STATISTICS

A CONCISE MATHEMATICAL INTRODUCTION FOR STUDENTS AND SCIENTISTS

DAVID W. SCOTT
Rice University
Houston, Texas

December 5, 2019

To my parents, John and Nancy Scott.
(c) 2019 D. W. Scott

Contents

Contents 3
1 Data Analysis and Understanding 11
1.1 Exploring the Distribution of Data 11
1.1.1 Pearson's Father-Son Height Data 11
1.1.2 Lord Rayleigh's Data 12
1.1.3 Discussion 13
1.2 Exploring Prediction Using Data 13
1.2.1 Body and Brain Weights of Land Mammals 13
1.2.2 Space Shuttle Flight 25 14
1.2.3 Pearson's Father-Son Height Data Revisited 15
1.2.4 Discussion 16
1.3 Problems 16
2 Classical Probability 17
2.1 Experiments with Equally Likely Outcomes 17
2.1.1 Simple Outcomes 17
2.1.2 Compound Events and Set Operations 18
2.2 Probability Laws 18
2.2.1 Union and Intersection of Events A and B 19
2.2.1.1 Case (i): 19
2.2.1.2 Cases (ii) and (iii): 19
2.2.1.3 Case (iv): 19
2.2.2 Conditional Probability 19
2.2.2.1 Definition of Conditional Probability 19
2.2.2.2 Conditional Probability With More Than Two Events 19
2.2.3 Independent Events 20
2.2.4 Bayes Theorem 20
2.2.5 Partitions and Total Probability 20
2.3 Counting Methods 22
2.3.1 With Replacement 22
2.3.2 Without Replacement (Permutations) 22
2.3.3 Without Replacement Nor Order (Combinations) 22
2.3.4 Examples 22
2.3.5 Extended Combinations (Multinomial) 22
2.4 Countable Sets: Implications As $n \rightarrow \infty$ 22
2.4.1 Selecting Even or Odd Integers 22
2.4.2 Selecting Rational Versus Irrational Numbers 22
2.5 Kolmogorov's Axioms 22
2.6 Reliability: Series Versus Parallel Networks 22
2.6.1 Series Network 23
2.6.2 Parallel Network 23
2.7 Problems 23
3 Random Variables and Models Derived From Classical Prob-ability and Postulates25
3.1 Random Variables and Probability Distributions: Discrete Uni-
25
form Example
3.1.1 Toss of a Single Die 25
3.1.2 Toss of a Pair of Dice 26
3.2 The Univariate Probability Density Function: Continuous Uni- form Example . 26
3.2.1 Using the PDF to Compute Probabilities 27
3.2.2 Using the PDF to Compute Relative Odds 27
3.3 Summary Statistics: Central and Non-Central Moments 28
3.3.1 Expectation, Average, and Mean 28
3.3.2 Expectation as a Linear Operator 28
3.3.3 The Variance of a Random Variable 28
3.3.4 Standardized Random Variables 28
3.3.5 Higher Order Moments 28
3.3.6 Moment Generating Function 28
3.3.7 Measurement Scales and Units of Measurement 28
3.3.7.1 The Four Measurement Scales 28
3.3.7.2 Units of Measurement 28
3.4 Binomial Experiments 28
3.5 Waiting Time for a Success: Geometric PMF 29
3.6 Waiting Time for r Successes: Negative Binomial 29
3.7 Poisson Process and Distribution 29
3.7.1 Moments of the Poisson PMF 30
3.7.2 Examples 30
3.8 Waiting Time for Poisson Events: Negative Exponential PDF 30
3.9 The Normal Gaussian (Also Known as the Gaussian Distribu-
30 tion)
31
3.9.1 Standard Normal Distribution
3.9.2 Sums of Independent Normal Random Variables 31
3.9.3 Normal Approximation to the Poisson Distribution 31
