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6.6.2 Poisson MLE Example

1. TBA

6.6.3 Normal MLE Example

1. TBA

6.6.4 Uniform MLE Example

1. TBA

6.7 Information Inequalities and the Cramér-
Rao Lower Bound

1. TBA

6.7.1 Score Function

1. TBA

6.7.2 Asymptotics of MLE

1. TBA

6.7.3 Minimum Variance of Unbiased Estimators

1. TBA

6.7.4 Examples

1. TBA
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6.8 Problems
1. Given n independent r.v.’s Xi with means µi and variances σ2

i , consider
the random variable

Y =
n∑
i=1

(
aiXi + bi

)
,

where ai and bi are known constants. Show

EY =
n∑
i=1

(ai µi + bi)

varY =
n∑
i=1

a2
iσ

2
i .

Hint: Define Yi = Xi − µi and show Y − µY =
∑
aiYi.

2. For a Normal random sample, show that varS2 = 2σ4
X/(n−1) using the

fact that (n− 1)S2/σ2
X ∼ χ2(n− 1); see Equation (6.9) and following.

3. In the MoM example 3 in Section (6.3), show that F (x) = 1− θ/x, so
that you can generate random samples as x = θ/(1−u) by the probabil-
ity integral transformation method, where u is a pseudo-independent
Unif (0, 1) sample. Choose θ = 3. For a sample of size 103, plot a
histogram of your sample. Does the default R histogram show much
structure? Does the alternative MoM estimator of θ seem to work?
Verify that θ̂ is a MoM estimator.

4. Show that if the sampling density f(x|θ) has m sufficient statistics,
then the MLE θ̂ must be a function of the data through the sufficient
statistics alone.
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Chapter 7

Hypothesis Testing

7.1 Setting up a Hypothesis Test
1. TBA

7.1.1 Example of a Critical Region

1. TBA

7.1.2 Accuracy and Errors in Hypothesis Testing

1. TBA

7.2 Best Critical Region for Simple Hypotheses
1. TBA

7.2.1 Simple Example Continued

1. TBA

7.2.2 Gaussian Shift Model with Common Variance

1. TBA
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7.3 Best Critical Region for a Composite Al-
ternative Hypothesis

1. Suppose we have a random sample of size n from a Poisson Pois(m)
PMF. We wish to test

H0 : m = m0 versus
H1 : m = m1 > m0 .

(a) Following Section 7.2, find the form of the best critical region.

(b) The number of murders in Houston for the 4 years from 2014 to
2017 was 242, 297, 303, and 269. What is the best critical region
for testing

H0 : m = 250 versus
H1 : m = 275

at the 5% significance level?

(c) What is the power of your test?

(d) What is your decision for the data given?

2. Consider a hypothesis test of the mean of normal data with known
variance of 1:

H0 : µ = 0 versus
H1 : µ 6= 0.

(a) If n = 16, what is the best critical region?

(b) Perform the hypothesis test of these simulated samples. Generate
16 normal samples in R via

set.seed(123); x = rnorm(16, 1, 1) .

What is your decision?

3. TBA
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7.3.1 Negative Exponential Composite Hypothesis Test

1. TBA

7.3.1.1 Example

1. TBA

7.3.1.2 Alternative Critical Regions

1. TBA

7.3.1.3 Mount St. Helens Example

1. TBA

7.3.2 Gaussian Shift Model with Common But Unknown
Variance: The t-test

1. Consider a hypothesis test of the mean of normal data with unknown
variance:

H0 : µ = 0 versus
H1 : µ 6= 0.

(a) If n = 9, what is the best critical region?

(b) Perform the hypothesis test of these simulated samples. Generate
9 normal samples in R via

set.seed(456); x = rnorm(9, 1, 2) .

What is your decision?

