
Statistics 581 MATHEMATICAL PROBABILITY I

PROBABILITY SPACES

The One Most Important Definition

Probability space is (Ω,B, P )

• Ω is the sample space containing elementary outcomes ω,

• B is the σ−algebra of subsets (events) of Ω,

• P is a probability measure, a function B 3 A → P (A) ∈ [0, 1]

(i) P (A) ≥ 0, all A ∈ B

(ii) P is σ-additive,

{An, n ≥ 1, disjoint} =⇒ P (∪∞n=1An) =
∞

∑

n=1

P (An)

(iii) P (Ω) = 1
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Basic properties of probabilistic measures

1. P (Ac) = 1 − P (A) prove ...

2. P (∅) = 0 prove ...

3. P (A ∪ B) = P (A) + P (B) − P (A ∩ B) prove ...

4. {An, n ≥ 1} arbitrary events, the exclusion-inclusion formula holds

P (∪n
j=1Aj) =

n
∑

j=1

P (Aj) −
∑

1≤i<j≤n

P (Ai ∩ Aj)

+
∑

1≤i<j<k≤n

P (Ai ∩ Aj ∩ Ak) − . . .

+(−1)n+1P (A1 ∩ A2 ∩ · · · ∩ An)
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moreover, the Bonferroni inequalities hold

P (∪n
j=1Aj) ≤

n
∑

j=1

P (Aj)

P (∪n
j=1Aj) ≥

n
∑

j=1

P (Aj) −
∑

1≤i<j≤n

P (Ai ∩ Aj)

etc.

First part proved by induction, starting n = 2 (see 3), second part

trickier.
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5. Monotonicity

A ⊆ B =⇒ P (A) ≤ P (B) prove ...

6. Subadditivity, {An, n ≥ 1} arbitrary events

P (∪∞j=1Aj) ≤
∞

∑

j=1

P (Aj) prove ...
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7. Continuity, if An ↑ A =⇒ P (An) ↑ P (A); if

An ↓ A =⇒ P (An) ↓ P (A).

A1 ⊂ A2 ⊂ A3 ⊂ · · · ⊂ An ⊂ · · ·

B1 = A1, B2 = A2\A1, . . . , Bn = An\An−1, . . . are disjoint

∪n
i=1Bi = An, ∪∞i=1Bi = ∪iAi = A

=⇒ P (A) = P (∪∞i=1Bi) =
∞

∑

i=1

P (Bj) = lim
n→∞

↑
n

∑

i=1

P (Bj)

= lim
n→∞

↑ P (∪n
i=1Bi) = lim

n→∞
↑ P (An)

and the other part by complementarity of the measure ...
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8. Fatou’s lemma, {An, n ≥ 1} arbitrary events

(i) P ( lim
n→∞

inf An) ≤ lim
n→∞

inf P (An)

≤ lim
n→∞

sup P (An) ≤ P ( lim
n→∞

sup An)

(ii) also if An → A =⇒ P (An) → P (A).
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Proof

Part (ii) follows from part (i) prove ...

To prove (i) let us note that

P ( lim
n→∞

inf An) = P ( lim
n→∞

↑ ∩k≥nAk)
7
= lim

n→∞
↑ P (∩k≥nAk)

= lim
n→∞

inf ↑ P (∩k≥nAk) ≤ lim
n→∞

inf P (An)

attention! lim
n→∞

P (An) may not exist!

The other inequalities are analogous ...
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Probability distribution function

Suppose Ω = R and P be a probability measure on R

F (x) = P [(−∞, x]], x ∈ R

is called the distribution function (df), F : R → [0, 1].
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Properties of the distribution function

(i) F is right-continuous

(ii) F is monotone non-decreasing

(iii)

F (∞) = lim
x↑∞

↑ F (x) = 1

F (−∞) = lim
x↓−∞

↓ F (x) = 0
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Proof

(ii) prove ...

(i) consider xn → ∞

F (∞) = lim
xn→∞

F (xn) = lim
xn→∞

↑ P [(−∞, xn]]

= P [ lim
xn→∞

↑ (−∞, xn]] = P [∪n(−∞, xn]]

= P (R) = P (Ω) = 1

etc.

(iii) xn ↓ x =⇒ (−∞, xn] ↓ (−∞, x] =⇒ P [(−∞, xn]] ↓ P [(−∞, x]] =⇒

F (xn) ↓ F (x)

�
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Example 2.1.2 Self-study
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Dynkin’s Theorem and constructions of Probability Spaces

Philosophy: Define probability on simpler structures and then extend

to a σ-field (= σ-algebra).

Two important classes of structures

π-system: P ⊂ 2Ω is a π-system if it is closed under finite

intersections: A, B ∈ P =⇒ A ∩ B ∈ P.
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λ-system (Dynkin’s system, σ-additive class):

L ⊂ 2Ω is a λ-system if

(old definition) (i) Ω ∈ L; (ii) A, B ∈ L, A ⊆ B =⇒ B \ A ∈ L; (iii)

An ↑, An ∈ L =⇒ ∪nAn ∈ L.

equivalent to (new definition) (i) Ω ∈ L; (ii) A ∈ L =⇒ Ac ∈ L; (iii)

An ∈ L, AnAm = ∅, n 6= m =⇒ ∪nAn ∈ L.