3.10 Problems 31
4 Bivariate Random Variables, Transformations, and Simula- tions 33
4.1 Bivariate Continuous Random Variables 33
4.1.1 Joint CDF and PDF Functions 33
4.1.2 Marginal PDF 33
4.1.3 Conditional Probability Density Function 34
4.1.4 Independence of Two Random Variables 35
4.1.5 Expectation, Correlation, and Regression 35
4.1.5.1 Covariance and Correlation 35
4.1.5.2 Regression Function 35
4.1.6 Independence of n Random Variables 35
4.1.7 Bivariate Normal PDF 35
4.1.8 Correlation, Independence, and Confounding Variables 35
4.2 Change of Variables 35
4.2.1 Examples: Two Uniform Transformations 35
4.2.2 One-Dimensional Transformations 36
4.2.2.1 Example 1: Negative Exponential PDF 36
4.2.2.2 Example 2: Cauchy PDF 36
4.2.2.3 Example 3: Chi-Squared PDF With 1 Degree of Freedom 37
4.2.3 Two-Dimensional Transformations 37
4.3 Simulations 37
4.3.1 Generating Uniform Pseudo-Random Numbers 37
4.3.1.1 Reproducibility 37
4.3.1.2 RANDU 37
March 22, 2020
4.3.2 Probability Integral Transformation 37
4.3.3 Event-Driven Simulation 37
4.4 Problems 37
5 Approximations and Asymptotics 39
5.1 Why Do We Like Random Samples? 40
5.1.1 When $u(\boldsymbol{X})$ Takes a Product Form 40
5.1.2 When $u(\boldsymbol{X})$ Takes a Summation Form 40
5.2 Useful Inequalities 40
5.2.1 Markov's Inequality 40
5.2.2 Chebyshev's Inequality 40
5.2.3 Jensen's Inequality 40
5.2.4 Cauchy-Schwarz Inequality 41
5.3 Sequences of Random Variables 41
5.3.1 Weak Law of Large Numbers 41
5.3.2 Consistency of the Sample Variance 41
5.3.3 Relationships Among the Modes of Convergence 41
5.3.3.1 \quad Proof of Result (??) 41
5.3.3.2 Proof of Result (??) 41
5.4 Central Limit Theorem 41
5.4.1 Moment Generating Function for Sums 41
5.4.2 Standardizing the Sum S_{n} 41
5.4.3 Proof of Central Limit Theorem 41
5.5 Delta Method and Variance-Stabilizing Transformations 41
5.6 Problems 41
6 Parameter Estimation 43
6.1 Desirable Properties of an Estimator 44
6.2 Moments of the Sample Mean and Variance 44
6.2.1 Theoretical Mean and Variance of the Sample Mean 44
6.2.2 Theoretical Mean of the Sample Variance 44
6.2.3 Theoretical Variance of the Sample Variance 44
6.3 Method of Moments (MoM) 44
6.4 Sufficient Statistics and Data Compression 44
6.5 Bayesian Parameter Estimation 44
6.6 Maximum Likelihood Parameter Estimation 45
6.6.1 Relationship to Bayesian Parameter Estimation 45
6.6.2 Poisson MLE Example 45
6.6.3 Normal MLE Example 45
6.6.4 Uniform MLE Example 45
6.7 Information Inequalities and the Cramèr-Rao Lower Bound 45
6.7.1 Score Function 45
6.7.2 Asymptotics of the MLE 45
6.7.3 Minimum Variance of Unbiased Estimators 45
6.7.4 Examples 45
6.8 Problems 45
7 Hypothesis Testing 47
7.1 Setting up a Hypothesis Test 47
7.1.1 Example of a Critical Region 48
7.1.2 Accuracy and Errors in Hypothesis Testing 48
$7.2 \quad$ Best Critical Region for Simple Hypotheses 48
7.2.1 Simple Example Continued 48
7.2.2 Normal Shift Model with Common Variance 48
