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Chapter 1

Data Analysis and Understanding

1.1 Exploring the Distribution of Data

1.1.1 Pearson’s Father-Son Height Data
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Figure 1.1: Displays of the father-son height data collected by Karl Pearson:
(L) Box-and-Whiskers plot; (M) Stem-and Leaf plot; (R) Histogram.
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Figure 1.2: Histograms of the sons’ heights (top row) and fathers’ heights
(bottom row) using three bin widths: h/2, h, 2h from left to right; see text.

1.1.2 Lord Rayleigh’s Data
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Figure 1.3: Displays of Lord Rayleigh’s 24 measurements of the atomic weight
of nitrogen gas. (L) Histogram with 4 bins; (M) A second histogram; (R)
Stem-and-Leaf display using the R command stem(rayleigh,scale=4).
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1.1.3 Discussion

1.2 Exploring Prediction Using Data

1.2.1 Body and Brain Weights of Land Mammals
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Figure 1.4: Scatter diagrams of the raw and log-transformed body and brain
weights of 62 land mammals.
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1.2.2 Space Shuttle Flight 25
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Figure 1.5: Analysis of the number of O-ring failures for the first 24 Space
Shuttle launches; see text.
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1.2.3 Pearson’s Father-Son Height Data Revisited
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Figure 1.6: Father-son height data collected by Karl Pearson
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1.2.4 Discussion

1.3 Problems
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Figure 1.7: Box-Cox Transformation on natural and log scales
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Chapter 2

Classical Probability

2.1 Experiments with Equally Likely Outcomes

2.1.1 Simple Outcomes
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Figure 2.1: (L) Venn diagram of the classical probability experiment rolling
a single die where n = 6. (R) Events A, B, and C are shown as ellipses
enclosing the appropriate simple outcomes.
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2.1.2 Compound Events and Set Operations

2.2 Probability Laws

A B

(i)

Ω

A

B

(i i)

Ω
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(i i i)

Ω

A B

(iv)

Ω

Figure 2.2: Four possible relationships between events A and B.
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2.2.1 Union and Intersection of Events A and B

2.2.1.1 Case (i):

2.2.1.2 Cases (ii) and (iii):

2.2.1.3 Case (iv):

2.2.2 Conditional Probability

2.2.2.1 Definition of Conditional Probability

2.2.2.2 Conditional Probability With More Than Two Events
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Figure 2.3: Probability that n students all have different birthdays, plotted
using three different scales.
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2.2.3 Independent Events

2.2.4 Bayes Theorem

2.2.5 Partitions and Total Probability

A1
A2A3
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A1
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B

Ω
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Figure 2.4: (L) Venn diagram of partition of Ω intom = 6 sets A1, A2, . . . , A6;
(M) Set B superimposed upon partition; (R) Set B decomposed into m
disjoint events using the partition. In this Figure we use the shorthand
notation for intersection, namely, BAi = B ∩ Ai.
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Figure 2.5: Illustration of the
FPC. Select one of {A,B,C,D},
then one of {a, b}, and finally
one of {α, β, γ}. For each selec-
tion at the first step, there are 2
choices at the second step. Fi-
nally, for each of the selections
after the first two steps, there
are 3 choices at the third step.
Therefore, n(S) = 4×2×3 = 24
possibilities. It is common to
use a tree diagram to visualize
the selection process, recording
the selections on the leaves.
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2.3 Counting Methods

2.3.1 With Replacement

2.3.2 Without Replacement (Permutations)

2.3.3 Without Replacement Nor Order (Combinations)

2.3.4 Examples

2.3.5 Extended Combinations (Multinomial)

2.4 Countable Sets: Implications As n→∞

2.4.1 Selecting Even or Odd Integers

2.4.2 Selecting Rational Versus Irrational Numbers

2.5 Kolmogorov’s Axioms

2.6 Reliability: Series Versus Parallel Networks

A1 A2 An−1 An

in out

A1

A2

An

in out

Figure 2.6: A series network (L) and parallel network (R) of n components.
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2.6.1 Series Network

2.6.2 Parallel Network

2.7 Problems
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Chapter 3

Random Variables and Models
Derived From Classical
Probability and Postulates

3.1 Random Variables and Probability Distri-
butions: Discrete Uniform Example

3.1.1 Toss of a Single Die
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Figure 3.1: (L) The cumulative distribution function for the roll of a single
die; and (R) its probability mass function.
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3.1.2 Toss of a Pair of Dice
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Figure 3.2: (L) The cumulative distribution function for the sum of pips on
two dice; and (R) its probability mass function. From the shape of the PMF,
this is a discrete isosceles triangular distribution.