Marek Kimmel Fall 2004



Statistics 581 MATHEMATICAL PROBABILITY I

Example: A σ-field is always a λ-system, since the new definition is

satisfied

Example: If class C is a λ-system and a π-system it is a σ-field. (prove

...)
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Definition 2.2.1. The minimal structure S(C) generated by class C is

a non-empty structure satisfying

(i) S(C) ⊃ C

(ii)If S ′ is any other structure containing class C, then S ′ ⊃ S(C)
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Proposition 2.2.1. The minimal structure S(C) exists and is unique.

Proof exactly like in the minimal σ-algebra case:

S(C) = ∩{G: G is a structure, G ⊃ C}
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Theorem 2.2.2 (Dynkin’s Theorem)

(a) If P ⊂ 2Ω is a π-system and L ⊂ 2Ω is a λ-system, such that P ⊂

L, then

σ(P)⊂ L

(b) If P ⊂ 2Ω is a π-system, then

σ(P)= L(P)

i.e., the minimal σ-algebra over P equals the minimal λ-system over P.
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Applications of Dynkin’s Theorem

Proposition 2.2.3. Let P1, P2 be two probability measures on (Ω,B),

then the class

L := {A ∈ B : P1(A) = P2(A)}

is a λ-system.

Marek Kimmel Fall 2004



Statistics 581 MATHEMATICAL PROBABILITY I

Corollary 2.2.1. Let P1, P2 be two probability measures on (Ω,B) and

P is a π-system such that

∀A ∈ P : P1(A) = P2(A)

Then

∀B ∈ σ(P) : P1(B) = P2(B)

Proof. By Prop. 2.2.3, L := {A ∈ B : P1(A) = P2(A)} is a λ-system.

But P ⊂ L and so by Dynkin’s Theorem σ(P)⊂ L.

�
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Corollary 2.2.2. (Uniqueness of probability measure defined by

its distribution function). Let Ω = R. Let P1, P2 be two

probability measures on (R,B(R)) such that

∀x ∈ R : F1(x) = F2(x).

Then P1(A) = P2(A), A ∈ B(R).
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Proof. Define the π-system

P = {(−∞, x] : x ∈ R}

We have σ(P) = B(R) (why?). So, by Prop. 2.2.3,

∀x ∈ R : F1(x) = F2(x) ⇐⇒ P1 = P2 on σ(P) = B(R)

�
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Proof of Proposition 2.2.3. We show that the new definition is

satisfied. Conditions (i) and (ii) are satisfied (prove ...).

Now take

{An ∈ L : AnAm = ∅, n 6= m}

Then

∀j : P1(Aj) = P2(Aj)

=⇒ P1(∪jAj) =
∑

j

P1(Aj) =
∑

j

P2(Aj) = P2(∪jAj)

=⇒ ∪jAj ∈ L

�
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Attention:

Subsection 2.3 (Two constructions of discrete spaces) is self-study
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Semialgebras

Definition 2.4.1. Class S ⊆ 2Ω is a semialgebra if

(i) ∅, Ω ∈ S

(ii) S is a π-system

(iii) If A ∈ S, then there exist finite n and disjoint C1, . . . Cn ∈ S such

that

Ac =
n

∑

i=1

Ci
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Extension Theorems (no proof)

Suppose G1 ⊂ G2 ⊂ 2Ω are two structures of subsets of Ω. Consider two

set functions

Pi : Gi −→ [0, 1], i = 1, 2

If

P2|G1 = P1, i.e., P2(A1) = P1(A1), A1 ∈ G1

then

P1 is a restriction of P2 to G1

P2 is an extension of P1 to G2 (this latter generally not necessarily

unique!)
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Lemma 2.4.1. The field generated by a semialgebra (study the proof

and compare Problem 1.20!). Suppose S is a semialgebra of

subsets of Ω. Then

A(S) =

{

∑

i∈I

Si : I finite, {Si, i ∈ I} disjoint, Si ∈ S

}

is the family of all sums of finite families of mutually disjoint subsets of

Ω in S.
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Theorem 2.4.1. (First Extension Theorem). Suppose S is a

semialgebra of subsets of Ω and P : S −→ [0, 1] is σ-additive on S and

satisfies P (Ω) = 1. There is a unique extension P ′ of P to A(S),

defined by

P ′(
∑

i∈I

Si) =
∑

i∈I

P (Si)

which is a probability measure on A(S); that is P ′(Ω) = 1 and P ′ is

σ-additive on A(S).
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Theorem 2.4.2. (Second Extension Theorem). A probability measure P

defined on a field A of subsets has a unique extension to a probability

measure on σ(A),

Combine these to obtain Thm 2.4.3 ...
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Lebesgue Measure on [0, 1]

Ω = 1

B = B((0, 1])

S = {(a, b] : 0 ≤ a ≤ b ≤ 1}, it is a semialgebra!

