SET THEORY CONCEPTS

Cardinality (power) of a set $=$ "number of elements in a set"
$\#\{A\}=\#\{B\}$ iff elements of A and B can be paired i.e., there exists a function f that is 1-1 and "on" such that for each $a \in A$ and $b \in B$

$$
a=f(b), b=f^{-1}(a)
$$

Countable set has cardinality the same as the set N of natural numbers. This means that the elements of a countable set can be indexed by natural numbers

$$
A=\left\{a_{n}, n=1,2, \ldots\right\} .
$$

Examples of countable sets: Z (integers), Q (rational numbers)
Cardinal numbers describe cardinalities of sets

$$
\begin{aligned}
\aleph_{0} & =\#\{N\} \\
\mathfrak{C} & =\#\{[0,1]\} \\
\mathfrak{C} & \geq \aleph_{0}
\end{aligned}
$$

Power set of A is the set of all subsets of A

$$
\mathcal{P}(A)=2^{A}=\{X: X \subseteq A\}
$$

[^0]We have $\#\left\{2^{N}\right\}=\#\{[0,1]\}$. Indeed, all subsets of N can be coded by sequences of 0 and 1 . For example, even numbers are coded as $01010101 \ldots$. . These codings are binary expansions of numbers from $[0,1]$, so they provide f.

Consequence (Corollary) is that

$$
\mathfrak{C}>\aleph_{0}
$$

Continuum hypothesis, there is no cardinal number between \mathfrak{C} and \aleph_{0}.

Limit operations on sets

Consider a family of sets indexed by natural numbers $\left\{A_{n}, n=1,2, \ldots\right\}$.

$$
\begin{aligned}
& H_{k}=\cup_{n \geq k} A_{n}, \Rightarrow H_{k+1} \subseteq H_{k}, \text { descending family } \\
& G_{k}=\cap_{n \geq k} A_{n}, \Rightarrow G_{k+1} \supseteq G_{k}, \text { ascending family } \\
& G_{k} \subseteq H_{k}
\end{aligned}
$$

We write

$$
\begin{aligned}
\lim \sup A_{n} & =\lim _{k \rightarrow \infty} H_{k}=\cap_{k \geq 1} \cup_{n \geq k} A_{n} \\
\liminf A_{n} & =\lim _{k \rightarrow \infty} G_{k}=\cup_{k \geq 1} \cap_{n \geq k} A_{n}
\end{aligned}
$$

Obviously (why?)

$$
\liminf A_{n} \subseteq \limsup A_{n}
$$

If $\lim \inf A_{n}=\limsup A_{n}$, then they define $\lim A_{n}$ (remember A_{n} are not necessarily ascending/descending).

Interpretation

$$
\left.\begin{array}{rl}
\limsup A_{n} & =\left\{\omega: \forall k, \exists(n \geq k), \omega \in A_{n}\right\} \\
& =\left\{\omega \text { in infinitely many } A_{n}\right\} \\
& =\left\{A_{n}, \text { i.o. }\right\}
\end{array}\right\} \begin{aligned}
\liminf A_{n} & =\left\{\omega: \exists k, \forall(n \geq k), \omega \in A_{n}\right\} \\
& =\left\{\omega \text { in all, except for final number, of } A_{n}\right\}
\end{aligned}
$$

Attention, $k=k(\omega), n=n(\omega)$.

Indicator functions of sets

$$
1_{A}(\omega)= \begin{cases}1 ; & \omega \in A \\ 0 ; & \omega \notin A\end{cases}
$$

Calculus of indicator functions

$$
\begin{aligned}
& 1_{A \cup B}(\omega)=1_{A}(\omega) \vee 1_{B}(\omega)=\max \left\{1_{A}(\omega), 1_{B}(\omega)\right\} \\
& 1_{A \cap B}(\omega)=1_{A}(\omega) \wedge 1_{B}(\omega)=\min \left\{1_{A}(\omega), 1_{B}(\omega)\right\} \\
& 1_{A^{c}}(\omega)=1-1_{A}(\omega) \\
& 1_{\limsup A_{n}}(\omega)
\end{aligned} \begin{aligned}
& =1_{\cap_{k \geq 1} \cup_{n \geq k} A_{n}}(\omega) \\
& =\wedge_{k \geq 1} \vee_{n \geq k} 1_{A_{n}}(\omega) \\
& =\limsup 1_{A_{n}}(\omega)
\end{aligned}
$$

and the dual form for $1_{\liminf A_{n}}(\omega) \ldots$

[^0]: We have (Theorem) $\#\left\{2^{A}\right\}>\#\{A\}$. Indeed, suppose $\#\left\{2^{A}\right\}=\#\{A\}$, i.e., elements of 2^{A} and A can be paired. But this means that if $f: 2^{A} \rightarrow A$ then for any $x \in A, f(\{x\})=y$, so that all $y \in A$ are exhausted. But there are elements in 2^{A}, which are different from singletons $\{x\}$ (contradiction).