3.2 The Univariate Probability Density Func-
tion: Continuous Uniform Example
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Figure 3.3: (L) The CDF for a Unif (0, 1) density; and (R) its PDF.
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3.2.1 Using the PDF to Compute Probabilities
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x

Figure 3.4: The shaded areas give the probabilities of the events 1 < X < 2,
|X| > 1.5, and 1 < |X| < 2, respectively.

3.2.2 Using the PDF to Compute Relative Odds
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Figure 3.5: The CDF and PDF of an isosceles triangular distribution.
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3.3 Summary Statistics: Central and Non-Central
Moments

3.3.1 Expectation, Average, and Mean

3.3.2 Expectation as a Linear Operator

3.3.3 The Variance of a Random Variable

3.3.4 Standardized Random Variables

3.3.5 Higher Order Moments

3.3.6 Moment Generating Function

3.3.7 Measurement Scales and Units of Measurement

3.3.7.1 The Four Measurement Scales

3.3.7.2 Units of Measurement

3.4 Binomial Experiments
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Figure 3.6: Binomial PMF for various combinations of n and p.
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Figure 3.7: Binomial CDF for n and p as in Figure 3.6.

3.5 Waiting Time for a Success: Geometric PMF

3.6 Waiting Time for r Successes: Negative Bi-
nomial

3.7 Poisson Process and Distribution

or

0 t t + δ

x calls 0

0 t t + δ

x − 1 calls 1

Figure 3.8: The 2 disjoint events that result in x calls in [0, t + δ], ignoring
the very small possibility of more than 1 call in (t, t+ δ).
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3.7.1 Moments of the Poisson PMF

3.7.2 Examples
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Figure 3.9: Examples of the Poisson PMF, where X ∼ Pois(m).

3.8 Waiting Time for Poisson Events: Negative
Exponential PDF

3.9 The Normal Gaussian (Also Known as the
Gaussian Distribution)
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Figure 3.10: Examples of the discrete Poisson PMF, Pois(m), and the con-
tinuous Normal PDF with the same moments, N(µ = m,σ2 = m).
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Figure 3.11: Gauss on the German Mark bill. Note the Gaussian curve.

3.9.1 Standard Normal Distribution
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Figure 3.12: Standard Normal CDF, Φ(x), and PDF, φ(x), for x = 1.

3.9.2 Sums of Independent Normal Random Variables

3.9.3 Normal Approximation to the Poisson Distribu-
tion

3.10 Problems
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Chapter 4

Bivariate Random Variables,
Transformations, and Simulations

4.1 Bivariate Continuous Random Variables

4.1.1 Joint CDF and PDF Functions

4.1.2 Marginal PDF

Figure 4.1: Joint bivariate PMF. Each arrow displays a probability of 1
10
.
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4.1.3 Conditional Probability Density Function

Figure 4.2: Conditional PDF, fY |X=1(y|1), before normalization.
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4.1.4 Independence of Two Random Variables

4.1.5 Expectation, Correlation, and Regression

4.1.5.1 Covariance and Correlation

4.1.5.2 Regression Function

4.1.6 Independence of n Random Variables

4.1.7 Bivariate Normal PDF

4.1.8 Correlation, Independence, and Confounding Vari-
ables

4.2 Change of Variables

4.2.1 Examples: Two Uniform Transformations
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Figure 4.3: Transformations of a Unif (0, 1) r.v.; see text.
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4.2.2 One-Dimensional Transformations

y = y(x)

A

B

C

D

x

x = x(y)

B

A

C
D

y

Figure 4.4: Sample transformations: y = x3 and x = sgn(y) · |y|1/3. The
range and domain of this transformation A = B = (−1, 1).