Define λ : S −→ [0, 1] by

λ(∅) = 0, λ(a, b] = b − a

Note λ(A) ≥ 0.

To show that λ has a unique extension, we have to show λ is σ-additive
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Finite additivity

Take

a = a1, b1 = a2, . . . , bk−1 = ak, bk = b

such that

(a, b] =
k

∑

i=1

(ai, bi] ∈ S

We see that (prove ...)

λ(a, b] =
k

∑

i=1

λ(ai, bi]

Denumerable additivity
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Compactness:

• A set is called compact, if from any open cover of the set, we can

select a finite open subcover.

• A set in metric space is called sequentially compact if from any

sequence of its elements, it is possible to select a convergent

subsequence with a limit in this set.

• Therefore compact sets have to be closed.

• In finite-dimensional metric spaces, bounded closed sets are

compact.
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Proof of σ-additivity

Let

(a, b] ⊂
∞
⋃

i=1

(ai, bi]

We first prove

b − a ≤
∞

∑

i=1

(bi − ai).

We have

[a + ε, b] ⊂
∞
⋃

i=1

(ai, bi +
ε

2i
)

The infinite sum on the right is an infinite open cover of the compact

set on the left.
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Therefore we can choose a finite subcover so that

∃N : [a + ε, b] ⊂
N
⋃

i=1

(ai, bi +
ε

2i
)

It is enough to prove

b − a − ε ≤
N

∑

i=1

(bi − ai +
ε

2i
) (*)

which implies

b − a ≤ 2ε +

∞
∑

i=1

(bi − ai)

but since ε > 0 is arbitrary (and so it can be arbitrarily small),

b − a ≤
∞

∑

i=1

bi − ai ⇐⇒ λ(a, b] ≤
∞

∑

i=1

λ(ai, bi]
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Instead of proving (*), it is sufficient to prove that

[a, b] ⊂
N
⋃

i=1

(ai, bi) =⇒ b − a ≤
N

∑

i=1

(bi − ai) (**)

Induction proof :

(**) is satisfied for N = 1.

Assume (**) is satisfied for N − 1.

Suppose

aN = max
1≤i≤N

ai

and

aN ≤ b ≤ bN

Marek Kimmel Fall 2004



Statistics 581 MATHEMATICAL PROBABILITY I

Case 1: aN ≤ a

b − a ≤ bN − aN ≤
N

∑

i=1

(bi − ai)

Case 2: aN > a

[a, b] ⊂
N
⋃

i=1

(ai, bi) =⇒ [a, aN ] ⊂
N−1
⋃

i=1

(ai, bi)

induction
=⇒ aN − a ≤

N−1
∑

i=1

(bi − ai)
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Furthermore

b − a = b − aN + aN − a

≤ b − aN +
N−1
∑

i=1

(bi − ai) ≤ bN − aN +
N−1
∑

i=1

(bi − ai)

=

N
∑

i=1

(bi − ai)

Marek Kimmel Fall 2004



Statistics 581 MATHEMATICAL PROBABILITY I

Now the other way around. Suppose

(a, b] =
∞

∑

i=1

(ai, bi]

Claim:

∃n : λ(a, b] = b − a ≥
n

∑

i=1

λ(ai, bi] =

n
∑

i=1

(bi − ai)
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Indeed,

(a, b] r

n
∑

i=1

(ai, bi] =

m
∑

j=1

Ij

and by finite additivity

λ(a, b] =
n

∑

i=1

λ(ai, bi] +
m

∑

j=1

λ(Ij) ≥
n

∑

i=1

λ(ai, bi]

If n −→ ∞,

λ(a, b] ≥
∞

∑

i=1

λ(ai, bi]

�
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Construction of probability measure on R with given distribution

function F (x)

PF ((−∞, x]) = F (x).

Define the left-continuous inverse of F

F←−(y) = inf{s : F (s) ≥ y}, 0 < y ≤ 1

and set

A(y) = {s : F (s) ≥ y}
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Properties:

(a) A(y) is closed

(b) Therefore,

inf A(y) ∈ A(y) ⇐⇒ F (F←−(y)) ≥ y

(c) Furthermore

[F←−(y) > t ⇐⇒ y > F (t)] ⇐⇒ [F←−(y) ≤ t ⇐⇒ y ≤ F (t)]
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Lemma 2.5.1.

If A ∈ B(R), then

ξF (A) = {x ∈ (0, 1] : F←−(x) ∈ A} ∈ B((0, 1])

Proof, self-study
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Construction of PF

Define, for A ∈ B(R),

PF (A) = λ(ξF (A))

Verify it is a probability measure ... Also,

PF ((−∞, x]) = λ(ξF ((−∞, x]))

= λ{y ∈ (0, 1] : F←−(y) ≤ x}

= λ{y ∈ (0, 1] : y ≤ F (x)}

= λ((0, F (x)]) = F (x)

�
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