7.3 Best Critical Region for a Composite Alternative Hypothesis 49
7.3.1 Negative Exponential Composite Hypothesis Test 49
7.3.1.1 Example 49
7.3.1.2 Alternative Critical Regions 50
7.3.1.3 Mount St. Helens Example 51
7.3.2 Normal Shift Model with Common But Unknown Vari-52
7.3.3 The Random Variable T_{n-1} 52
7.3.3.1 Where We Show X and S^{2} Are Independent 52
7.3.3.2 Where We Show That S^{2} Scaled Is $\chi^{2}(n-1)$ 52
7.3.3.3 Where We Finally Derive the T PDF 52
7.3.4 The One-Sample T-test 52
7.3.5 Example 52
7.3.6 Other T-tests 52
7.3.6.1 Paired T-test 52
7.3.6.2 Two-Sample T-test 52
7.3.6.3 Example Two-Sample T-test: Lord Rayleigh's
Data 52
7.4 Reporting Results: p-values and Power 53
7.4.1 Example When the Null Hypothesis Is Rejected 53
7.4.2 When the Null Hypothesis Is Not Rejected 53
7.4.3 The Power Function 53
March 22, 2020
7.5 Multiple Testing and the Bonferroni Correction 54
7.6 Problems 54
8 Confidence Intervals and Other Hypothesis Tests 55
8.1 Confidence Intervals 56
8.1.1 Confidence Interval for μ : Normal Data, σ^{2} Known 56
8.1.2 Confidence Interval for $\mu: \sigma^{2}$ Unknown 56
8.1.3 Confidence Intervals and p-Values 57
8.2 Hypotheses About the Variance and the F-Distribution 57
8.2.1 The F-Distribution 57
8.2.2 Hypotheses About the Value of the Variance 58
8.2.3 Confidence Interval for the Variance 58
8.2.4 Two-Sided Alternative for Testing $\sigma^{2}=\sigma_{0}^{2}$ 58
8.3 Pearson's Chi-Squared Tests 58
8.3.1 The Multinomial PMF 58
8.3.2 Goodness-of-Fit (GoF) Tests 58
8.3.3 Two-Category Binomial Case 58
8.3.4 m-Category Multinomial Case 58
8.3.5 Goodness-of-Fit Test for a Parametric Model 58
8.3.6 Tests for Independence in Contingency Tables 58
8.4 Correlation Coefficient Tests and C.I.'s 58
8.4.1 How to Test if the Correlation $\rho=0$ 58
8.4.2 Confidence Intervals and Tests for a General Correla-tion Coefficient59
8.5 Linear Regression 59
8.5.1 Least Squares Regression 59
8.5.2 Distribution of the Least-Squares Parameters 59
8.5.3 A Confidence Interval for the Slope 59
8.5.4 A Two-Side Hypothesis Test for the Slope 59
8.5.5 Predictions at a New Value 59
8.5.6 Population Interval at a New Value 59
8.6 Analysis of Variance 59
8.7 Problems 59
9 Topics in Statistics 61
9.1 MSE and Histogram Bin Width Selection 61
9.1.1 MSE Criterion for Biased Estimators 61
9.1.2 Case Study: Optimal Histogram Bin Widths 61
9.1.3 Examples with Normal Data 62
9.1.4 Normal Reference Rules for the Histogram Bin Width. 63
9.1.4.1 Scott's Rule 63
9.1.4.2 Freedman-Diaconis Rule 63
9.1.4.3 Sturges' Rule 63
9.1.4.4 Comparison of the Three Rules 63
9.2 An Optimal Stopping Time Problem 64
9.3 Compound Random Variables 65
9.3.1 Computing Expectations with Conditioning 65
9.3.2 Sum of a Random Number of Random Variables 65
9.4 Simulation and the Bootstrap 65
9.5 Multiple Linear Regression 66
9.6 Experimental Design 66
9.7 Logistic Regression, Poisson Regression, and the Generalized Linear Model 67
9.8 Robustness 67
9.9 Conclusions 68