4.2.2.1 Example 1: Negative Exponential PDF

4.2.2.2 Example 2: Cauchy PDF

−5 0 5
x

Cauchy
Normal

Figure 4.5: Standard Cauchy and Normal PDF’s.
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4.2.2.3 Example 3: Chi-Squared PDF With 1 Degree of Freedom

4.2.3 Two-Dimensional Transformations

4.3 Simulations

4.3.1 Generating Uniform Pseudo-Random Numbers

4.3.1.1 Reproducibility

4.3.1.2 RANDU

4.3.2 Probability Integral Transformation
0

1

−3 0 3x = FX
 −1 (y)

y = FX (x)

Figure 4.6: Generic PIT diagram. The red strip represents the event Y ≤ y
while the blue strip represents the equivalent event X ≤ F−1X (y).

4.3.3 Event-Driven Simulation

4.4 Problems
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Chapter 5

Approximations and Asymptotics

5.1 Why Do We Like Random Samples?

5.1.1 When u(X) Takes a Product Form

5.1.2 When u(X) Takes a Summation Form

5.2 Useful Inequalities

5.2.1 Markov’s Inequality

5.2.2 Chebyshev’s Inequality

5.2.3 Jensen’s Inequality1

g(x)

x0x1 x2

λg(x1) + (1 − λ)g(x2)●

●

Figure 5.1: Example of a convex function g(x) with two red tangent line
segments touching the curve at the black points. A line segment connecting
the curve at x = x1 and x = x2 is drawn in red; see text.

1This section may be omitted at a first reading.March 22, 2020 40 c© 2019 D. W. Scott



5.2.4 Cauchy-Schwarz Inequality

5.3 Sequences of Random Variables

5.3.1 Weak Law of Large Numbers

5.3.2 Consistency of the Sample Variance

5.3.3 Relationships Among the Modes of Convergence

5.3.3.1 Proof of Result (??)

5.3.3.2 Proof of Result (??)2

5.4 Central Limit Theorem

5.4.1 Moment Generating Function for Sums

5.4.2 Standardizing the Sum Sn

5.4.3 Proof of Central Limit Theorem

5.5 Delta Method and Variance-Stabilizing Trans-
formations

5.6 Problems

2This section may be omitted at a first reading.
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Chapter 6

Parameter Estimation
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Figure 6.1: Nine examples of possible Normal fits to a random sample of 50
points. In the first row, the data are displayed using the R function rug(x).
In the second row, probability histograms hist(x,prob=T) are displayed.
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6.1 Desirable Properties of an Estimator

6.2 Moments of the Sample Mean and Variance

6.2.1 Theoretical Mean and Variance of the Sample Mean

6.2.2 Theoretical Mean of the Sample Variance

6.2.3 Theoretical Variance of the Sample Variance

6.3 Method of Moments (MoM)

6.4 Sufficient Statistics and Data Compression

6.5 Bayesian Parameter Estimation
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Figure 6.2: From left to right: a histogram of the 41 data points; the
Beta(5, 5) prior PDF; and the posterior Beta(593, 442) PDF.
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6.6 Maximum Likelihood Parameter Estimation

6.6.1 Relationship to Bayesian Parameter Estimation

6.6.2 Poisson MLE Example

6.6.3 Normal MLE Example

6.6.4 Uniform MLE Example

6.7 Information Inequalities and the Cramèr-Rao
Lower Bound

6.7.1 Score Function

6.7.2 Asymptotics of the MLE

6.7.3 Minimum Variance of Unbiased Estimators

6.7.4 Examples

6.8 Problems
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Chapter 7

Hypothesis Testing

7.1 Setting up a Hypothesis Test
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Critical Region

Fail−to−Reject
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Figure 7.1: (L) For two roof construction techniques, hypothetical PDF’s
φ(x|70, 102) and φ(x|120, 152) of the minimum wind speed incurred that re-
sulted in roof damage during a hurricane. (R) Illustration of a possible
hypothesis-testing decision region for a small sample of n = 2 roofs. Con-
tours of the two bivariate sampling PDF’s are shown in green.
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7.1.1 Example of a Critical Region