2. TBA

7.3.3 The Random Variable Tn−1
1. TBA
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7.3.3.1 Where We Show X̄ and S2 are Independent

1. TBA

7.3.3.2 Where We Show That S2 Scaled is χ2(n− 1)

1. TBA

7.3.3.3 Where We Finally Derive the T PDF

1. TBA

7.3.4 The One-Sample t-test

1. TBA

7.3.5 Example

1. TBA

7.3.6 Other t-tests

1. TBA

7.3.6.1 Paired t-test

1. TBA

7.3.6.2 Two-Sample t-test

1. TBA

7.3.6.3 Example Two-Sample t-test: Lord Rayleigh’s Data

1. TBA

7.4 Reporting Results: p-Values and Power
1. TBA
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7.4.1 Example When the Null Hypothesis Is Rejected

1. TBA

7.4.2 When the Null Hypothesis Is Not Rejected

1. TBA

7.4.3 The Power Function

1. TBA

7.5 Multiple Testing and the Bonferroni Cor-
rection

1. TBA

7.6 Problems

1. Show that the sum of n i.i.d. negative exponential r.v.’s with parameter
λ has a Gamma(n, λ) exactly. Hint: Use the MGF technique of Section
5.4.1.

2. Show that among the contiguous intervals (a, b) containing 95% of the
probability for our example in Section 7.3.1.1, a necessary condition to
minimize the width of the interval, b− a, is that the sampling density
must be equal at a and b. This result holds generally if the sampling
density is unimodal and monotone on either side of the mode.

3. Suppose the distribution of the r.v. used to find the various intervals
(a, b) in Section 7.3.1.2 was not only unimodal and monotone on either
side of the mode, but was also symmetric. Show that the equal-tail-area
and narrowest-width intervals are identical.
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4. Using the MGF technique, show that

Y =
n∑
i=1

Z2
i ∼ χ2(n) ,

where Zi is a random sample from the N(0, 1) PDF.

5. Using the MGF technique, show that if U = S + T , where (a) U ∼
χ2(n); (b) T ∼ χ2(1); and (c) S and T are independent, then S ∼
χ2(n− 1).

6. Verify the critical regions and sample sizes for the example at the end
of Section 7.4.3.

7. The 1969 military draft lottery numbers are shown in Figure 7.9. In-
dividuals with numbers over 195 were not drafted. There appears to
be a nonrandom downward trend. For example, only 5 birthdays in
December had a lottery number above average. Run a two-sample T -
test in R with the command t.test(x[1:183],x[184:366]) and show
the p-value is 5 × 10−5. What do we conclude? Perform a simulation
using data from x = sample(366) to verify the T -distribution is the
appropriate test statistic.
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Figure 7.1: Draft lottery numbers 1–366 by month. The monthly average is
the blue line. The overall average of 183.5 is the red dotted line.
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Chapter 8

Confidence Intervals and Other
Hypothesis Tests

8.1 Confidence Intervals
1. TBA

8.1.1 Confidence Interval for µ: Normal Data, σ2 Known

1. TBA

8.1.2 Confidence Interval for µ: σ2 Unknown

1. Suppose we have a random sample of size 50 from a N(µ, σ2) PDF. We
wish to test

H0 : µ = 10 versus
H1 : µ 6= 10 .

The sample moments are x̄ = 13.4508 and s2 = 65.8016.

(a) Find the critical region C and test the null hypothesis at the 5%
level. What is your decision?

(b) What is the p-value for your decision?

(c) What is a 95% confidence interval for µ?
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2. Use the same data as in the previous Problem.

(a) Test the null hypothesis that σ2 = 64 versus a two-sided alterna-
tive. First find the critical region and then give your decision.

(b) Find a 95% confidence interval for σ2?
(c) If you are worried about performing 2 statistical tests on the same

data and that the overall type I error might not be 5%, how might
you modify your approach?

3. TBA

8.1.3 Confidence Intervals and p-Values

1. TBA

8.2 Hypotheses About the Variance and the F -
Distribution

1. TBA

8.2.1 The F -Distribution

1. TBA

8.2.2 Hypotheses About the Value of σ2

1. TBA

8.2.3 Confidence Interval for σ2

1. TBA

8.2.4 Two-Sided Alternative for Testing σ2 = σ20

1. TBA
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8.3 Pearson’s Chi-Squared Tests
1. TBA

8.3.1 The Multinomial PMF

1. TBA

8.3.2 Goodness-of-Fit (GoF) Tests

1. TBA

8.3.3 Two-Category Binomial Case

1. TBA

8.3.4 m-Category Multinomial Case

1. TBA

8.3.5 Goodness-of-Fit Test for a Parametric Model

1. One hundred points were simulated using the R function rexp(100,1)
for the negative exponential PDF with λ = 1. We are interested in
testing a goodness-of-fit of the random numbers to the true model. A
histogram of these data gave bin counts over the 9 bins

{(0, 0.5), (0.5, 1), . . . , (4, 4.5)} of (42, 16, 15, 11, 3, 5, 3, 1, 4) .