Chapter 1

Data Analysis and Understanding

1.1 Exploring the Distribution of Data

1.1.1 Pearson's Father-Son Height Data

Figure 1.1: Displays of the father-son height data collected by Karl Pearson: (L) Box-and-Whiskers plot; (M) Stem-and Leaf plot; (R) Histogram.

Figure 1.2: Histograms of the sons' heights (top row) and fathers' heights (bottom row) using three bin widths: $h / 2, h, 2 h$ from left to right; see text.

1.1.2 Lord Rayleigh's Data

Figure 1.3: Displays of Lord Rayleigh's 24 measurements of the atomic weight of nitrogen gas. (L) Histogram with 4 bins; (M) A second histogram; (R) Stem-and-Leaf display using the \mathbf{R} command stem(rayleigh, scale=4).

1.1.3 Discussion

1.2 Exploring Prediction Using Data

1.2.1 Body and Brain Weights of Land Mammals

Figure 1.4: Scatter diagrams of the raw and log-transformed body and brain weights of 62 land mammals.

1.2.2 Space Shuttle Flight 25

Figure 1.5: Analysis of the number of O-ring failures for the first 24 Space Shuttle launches; see text.

1.2.3 Pearson's Father-Son Height Data Revisited

Figure 1.6: Father-son height data collected by Karl Pearson
March 22, 2020
(c) 2019 D. W. Scott

1.2.4 Discussion

1.3 Problems

Figure 1.7: Box-Cox Transformation on natural and log scales

Chapter 2

Classical Probability

2.1 Experiments with Equally Likely Outcomes

2.1.1 Simple Outcomes

Figure 2.1: (L) Venn diagram of the classical probability experiment rolling a single die where $n=6$. (R) Events A, B, and C are shown as ellipses enclosing the appropriate simple outcomes.

2.1.2 Compound Events and Set Operations

2.2 Probability Laws

Figure 2.2: Four possible relationships between events A and B.

2.2.1 Union and Intersection of Events A and B

2.2.1.1 Case (i):
2.2.1.2 Cases (ii) and (iii):
2.2.1.3 Case (iv):

2.2.2 Conditional Probability

2.2.2.1 Definition of Conditional Probability

2.2.2.2 Conditional Probability With More Than Two Events

Figure 2.3: Probability that n students all have different birthdays, plotted using three different scales.
March 22, 2020
19
(C) 2019
D. W. Scott

2.2.3 Independent Events

2.2.4 Bayes Theorem

2.2.5 Partitions and Total Probability

Figure 2.4: (L) Venn diagram of partition of Ω into $m=6$ sets $A_{1}, A_{2}, \ldots, A_{6}$; (M) Set B superimposed upon partition; (R) Set B decomposed into m disjoint events using the partition. In this Figure we use the shorthand notation for intersection, namely, $B A_{i}=B \cap A_{i}$.

Figure 2.5: Illustration of the FPC. Select one of $\{A, B, C, D\}$, then one of $\{a, b\}$, and finally one of $\{\alpha, \beta, \gamma\}$. For each selection at the first step, there are 2 choices at the second step. Finally, for each of the selections after the first two steps, there are 3 choices at the third step. Therefore, $n(S)=4 \times 2 \times 3=24$ possibilities. It is common to use a tree diagram to visualize the selection process, recording the selections on the leaves.

2.3 Counting Methods

2.3.1 With Replacement

2.3.2 Without Replacement (Permutations)

2.3.3 Without Replacement Nor Order (Combinations)
2.3.4 Examples
2.3.5 Extended Combinations (Multinomial)
2.4 Countable Sets: Implications As $n \rightarrow \infty$

2.4.1 Selecting Even or Odd Integers

2.4.2 Selecting Rational Versus Irrational Numbers
2.5 Kolmogorov's Axioms
2.6 Reliability: Series Versus Parallel Networks

Figure 2.6: A series network (L) and parallel network (R) of n components.

2.6.1 Series Network

2.6.2 Parallel Network

2.7 Problems

Chapter 3

Random Variables and Models Derived From Classical Probability and Postulates

3.1 Random Variables and Probability Distributions: Discrete Uniform Example

3.1.1 Toss of a Single Die

Figure 3.1: (L) The cumulative distribution function for the roll of a single die; and (R) its probability mass function.

3.1.2 Toss of a Pair of Dice

Figure 3.2: (L) The cumulative distribution function for the sum of pips on two dice; and (R) its probability mass function. From the shape of the PMF, this is a discrete isosceles triangular distribution.

3.2 The Univariate Probability Density Function: Continuous Uniform Example

Figure 3.3: (L) The CDF for a $\operatorname{Unif}(0,1)$ density; and (R) its PDF.

3.2.1 Using the PDF to Compute Probabilities

Figure 3.4: The shaded areas give the probabilities of the events $1<X<2$, $|X|>1.5$, and $1<|X|<2$, respectively.