7.1.2 Accuracy and Errors in Hypothesis Testing

7.2 Best Critical Region for Simple Hypotheses

7.2.1 Simple Example Continued

7.2.2 Normal Shift Model with Common Variance
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x
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k ′ = 13.16

type I
type II

n = 9
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x
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H0 H1

k ′ = 4.93

n = 64

Figure 7.2: Critical regions based upon X̄ > k′ for testing two shifted Normal
PDF’s with µ0 = 0, µ1 = 10, and common σ = 24. (L) n = 9; (R) n =
64. The type I and II errors are shown in red and blue, respectively. The
underlying sampling densities and means are shown in green; the densities
for X̄ are shown in black.
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7.3 Best Critical Region for a Composite Al-
ternative Hypothesis

7.3.1 Negative Exponential Composite Hypothesis Test

7.3.1.1 Example
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Figure 7.3: (L) The log-likelihood ratio for a sample of n = 8 negative
exponential r.v.’s with β0 = 1. The levels corresponding to 5% and 1% type
I errors are shown. (R) The Gamma(8, β = 1) PDF of S8, together with
the 95% probability interval (3.62, 14.98). The shaded tail areas have mass
3.176% and 1.824%, respectively, totaling 5%.
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7.3.1.2 Alternative Critical Regions
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Figure 7.4: Alternative 95% confidence level tests for our example. (L)
(3.45, 14.42) has equal tail probabilities of 2.5%; (R) (2.97, 13.63) is the nar-
rowest interval. The tail areas are 1.824% and 3.176%, respectively.
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7.3.1.3 Mount St. Helens Example

Figure 7.5: (L) Topo map; (R) Earthquake epicenters.

time interval

0.00 0.10 0.20 0.30

n = 247

time interval

0.00 0.10 0.20 0.30

n = 147

time interval

0.00 0.10 0.20 0.30

n = 100

Figure 7.6: Histograms of times between eruptions (in days) for all 247 erup-
tions (left frame), the first 147 eruptions (middle frame), and last 100 erup-
tions (right frame). The blue line depicts a negative exponential fit.
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7.3.2 Normal Shift Model with Common But Unknown
Variance: The T -test

7.3.3 The Random Variable Tn−1
7.3.3.1 Where We Show X̄ and S2 Are Independent

7.3.3.2 Where We Show That S2 Scaled Is χ2(n− 1)

7.3.3.3 Where We Finally Derive the T PDF

7.3.4 The One-Sample T -test

7.3.5 Example

7.3.6 Other T -tests

7.3.6.1 Paired T -test

7.3.6.2 Two-Sample T -test

7.3.6.3 Example Two-Sample T -test: Lord Rayleigh’s Data
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Figure 7.7: Fits to Lord Rayleigh’s Data Under the Null and Alternative
Hypotheses. A Nobel Prize was awarded for understanding this diagram.
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7.4 Reporting Results: p-values and Power

7.4.1 Example When the Null Hypothesis Is Rejected

7.4.2 When the Null Hypothesis Is Not Rejected

7.4.3 The Power Function
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Figure 7.8: (L) Power function with n = 16. The critical region is shown in
red, along with two values of the power function at µ = 7.25 and 14.0. Their
complements are examples of type II errors. (R) Effect of sample size on the
power function.
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7.5 Multiple Testing and the Bonferroni Cor-
rection

7.6 Problems
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Figure 7.9: Draft lottery numbers 1–366 by month. The monthly average is
the blue line. The overall average of 183.5 is the red dotted line.
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Chapter 8

Confidence Intervals and Other
Hypothesis Tests

8.1 Confidence Intervals

8.1.1 Confidence Interval for µ: Normal Data, σ2 Known

8.1.2 Confidence Interval for µ: σ2 Unknown

−
1

0
1

2
−

1
0

1
2

Figure 8.1: (Left frames) A simulation study showing 100 95% confidence
intervals for samples of size n = 16 from the N(0, 1) PDF, where the in-
tervals that fail to include the true value of µ0 = 0 are shown in red. The
bottom left frame shows the same 100 confidence intervals sorted for clar-
ity. (Right frames) A simulation study from the alternative hypothesis PDF
N(0.7495, 1), chosen so that the power is 80%. In fact, 21 of the 100 CI’s
incorrectly include the null hypothesis mean 0.
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8.1.3 Confidence Intervals and p-Values

8.2 Hypotheses About the Variance and the F -
Distribution

8.2.1 The F -Distribution
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Figure 8.2: (L) Examples of the F10,s PDF for 1 ≤ s ≤ 500. (R) Examples
of the Fr,100 PDF for 1 ≤ r ≤ 500.
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8.2.2 Hypotheses About the Value of the Variance