Also, x̄ = 1.0865 .

(a) Perform a Pearson goodness-of-fit test at the 5% level. Hint: Be
careful that the expected counts all are greater than 5 and that they
add up to n = 100.

(b) What is the p-value? How do your interpret this number?
(c) If our null hypothesis was that the data came from a negative

exponential PDF, but we did not know that the mean was 1, how
would you perform the goodness-of-fit test? (Do it.)

2. TBA
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8.3.6 Tests for Independence in Tables

1. Pearson Test for Independence in Tables. One hundred middle
school students studying Spanish were randomly assigned to 2 class-
rooms. One classroom used Rosetta Stone and the other used Babbel
software in the language lab and on their personal computers. At the
end of one semester, the final grades turned out to be:

Grade A B C D E Totals
Classroom I 8 13 16 10 3 50
Classroom II 4 9 14 16 7 50

Table 8.1: Hypothetical Data Comparing Foreign Language Software

(a) Test the null hypothesis that the software options are equally ef-
fective.

(b) What is the p-value?

2. TBA

8.4 Correlation Coefficient Tests and C.I.’s

1. The correlation coefficient measures the degree to which the random
variable Y is related to X in a linear fashion. If the relationship is
in fact nonlinear, the intuition may be faculty. In, 1973, Professor
Francis Anscombe devised a clever set of 4 datasets (each with n = 11)
that illustrate this fact. These data are available in R as the object
anscombe. Compute the correlation coefficient by the R expression
cor(x,y) for each set of data and plot. Add the least squares
regression line to each figure by using the R expression abline(
lsfit(x,y) ) . What do you conclude?

2. Consider the full 5-parameter bivariate normal PDF. Given a random
sample {(xi, yi), i = 1, . . . , n}, assume you know the MLE’s for µx, µy,
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σx, and σy are

µ̂x = x̄ =
1

n

n∑
i=1

xi σ̂x = sx =

√√√√ 1

n

n∑
i=1

(xi − x̄)2

µ̂y = ȳ =
1

n

n∑
i=1

yi σ̂y = sy =

√√√√ 1

n

n∑
i=1

(yi − ȳ)2 .

Verify the formula for the MLE of the correlation coefficient ρ in Equa-
tion (8.23)

ρ̂ = r =

∑n
i=1(xi − x̄)(yi − ȳ)√∑n

i=1(xi − x̄)2
√∑n

i=1(yi − ȳ)2
or equivalently

r =
1
n

∑n
i=1(xi − x̄)(yi − ȳ)

sx sy

Hints: Now the pdf is

f(x, y) =
1

2πσxσy
√

1− ρ2
exp

[
−Q(x, y)

2(1− ρ2)

]
where

Q(x, y) =

(
x− µx
σx

)2

− 2ρ

(
x− µx
σx

)(
y − µy
σy

)
+

(
y − µy
σy

)2

.

Thus the average (i.e. divided by n) log-likelihood for ρ is given by

`(ρ|x,y) = − log 2π − log σx − log σy −
1

2
log(1− ρ2)− Q̄(x,y)

2(1− ρ2)

where

Q̄(x,y) =
1

n

n∑
i=1

Q(xi, yi) .
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Plugging in the 4 MLE’s we know, we find

Q(x, y) =
(x− x̄)2

s2
x

− 2ρ
(x− x̄)(y − ȳ)

sx sy
+

(y − ȳ)2

s2
y

; hence,

Q̄(x,y) =
1

n

n∑
i=1

Q(xi, yi)

=
1
n

∑
i(xi − x̄)2

s2
x

− 2ρ
1
n

∑
i(xi − x̄)(yi − ȳ)

sx sy
+

1
n

∑
i(yi − ȳ)2

s2
y

=
s2
x

s2
x

− 2ρ
rsxsy
sxsy

+
s2
y

s2
y

= 2(1− ρ r) .

Thus the relevant terms in the average log-likelihood to be maximized
are

˜̀(ρ|x,y) = −1

2
log(1− ρ2)− 2(1− ρ r)

2(1− ρ2)

Use Mathematica to show

∂ ˜̀(ρ|x,y)

∂ρ
=
r − ρ+ rρ2 − ρ3

(1− ρ2)2

which equals 0 when ρ̂ = r (also ±i).