3.2.2 Using the PDF to Compute Relative Odds

Figure 3.5: The CDF and PDF of an isosceles triangular distribution.
March 22, 2020
27
(C) 2019
D. W. Scott

3.3 Summary Statistics: Central and Non-Central Moments

3.3.1 Expectation, Average, and Mean

3.3.2 Expectation as a Linear Operator

3.3.3 The Variance of a Random Variable

3.3.4 Standardized Random Variables

3.3.5 Higher Order Moments

3.3.6 Moment Generating Function

3.3.7 Measurement Scales and Units of Measurement

3.3.7.1 The Four Measurement Scales

3.3.7.2 Units of Measurement

3.4 Binomial Experiments

Figure 3.6: Binomial PMF for various combinations of n and p.
March 22, 2020
(c) 2019 D. W. Scott

Figure 3.7: Binomial CDF for n and p as in Figure 3.6.

3.5 Waiting Time for a Success: Geometric PMF

3.6 Waiting Time for r Successes: Negative Binomial

3.7 Poisson Process and Distribution

Figure 3.8: The 2 disjoint events that result in x calls in $[0, t+\delta]$, ignoring the very small possibility of more than 1 call in $(t, t+\delta)$.
March 22, 2020
29
(C) 2019
D. W. Scott

3.7.1 Moments of the Poisson PMF

3.7.2 Examples

Figure 3.9: Examples of the Poisson PMF, where $X \sim \operatorname{Pois}(m)$.

3.8 Waiting Time for Poisson Events: Negative Exponential PDF

3.9 The Normal Gaussian (Also Known as the Gaussian Distribution)

Figure 3.10: Examples of the discrete Poisson PMF, Pois (m), and the continuous Normal PDF with the same moments, $N\left(\mu=m, \sigma^{2}=m\right)$.

Figure 3.11: Gauss on the German Mark bill. Note the Gaussian curve.

3.9.1 Standard Normal Distribution

Figure 3.12: Standard Normal CDF, $\Phi(x)$, and $\operatorname{PDF}, \phi(x)$, for $x=1$.

3.9.2 Sums of Independent Normal Random Variables

3.9.3 Normal Approximation to the Poisson Distribution

3.10 Problems

Chapter 4

Bivariate Random Variables, Transformations, and Simulations

4.1 Bivariate Continuous Random Variables

4.1.1 Joint CDF and PDF Functions
4.1.2 Marginal PDF

Figure 4.1: Joint bivariate PMF. Each arrow displays a probability of $\frac{1}{10}$.

4.1.3 Conditional Probability Density Function

Figure 4.2: Conditional PDF, $f_{Y \mid X=1}(y \mid 1)$, before normalization.
(c) 2019 D. W. Scott

4.1.4 Independence of Two Random Variables

4.1.5 Expectation, Correlation, and Regression
4.1.5.1 Covariance and Correlation
4.1.5.2 Regression Function
4.1.6 Independence of n Random Variables

4.1.7 Bivariate Normal PDF

4.1.8 Correlation, Independence, and Confounding Variables

4.2 Change of Variables

4.2.1 Examples: Two Uniform Transformations

Figure 4.3: Transformations of a $\operatorname{Unif}(0,1)$ r.v.; see text.

4.2.2 One-Dimensional Transformations

Figure 4.4: Sample transformations: $y=x^{3}$ and $x=\operatorname{sgn}(y) \cdot|y|^{1 / 3}$. The range and domain of this transformation $A=B=(-1,1)$.

4.2.2.1 Example 1: Negative Exponential PDF

4.2.2.2 Example 2: Cauchy PDF

Figure 4.5: Standard Cauchy and Normal PDF's.
4.2.2.3 Example 3: Chi-Squared PDF With 1 Degree of Freedom

4.2.3 Two-Dimensional Transformations

4.3 Simulations

4.3.1 Generating Uniform Pseudo-Random Numbers
4.3.1.1 Reproducibility
4.3.1.2 RANDU

4.3.2 Probability Integral Transformation

Figure 4.6: Generic PIT diagram. The red strip represents the event $Y \leq y$ while the blue strip represents the equivalent event $X \leq F_{X}^{-1}(y)$.

