Stat581 HW1 Solutions

1. (3')
(a) 15 .
(b) Proof: Since the order of partial derivatives doesn't matter, this problem is equivalent to assign r identical balls to n identical boxes. Note that there are $n-1$ barriers, so the total number of ways is $\binom{n+r-1}{r}$.
2. (3')

By inclusive-exclusive theorem, $P($ at least 1 call per day $)=1-P($ exist some days with no call $)$

$$
\begin{aligned}
& =1-\binom{7}{1} \frac{6^{12}}{7^{12}}+\binom{7}{2} \frac{5^{12}}{7^{12}}-\ldots+\binom{7}{6} \frac{1^{12}}{7^{12}} \\
& =0.228452
\end{aligned}
$$

This can also be done in another way. Consider $X_{1} \sim \operatorname{bin}\left(12, \frac{1}{7}\right)$, then
$P\left(X_{1}=0\right)$ represents the probability of no call received in a single day.
Consider $X_{2} \sim \operatorname{bin}\left(12, \frac{1}{6}\right)$, then $P\left(X_{1}=0\right) P\left(X_{2}=0\right)$ represents the probability of no call received in two days ...
So, $P=1-\binom{7}{1} P\left(X_{1}=0\right)+\binom{7}{2} P\left(X_{1}=0\right) P\left(X_{2}=0\right)-\ldots$
Direct approach (by Pawell):
A sample point specifies on which day (1 through 7) each of the 12 calls happens. Thus there are 7^{12} equally likely sample points. There are several different ways that the calls might be assigned so that there is at least one call each day. There might be 6 calls one day and 1 call each of the other days. Denote this by 6111111 . The number of sample points with this pattern is $7\binom{12}{6} 6!$. There are 7 ways to specify the day with 6 calls. There are $\binom{12}{6}$ to specify which of the 12 calls are on this day. And there are $6!$ ways of assigning the remaining 6 calls to the remaining 6 days. We will now count another pattern. There might be 4 calls on one day, 2 calls on each of two days, and 1 call on each of the remaining four days. Denote this by 4221111. The number of sample points with this pattern is $7\binom{12}{4}\binom{6}{2}\binom{8}{2}\binom{6}{2} 4!$. (7 ways to pick day with 4 calls, $\binom{12}{4}$ to pick the calls for that day, $\binom{6}{2}$ to pick two days with two calls, $\binom{8}{2}$ ways to pick two calls for lowered numbered day, $\binom{6}{2}$ ways to pick the two calls for higher numbered day, 4 ! ways to order remaining 4 calls.) Here is a list of all the possibilities and the counts of the sample points for each one.

pattern	number of sample points	
6111111	$7\left({ }_{6}^{12}\right) 6!=$	4,656,960
5211111	$7\left({ }^{12}\right) 6\binom{7}{2} 5!=$	83,825,280
4221111	$7\binom{12}{4}\binom{6}{2}\binom{8}{2}\binom{6}{2} 4!=$	523,908,000
4311111	$7\binom{12}{4} 6\binom{8}{3} 5!=$	139,708,800
3321111	($\left.\begin{array}{c}7 \\ 2\end{array}\right)\binom{12}{3}\binom{9}{3} 5\binom{6}{2} 4!=$	698,544,000
3222111	$7\binom{12}{3}\binom{6}{9}\binom{9}{9}\binom{7}{5}\binom{5}{5} 3!=$	1,397,088,000
2222211	$\binom{7}{5}\binom{12}{2}\binom{10}{2}\binom{8}{2}\binom{6}{2}\binom{4}{2} 2!=$	314,344,800
		3,162,075,840