3. TBA

8.4.1 How to Test if the Correlation ρ = 0

1. TBA

8.4.2 Confidence Intervals and Tests for a General Cor-
relation Coefficient

1. Correlation Coefficient Test and Confidence Interval. This case
study examined the relationship between an isometric strength test, X,
and job performance, Y , for 50 warehouse workers. You may assume
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these data follow a bivariate normal PDF. The following statistics were
calculated from these hypothetical data:

50∑
i=1

xi = 250.0109

50∑
i=1

x2
i = 1335.2427

50∑
i=1

yi = 494.6882

50∑
i=1

y2
i = 4934.5076

50∑
i=1

xiyi = 2515.2075 .

(a) What is the sample correlation coefficient?
(b) Test the null hypothesis that H0 : ρ = 0 versus a two-side alter-

native. First find the critical region and then give your decision.
(c) Find a 95% confidence interval for ρ?

2. TBA

8.5 Linear Regression
1. TBA

8.5.1 Least Squares Regression

1. TBA

8.5.2 Distribution of the Least-Squares Parameters

1. TBA
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8.5.3 A Confidence Interval for the Slope

1. TBA

8.5.4 A Two-Side Hypothesis Test for the Slope

1. TBA

8.5.5 Predictions at a New Value

1. TBA

8.5.6 Population Interval at a New Value

1. Linear Regression Confidence Intervals. A chemical engineer-
ing graduate student ran 11 experiments as follows. Given 500 grams
of input chemicals by weight, a process was run at 11 temperatures
(50, 60, 70, . . . , 140, 150). The output material was separated into prod-
uct (yi) and waste. The weight of the product was also measured in
grams; see the Figure on the next page, on which both the data and
the least-squares line are displayed.

You may assume the εi are normally distributed. The following statis-
tics were calculated from these hypothetical data:

11∑
i=1

xi = 1100

11∑
i=1

x2
i = 121,000

11∑
i=1

yi = 1,844.812

11∑
i=1

y2
i = 369,372.483

11∑
i=1

xiyi = 205,743.937 .
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(a) Consider the pointwise confidence interval for Y |x at the 95%
level. Sketch the (upper and lower) curves onto the graph provided
over the range of the data. (Compute these CI’s at enough points
to sketch the continuous lines. Never mind that the overall type I
error may be wrong.)

(b) Next, consider the pointwise confidence interval for the predic-
tions, also at the 95% level for each x. Sketch the (upper and
lower) curves onto the graph provided over the range of the data.
(Again, ignore the fact that the overall type I error will be wrong.)

2. TBA

8.6 Analysis of Variance
1. TBA

8.7 Problems
1. Find confidence intervals for paired and two-sample t-tests.

2. Show that the inequality in Equation (8.6) may be written in the form

Prob

 √
n X̄√

(n−1)S2

n−1

< t0.975,n−1

 = 20% ,

where
√
nX̄ ∼ N(

√
nµ1, 1). The quantity follows the non-central T

distribution, where the numerator is N(µ, 1) rather than N(0, 1). For
the parameters in the example,

> pt( qt(.975,15), 15, 2.997865 ) = 0.20000;

where the noncentrality parameter µ = 2.997865 was found by inter-
polation. Hence, 4µ1 = 2.997865 or µ1 = 0.7495.
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Chapter 9

Topics in Statistics

9.1 MSE and Histogram Bin Width Selection

9.1.1 MSE Criterion for Biased Estimators

9.1.2 Case Study: Optimal Histogram Bin Widths

9.1.3 Examples with Gaussian Data

9.1.4 Normal Reference Rules for the Histogram Bin
Width

9.1.4.1 Scott’s Rule

9.1.4.2 Friedman-Diaconis Rule

9.1.4.3 Sturges’ Rule

9.1.4.4 Comparison of the Three Rules

9.2 Optimal Stopping Time Problem

9.3 Compound Random Variables

9.3.1 Computing Expectations with Conditioning

9.3.2 Compound Random Variables
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9.4 Simulation and the Bootstrap

9.5 Multiple Linear Regression

9.6 Experimental Design

9.7 Logistic Regression, Poisson Regression, and
the Generalized Linear Model

9.8 Robustness

9.9 Conclusions
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