4.3.3 Event-Driven Simulation

4.4 Problems

Chapter 5

Approximations and Asymptotics

5.1 Why Do We Like Random Samples?

5.1.1 When $u(\boldsymbol{X})$ Takes a Product Form
5.1.2 When $u(\boldsymbol{X})$ Takes a Summation Form

5.2 Useful Inequalities

5.2.1 Markov's Inequality

5.2.2 Chebyshev's Inequality

5.2.3 Jensen's Inequality ${ }^{1}$

Figure 5.1: Example of a convex function $g(x)$ with two red tangent line segments touching the curve at the black points. A line segment connecting the curve at $x=x_{1}$ and $x=x_{2}$ is drawn in red; see text.
Marchis 2 Sect 40129 hay be omitted at a first $4 \AA_{\text {ading. }}$
(c) 2019 D. W. Scott
5.2.4 Cauchy-Schwarz Inequality
5.3 Sequences of Random Variables
5.3.1 Weak Law of Large Numbers
5.3.2 Consistency of the Sample Variance
5.3.3 Relationships Among the Modes of Convergence
5.3.3.1 Proof of Result (??)
5.3.3.2 Proof of Result (??) $]^{2}$
5.4 Central Limit Theorem
5.4.1 Moment Generating Function for Sums
5.4.2 Standardizing the Sum S_{n}
5.4.3 Proof of Central Limit Theorem
5.5 Delta Method and Variance-Stabilizing Trans- formations
5.6 Problems

[^0]
Chapter 6

Parameter Estimation

Figure 6.1: Nine examples of possible Normal fits to a random sample of 50 points. In the first row, the data are displayed using the \mathbf{R} function $\operatorname{rug}(x)$. In the second row, probability histograms hist ($\mathrm{x}, \mathrm{prob}=\mathrm{T}$) are displayed.

6.1 Desirable Properties of an Estimator

6.2 Moments of the Sample Mean and Variance

6.2.1 Theoretical Mean and Variance of the Sample Mean
6.2.2 Theoretical Mean of the Sample Variance
6.2.3 Theoretical Variance of the Sample Variance

6.3 Method of Moments (MoM)

6.4 Sufficient Statistics and Data Compression

6.5 Bayesian Parameter Estimation

Figure 6.2: From left to right: a histogram of the 41 data points; the $\operatorname{Beta}(5,5)$ prior PDF; and the posterior $\operatorname{Beta}(593,442)$ PDF.
6.6 Maximum Likelihood Parameter Estimation
6.6.1 Relationship to Bayesian Parameter Estimation
6.6.2 Poisson MLE Example
6.6.3 Normal MLE Example
6.6.4 Uniform MLE Example
6.7 Information Inequalities and the Cramèr-Rao Lower Bound
6.7.1 Score Function
6.7.2 Asymptotics of the MLE
6.7.3 Minimum Variance of Unbiased Estimators
6.7.4 Examples
6.8 Problems

Chapter 7

Hypothesis Testing

7.1 Setting up a Hypothesis Test

Figure 7.1: (L) For two roof construction techniques, hypothetical PDF's $\phi\left(x \mid 70,10^{2}\right)$ and $\phi\left(x \mid 120,15^{2}\right)$ of the minimum wind speed incurred that resulted in roof damage during a hurricane. (R) Illustration of a possible hypothesis-testing decision region for a small sample of $n=2$ roofs. Contours of the two bivariate sampling PDF's are shown in green.

7.1.1 Example of a Critical Region

7.1.2 Accuracy and Errors in Hypothesis Testing

7.2 Best Critical Region for Simple Hypotheses

7.2.1 Simple Example Continued

7.2.2 Normal Shift Model with Common Variance

Figure 7.2: Critical regions based upon $\bar{X}>k^{\prime}$ for testing two shifted Normal PDF's with $\mu_{0}=0, \mu_{1}=10$, and common $\sigma=24$. (L) $n=9$; (R) $n=$ 64. The type I and II errors are shown in red and blue, respectively. The underlying sampling densities and means are shown in green; the densities for \bar{X} are shown in black.

