Stat 331 Homework 2 Solutions (30 points possible)
1.59 (4 pts)
(i) $\mathrm{P}\left[\left(\mathrm{A}_{1} \cup \mathrm{~A}_{2}\right) \cap\left(\mathrm{A}_{3} \cup \mathrm{~A}_{4}\right)\right]=\mathrm{P}\left[\left(\mathrm{A}_{1} \cup \mathrm{~A}_{2}\right)\right] \mathrm{P}\left[\left(\mathrm{A}_{3} \cup \mathrm{~A}_{4}\right)\right]$

$$
\begin{aligned}
& =\left[1-\mathrm{P}\left(\mathrm{~A}_{1}^{\mathrm{c}} \cap \mathrm{~A}_{2}^{\mathrm{c}}\right)\right]\left[1-\mathrm{P}\left(\mathrm{~A}_{3}^{\mathrm{c}} \cap \mathrm{~A}_{4}^{\mathrm{c}}\right)\right] \\
& =\left[1-\mathrm{P}\left(\mathrm{~A}_{1}^{\mathrm{c}}\right) \mathrm{P}\left(\mathrm{~A}_{2}^{\mathrm{c}}\right)\right]\left[1-\mathrm{P}\left(\mathrm{~A}_{3}^{\mathrm{c}}\right) \mathrm{P}\left(\mathrm{~A}_{4}^{\mathrm{c}}\right)\right] \\
& =\left[1-(1-\mathrm{p})^{2}\right]^{2}
\end{aligned}
$$

(ii) $\mathrm{P}\left[\left(\mathrm{A}_{1} \cap \mathrm{~A}_{2}\right) \cup\left(\mathrm{A}_{3} \cap \mathrm{~A}_{4}\right)\right]=1-\mathrm{P}\left[\left(\mathrm{A}_{1} \cap \mathrm{~A}_{2}\right)^{\mathrm{c}} \cap\left(\mathrm{A}_{3} \cap \mathrm{~A}_{4}\right)^{\mathrm{c}}\right]$

$$
\begin{aligned}
& =1-\mathrm{P}\left(\mathrm{~A}_{1} \cap \mathrm{~A}_{2}\right)^{\mathrm{c}} \mathrm{P}\left(\mathrm{~A}_{3} \cap \mathrm{~A}_{4}\right)^{\mathrm{c}} \\
& =1-\left[1-\mathrm{P}\left(\mathrm{~A}_{1} \cap \mathrm{~A}_{2}\right)\right]\left[1-\mathrm{P}\left(\mathrm{~A}_{3} \cap \mathrm{~A}_{4}\right)\right] \\
& =1-\left[1-\mathrm{P}\left(\mathrm{~A}_{1}\right) \mathrm{P}\left(\mathrm{~A}_{2}\right)\right]\left[1-\mathrm{P}\left(\mathrm{~A}_{3}\right) \mathrm{P}\left(\mathrm{~A}_{4}\right)\right] \\
& =1-\left(1-\mathrm{p}^{2}\right)^{2}
\end{aligned}
$$

1.64 (3 pts)

Let: $\quad \mathrm{P}(\mathrm{S})=\mathrm{P}($ Survival $)=.993$
$\mathrm{P}(\mathrm{C})=\mathrm{P}($ Cesarean $)=.15$
$\mathrm{P}\left(\mathrm{C}^{\mathrm{c}}\right)=\mathrm{P}($ Non-Cesarean $)=.85$
$\mathrm{P}(\mathrm{S} \mid \mathrm{C})=\mathrm{P}($ Survival \mid Cesarean $)=.987$
We Need to find $\mathrm{P}\left(\mathrm{S} \mid \mathrm{C}^{\mathrm{c}}\right)$
By Corr. 1.6.2:
$\mathrm{P}(\mathrm{S})=\mathrm{P}(\mathrm{S} \mid \mathrm{C}) \mathrm{P}(\mathrm{C})+\mathrm{P}\left(\mathrm{S} \mid \mathrm{C}^{\mathrm{c}}\right) \mathrm{P}\left(\mathrm{C}^{\mathrm{c}}\right)$
$.993=.987(.15)+\mathrm{P}\left(\mathrm{S} \mid \mathrm{C}^{\mathrm{c}}\right)(.85)$ Solving for $\mathrm{P}\left(\mathrm{S} \mid \mathrm{C}^{\mathrm{c}}\right) \square \mathrm{P}\left(\mathrm{S} \mid \mathrm{C}^{\mathrm{c}}\right)=.994059$

1.65 (2 pts)

Possibilities on a die are $\{1,2,3,4,5,6\}$ each with equal probability of $\frac{1}{6}$ $\mathrm{P}($ Heads $)=\mathrm{P}($ Tails $)=\frac{1}{2}$
$P($ No Heads $)=\frac{1}{6}\left[\frac{1}{2}+\left(\frac{1}{2}\right)^{2}+\left(\frac{1}{2}\right)^{3}+\left(\frac{1}{2}\right)^{4}+\left(\frac{1}{2}\right)^{5}+\left(\frac{1}{2}\right)^{6}\right]=\frac{1}{6} \sum_{i=1}^{6} \frac{1}{2^{i}}$
1.77 (4 pts)
b) Let: $\mathrm{W}=$ You Win
$G=$ He shows a goat
C = Picked a Car
$\mathrm{P}(\mathrm{W} \mid \mathrm{G})=\mathrm{P}(\mathrm{W} \mid \mathrm{G}, \mathrm{C}) \mathrm{P}(\mathrm{C} \mid \mathrm{G})+\mathrm{P}\left(\mathrm{W} \mid \mathrm{G}, \mathrm{C}^{\mathrm{c}}\right) \mathrm{P}\left(\mathrm{C}^{\mathrm{c}} \mid \mathrm{G}\right)$
Note: $\mathrm{P}(\mathrm{C} \mid \mathrm{G})=\mathrm{P}(\mathrm{C})=\frac{\mathrm{k}}{\mathrm{n}}$