The probability is the total number of sample points divided by 7^{12}, which is $\frac{3,162,075,840}{7^{12}} \approx$. 2285.
3. (3')
$P($ no matching pair $)=\frac{\binom{n}{2 r} 2^{2 r}}{\binom{2 n}{2 r}}$, since we should choose $2 r$ pairs from n pairs first to
guarantee there is no matching pair, and then choose 1 from each of the $2 r$ pairs.
4. (1')
$P($ both are boys \mid at least one is boy $)=\frac{P(\text { both are boys })}{P(\text { at least one is boy })}=\frac{1 / 4}{1-1 / 4}=\frac{1}{3}$.
5. (2')
$X \sim \operatorname{Neg} \operatorname{Bin}\left(1, \frac{1}{6}\right), P(X \geq 5)=1-P(X<4)=1-0.5981=0.4019$.
Or, let $B_{i}=\{$ cast i times, the last one is 6$\}$,
$P($ cast more than 5 times $)=1-P\left(B_{i} \leq 5\right)=1-\left(\frac{1}{6}+\frac{5}{6} \cdot \frac{1}{6}+\ldots+\left(\frac{5}{6}\right)^{4} \cdot \frac{1}{6}\right)$
Or directly, $P($ cast more than 5 times $)=\left(\frac{5}{6}\right)^{5}$.
6. (2')
$X \sim \operatorname{Bin}(10,0.2)$,
$P(X \geq 2)=1-P(X<2)=0.6242$,
$P(X \geq 2 \mid X \geq 1)=\frac{P(X \geq 2)}{P(X \geq 1)}=0.6993$.
7. (4’)

Show (1) right continuous, (2) monotone non-decreasing, (3) $F(-\infty)=0, F(\infty)=1$.
8. (4')

Use change of integrals.
(a) Proof:
$\int_{0}^{\infty}\left[1-F_{X}(x)\right] d x=\int_{0}^{\infty} \int_{x}^{\infty} f(t) d t d x=\int_{0}^{\infty} \int_{0}^{t} f(t) d x d t=\int_{0}^{\infty} t f(t) d t=E(X)$
(b) Proof:
$\sum_{k=0}^{\infty}\left[1-F_{X}(k)\right]=\sum_{k=0}^{\infty} P(X>k)=\sum_{k=0}^{\infty} \sum_{t=k+1}^{\infty} P(X=t)=\sum_{t=1}^{\infty} \sum_{k=0}^{t-1} P(X=t)=\sum_{t=1}^{\infty} t P(X=t)=E(X)$
9. (3')

Easy to show the hint, $\forall \omega,(X+Y)(\omega)=(X \vee Y)(\omega)+(X \wedge Y)(\omega)$.
$X+Y=(X \vee Y)+(X \wedge Y) \Rightarrow E(X+Y)=E(X)+E(Y)=E(X \vee Y)+E(X \wedge Y)$.
10. (2')
$E(X)=\int_{0}^{1} a x^{a} d x=\frac{a}{a+1}$,
$E\left(X^{2}\right)=\int_{0}^{1} a x^{a+1} d x=\frac{a}{a+2}$,
$\operatorname{Var}(X)=E\left(X^{2}\right)-E(X)=\frac{a}{(a+1)^{2}(a+2)}$
11. (3')
(a) Show $P(X=i, Y=j) \neq P(X=i) P(Y=j)$, for some $i=1,2,3, j=2,3,4$

(b) | | 1 | 2 | 3 |
| :---: | :---: | :---: | :---: |
| 2 | $1 / 12$ | $1 / 6$ | $1 / 12$ |
| 3 | $1 / 12$ | $1 / 6$ | $1 / 12$ |
| 4 | $1 / 12$ | $1 / 6$ | $1 / 12$ |

12. (3')

Proof:
Let $U=\frac{X}{X+Y}, V=X$, calculate joint distribution after transformation and then the marginal.
13. (3')

Proof:

$$
\begin{aligned}
P(X=x \mid X+Y=n) & =\frac{P(X=x, X+Y=n)}{P(X+Y=n)} \\
& =\frac{P(X=x, Y=n-x)}{P(X+Y=n)} \\
& =\frac{P(X=x) P(Y=n-x)}{P(X+Y=n)} \\
& =\binom{n}{x}\left(\frac{\theta}{\theta+\lambda}\right)^{x}\left(\frac{\lambda}{\theta+\lambda}\right)^{n-x}, 0 \leq x \leq n
\end{aligned}
$$