7.3 Best Critical Region for a Composite Alternative Hypothesis

7.3.1 Negative Exponential Composite Hypothesis Test

7.3.1.1 Example

Figure 7.3: (L) The log-likelihood ratio for a sample of $n=8$ negative exponential r.v.'s with $\beta_{0}=1$. The levels corresponding to 5% and 1% type I errors are shown. (R) The $\operatorname{Gamma}(8, \beta=1) \mathrm{PDF}$ of S_{8}, together with the 95% probability interval $(3.62,14.98)$. The shaded tail areas have mass 3.176% and 1.824%, respectively, totaling 5%.

7.3.1.2 Alternative Critical Regions

Figure 7.4: Alternative 95% confidence level tests for our example. (L) $(3.45,14.42)$ has equal tail probabilities of 2.5%; (R) $(2.97,13.63)$ is the narrowest interval. The tail areas are 1.824% and 3.176%, respectively.

7.3.1.3 Mount St. Helens Example

Figure 7.5: (L) Topo map; (R) Earthquake epicenters.

Figure 7.6: Histograms of times between eruptions (in days) for all 247 eruptions (left frame), the first 147 eruptions (middle frame), and last 100 eruptions (right frame). The blue line depicts a negative exponential fit.

March 22, 2020 (C) 2019 D. W. Scott

7.3.2 Normal Shift Model with Common But Unknown Variance: The T-test

7.3.3 The Random Variable T_{n-1}

7.3.3.1 Where We Show \bar{X} and S^{2} Are Independent
7.3.3.2 Where We Show That S^{2} Scaled Is $\chi^{2}(n-1)$
7.3.3.3 Where We Finally Derive the T PDF

7.3.4 The One-Sample T-test

7.3.5 Example

7.3.6 Other T-tests

7.3.6.1 Paired T-test

7.3.6.2 Two-Sample T-test
7.3.6.3 Example Two-Sample T-test: Lord Rayleigh's Data

Figure 7.7: Fits to Lord Rayleigh's Data Under the Null and Alternative Hypotheses. A Nobel Prize was awarded for understanding this diagram.

7.4 Reporting Results: p-values and Power

7.4.1 Example When the Null Hypothesis Is Rejected

7.4.2 When the Null Hypothesis Is Not Rejected

7.4.3 The Power Function

Figure 7.8: (L) Power function with $n=16$. The critical region is shown in red, along with two values of the power function at $\mu=7.25$ and 14.0. Their complements are examples of type II errors. (R) Effect of sample size on the power function.
(C) 2019
D. W. Scott

7.5 Multiple Testing and the Bonferroni Correction

7.6 Problems

Figure 7.9: Draft lottery numbers $1-366$ by month. The monthly average is the blue line. The overall average of 183.5 is the red dotted line.

Chapter 8

Confidence Intervals and Other Hypothesis Tests

8.1 Confidence Intervals

8.1.1 Confidence Interval for μ : Normal Data, σ^{2} Known

8.1.2 Confidence Interval for μ : σ^{2} Unknown

Figure 8.1: (Left frames) A simulation study showing 10095% confidence intervals for samples of size $n=16$ from the $N(0,1) \mathrm{PDF}$, where the intervals that fail to include the true value of $\mu_{0}=0$ are shown in red. The bottom left frame shows the same 100 confidence intervals sorted for clarity. (Right frames) A simulation study from the alternative hypothesis PDF
 incorrectly include the null hypothesis mean 0 .

8.1.3 Confidence Intervals and p-Values

8.2 Hypotheses About the Variance and the F Distribution

8.2.1 The F-Distribution

Figure 8.2: (L) Examples of the $F_{10, s}$ PDF for $1 \leq s \leq 500$. (R) Examples of the $F_{r, 100} \mathrm{PDF}$ for $1 \leq r \leq 500$.