$$
\begin{aligned}
& \mathrm{P}\left(\mathrm{C}^{\mathrm{c}} \mid \mathrm{G}\right)=1-\frac{\mathrm{k}}{\mathrm{n}} \\
& \mathrm{P}(\mathrm{~W} \mid \mathrm{G}, \mathrm{C})=\frac{\mathrm{k}-1}{\mathrm{n}-2} \\
& \mathrm{P}\left(\mathrm{~W} \mid \mathrm{G}, \mathrm{C}^{\mathrm{c}}\right)=\frac{\mathrm{k}}{\mathrm{n}-2}
\end{aligned}
$$

Therefore: $\mathrm{P}(\mathrm{W} \mid \mathrm{G})=\left(\frac{\mathrm{k}-1}{\mathrm{n}-2}\right)\left(\frac{\mathrm{k}}{\mathrm{n}}\right)+\left(\frac{\mathrm{k}}{\mathrm{n}-2}\right)\left(1-\frac{\mathrm{k}}{\mathrm{n}}\right)=\frac{\mathrm{k}^{2}+\mathrm{n}-\mathrm{k}}{\mathrm{n}^{2}-2 \mathrm{n}}$
1.78 (2 pts)
1.92 (6 pts)
a)

Mother
Father

Mother		
	X^{*}	X^{*}
X	XX^{*}	XX^{*}
Y	$\mathrm{X}^{*} \mathrm{Y}$	$\mathrm{X}^{*} \mathrm{Y}$

$\mathrm{P}($ Daughter is Color-Blind Mother is C-B and Father is Normal $)=0$ $\mathrm{P}($ Son is Color-Blind \mid Mother is C-B and Father is Normal $)=1$
b)

Mother			
		X^{*}	X
	X	XX	
	XX		
	Y	$\mathrm{X}^{*} \mathrm{Y}$	XY

$\mathrm{P}($ Daughter is Color-Blind| Both Parents are Normal, Mother's Father was C-B $)=0$ P(Son is Color-Blind| Both Parents are Normal, Mother's Father was C-B) $=1 / 2$

1.99 (5 pts)

Explore the possible ways of winning:
$1^{\text {st }}$ Trial, can will only with 7 or 11 , thus the probability of winning on the first trial is:

$$
\mathrm{P}(7 \text { or } 11)=\mathrm{P}(7)+\mathrm{P}(11)=\frac{8}{36}
$$

The Next Trial/s, Can win if you get your point $\{$ Your point could be a $4,5,6,8,9$ or 10$\}$
We will employ the Law of Total Probability and the probability that we win before we see a " 7 " (See page 59 for the derivation)
P(Win)
$=\mathrm{P}(7$ or 11$)+\frac{\mathrm{P}(4)^{2}}{\mathrm{P}(4)+\mathrm{P}(7)}+\frac{\mathrm{P}(5)^{2}}{\mathrm{P}(5)+\mathrm{P}(7)}+\frac{\mathrm{P}(6)^{2}}{\mathrm{P}(6)+\mathrm{P}(7)}+\frac{\mathrm{P}(8)^{2}}{\mathrm{P}(8)+\mathrm{P}(7)}+\frac{\mathrm{P}(9)^{2}}{\mathrm{P}(9)+\mathrm{P}(7)}+\frac{\mathrm{P}(10)^{2}}{\mathrm{P}(10)+\mathrm{P}(7)}$ $=\frac{8}{36}+2 \cdot \frac{1}{36}+2 \cdot \frac{2}{45}+2 \cdot \frac{25}{396}=\frac{244}{495} \approx .49$

Extra (4 pts)
HH $\quad 1$ way with probability: $\frac{1}{2^{2}} \quad \square \mathrm{~F}_{1}=1$
THH $\quad 1$ way with probability: $\frac{1}{2^{3}} \quad \square \mathrm{~F}_{2}=1$
_ T HH $\quad 2$ ways with probability $\frac{1}{2^{4}} \quad \square \mathrm{~F}_{3}=\mathrm{F}_{1}+\mathrm{F}_{2}=1+1=2$
- T HH 3 ways with probability $\frac{1}{2^{5}} \quad \square \mathrm{~F}{4}=\mathrm{F}_{3}+\mathrm{F}_{2}=2+1=3$
-- T HH 5 ways with probability $\frac{1}{2^{6}} \quad \square \mathrm{~F}{5}=\mathrm{F}_{4}+\mathrm{F}_{3}=3+2=5$

Continuing to do so suggests that the number of flips until we see 2 consecutive heads is:

$$
\square F_{n}=F_{n-1}+F_{n-2}
$$

Therefore we have: $\frac{F_{n}}{2^{n+1}}$ where $n=2,3,4, \ldots$ number of flips
Or we can re-write $\frac{F_{n}}{2^{n+1}}$ as $\frac{F_{n-1}}{2^{n}}$