8.2.3 Confidence Interval for the Variance

8.2.4 Two-Sided Alternative for Testing σ2 = σ20

8.3 Pearson’s Chi-Squared Tests

8.3.1 The Multinomial PMF

8.3.2 Goodness-of-Fit (GoF) Tests

8.3.3 Two-Category Binomial Case

8.3.4 m-Category Multinomial Case

8.3.5 Goodness-of-Fit Test for a Parametric Model

8.3.6 Tests for Independence in Contingency Tables

8.4 Correlation Coefficient Tests and C.I.’s

8.4.1 How to Test if the Correlation ρ = 0
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Figure 8.3: Critical values for R as the sample size increases.
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8.4.2 Confidence Intervals and Tests for a General Cor-
relation Coefficient

8.5 Linear Regression

8.5.1 Least Squares Regression

8.5.2 Distribution of the Least-Squares Parameters

8.5.3 A Confidence Interval for the Slope

8.5.4 A Two-Side Hypothesis Test for the Slope

8.5.5 Predictions at a New Value

8.5.6 Population Interval at a New Value

8.6 Analysis of Variance
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Figure 8.4: Ten thousand simulations of the F -statistic (??) with K = 4,
nk = 25, and n = 100 under the null hypothesis. H0 : µk = µ0, k = 1, 2, 3, 4.

8.7 Problems
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Chapter 9

Topics in Statistics

9.1 MSE and Histogram Bin Width Selection

9.1.1 MSE Criterion for Biased Estimators

9.1.2 Case Study: Optimal Histogram Bin Widths
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B−1 B0 B1 B2B−2 B3

Figure 9.1: For a frequency histogram, the notation used to denote the loca-
tions of the bins {Bk}, the bin counts {νk}, and the bin edges {tk}.
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9.1.3 Examples with Normal Data
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Figure 9.2: For several sample sizes and the N(0, 1) density, the histogram
IMSE curves as the bin width varies on a log-log scale. The red dots locate
the best h = h∗n.
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9.1.4 Normal Reference Rules for the Histogram Bin
Width

9.1.4.1 Scott’s Rule

9.1.4.2 Freedman-Diaconis Rule

9.1.4.3 Sturges’ Rule

9.1.4.4 Comparison of the Three Rules
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Figure 9.3: Comparison of the number of bins recommended by Sturges’ (•),
Scott’s (•), and FD’s (•) Rules for a Beta(5, 5) PDF plotted against the
exact IMSE values.
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Figure 9.4: Three Histograms of a Beta(5, 5) sample with n = 221.
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9.2 An Optimal Stopping Time Problem
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Figure 9.5: (L) Optimal stopping point m as a function of the population
size n compared to a straight line with slope 1/e; (R) Probability of selecting
the best candidate using m∗ compared to p = 1/e.
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9.3 Compound Random Variables

9.3.1 Computing Expectations with Conditioning

9.3.2 Sum of a Random Number of Random Variables

9.4 Simulation and the Bootstrap
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Figure 9.6: Simulation and bootstrap analysis of the sample mean and sample
median for a N(5, 1) PDF with n = 101 points; see text. Histograms and
smoothed histograms are displayed.
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9.5 Multiple Linear Regression

9.6 Experimental Design
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Figure 9.7: Surface of predicted average mold strength as a function of the
two predictor variables. The contours and curves are shown as dotted lines
where the standard deviation of the prediction exceeds 2.5.
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9.7 Logistic Regression, Poisson Regression, and
the Generalized Linear Model
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Figure 9.8: (L) Poisson and (R) Logistic regression models fitted by the R
function glm to the space shuttle data (red line). Fifty bootstrap fits are
superimposed (green lines).

9.8 Robustness
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Figure 9.9: (a) n = 9 points satisfying y = 1+1.5x with one outlier at x = 1;
(b) n = 101 with 40 randomly selected outliers (with negative slope).
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Figure 9.10: (a) MLE N(x̄, s2) and (b) L2E Normal fits to a random sample
of 400 points from the mixture 0.75×N(0, 1) + 0.25×N(3, 1/32); see text.

9.9 Conclusions
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