8.2.2 Hypotheses About the Value of the Variance

8.2.3 Confidence Interval for the Variance
8.2.4 Two-Sided Alternative for Testing $\sigma^{2}=\sigma_{0}^{2}$

8.3 Pearson's Chi-Squared Tests

8.3.1 The Multinomial PMF
8.3.2 Goodness-of-Fit (GoF) Tests

8.3.3 Two-Category Binomial Case

8.3.4 m-Category Multinomial Case
8.3.5 Goodness-of-Fit Test for a Parametric Model
8.3.6 Tests for Independence in Contingency Tables
8.4 Correlation Coefficient Tests and C.I.'s
8.4.1 How to Test if the Correlation $\rho=0$

Figure 8.3: Critical values for R as the sample size increases.

8.4.2 Confidence Intervals and Tests for a General Correlation Coefficient

8.5 Linear Regression

8.5.1 Least Squares Regression

8.5.2 Distribution of the Least-Squares Parameters

8.5.3 A Confidence Interval for the Slope
8.5.4 A Two-Side Hypothesis Test for the Slope
8.5.5 Predictions at a New Value
8.5.6 Population Interval at a New Value
8.6 Analysis of Variance

Figure 8.4: Ten thousand simulations of the F-statistic (??) with $K=4$, $n_{k}=25$, and $n=100$ under the null hypothesis. $H_{0}: \mu_{k}=\mu_{0}, k=1,2,3,4$.

8.7 Problems

Chapter 9

Topics in Statistics

9.1 MSE and Histogram Bin Width Selection

9.1.1 MSE Criterion for Biased Estimators

9.1.2 Case Study: Optimal Histogram Bin Widths

Figure 9.1: For a frequency histogram, the notation used to denote the locations of the bins $\left\{B_{k}\right\}$, the bin counts $\left\{\nu_{k}\right\}$, and the bin edges $\left\{t_{k}\right\}$.

9.1.3 Examples with Normal Data

Figure 9.2: For several sample sizes and the $N(0,1)$ density, the histogram IMSE curves as the bin width varies on a log-log scale. The red dots locate the best $h=h_{n}^{*}$.

9.1.4 Normal Reference Rules for the Histogram Bin Width

9.1.4.1 Scott's Rule

9.1.4.2 Freedman-Diaconis Rule

9.1.4.3 Sturges' Rule

9.1.4.4 Comparison of the Three Rules

Figure 9.3: Comparison of the number of bins recommended by Sturges' (•), Scott's ($)$, and FD's (\bullet) Rules for a $\operatorname{Beta}(5,5)$ PDF plotted against the exact IMSE values.

Figure 9.4: Three Histograms of a $\operatorname{Beta}(5,5)$ sample with $n=2^{21}$.
D. W. Scott

9.2 An Optimal Stopping Time Problem

Figure 9.5: (L) Optimal stopping point m as a function of the population size n compared to a straight line with slope $1 / e$; (R) Probability of selecting the best candidate using m^{*} compared to $p=1 / e$.

9.3 Compound Random Variables

9.3.1 Computing Expectations with Conditioning

9.3.2 Sum of a Random Number of Random Variables

9.4 Simulation and the Bootstrap

Figure 9.6: Simulation and bootstrap analysis of the sample mean and sample median for a $N(5,1)$ PDF with $n=101$ points; see text. Histograms and smoothed histograms are displayed.

9.5 Multiple Linear Regression

9.6 Experimental Design

Figure 9.7: Surface of predicted average mold strength as a function of the two predictor variables. The contours and curves are shown as dotted lines where the standard deviation of the prediction exceeds 2.5 .

9.7 Logistic Regression, Poisson Regression, and the Generalized Linear Model

Figure 9.8: (L) Poisson and (R) Logistic regression models fitted by the \mathbf{R} function glm to the space shuttle data (red line). Fifty bootstrap fits are superimposed (green lines).

9.8 Robustness

Figure 9.9: (a) $n=9$ points satisfying $y=1+1.5 x$ with one outlier at $x=1$; (b) $n=101$ with 40 randomly selected outliers (with negative slope).
(c) 2019 D. W. Scott

Figure 9.10: (a) MLE $N\left(\bar{x}, s^{2}\right.$) and (b) $L_{\mathcal{Q}} E$ Normal fits to a random sample of 400 points from the mixture $0.75 \times N(0,1)+0.25 \times N\left(3,1 / 3^{2}\right)$; see text.

9.9 Conclusions

[^0]: ${ }^{2}$ This section may be omitted at a first reading.

