Stat581 HW4 Solutions

2.(3') Let $(\Omega, \mathcal{B}, P)=((0,1], \mathcal{B}(0,1], \lambda)$ where λ is a Lebesgue measure. Define

$$
\begin{aligned}
& X_{1}(\omega)=0, \forall \omega \in \Omega \\
& X_{2}(\omega)=1_{1 / 2}(\omega), \\
& X_{3}(\omega)=1_{Q}(\omega)
\end{aligned}
$$

where $\mathbb{Q} \subset(0,1]$ are the rational numbers in $(0,1]$. Note

$$
P\left[X_{1}=X_{2}=X_{3}=0\right]=1
$$

and give

$$
\sigma\left(X_{i}\right), i=1,2,3
$$

(1)

$$
\begin{gathered}
\Omega^{\prime}=\{0\}, \mathcal{B}^{\prime}=\sigma(\{0\})=\{\emptyset,\{0\}\} \\
X_{1}^{-1}(\emptyset)=\emptyset, X_{1}^{-1}(\{0\})=\Omega \\
\sigma\left(X_{1}\right)=\left\{X_{1}^{-1}(B): B \in \mathcal{B}^{\prime}\right\}=\{\emptyset, \Omega\}=\{\emptyset,(0,1]\}
\end{gathered}
$$

(2)

$$
\begin{gathered}
\Omega^{\prime}=\{0,1\}, \mathcal{B}^{\prime}=\sigma(\{0,1\})=\{\emptyset,\{0,1\}\{0\},\{1\}\} \\
X_{2}^{-1}(\emptyset)=\emptyset, X_{2}^{-1}(\{0,1\})=\Omega, X_{2}^{-1}(\{0\})=\Omega \backslash\{1 / 2\}, X_{2}^{-1}(\{1\})=\{1 / 2\} \\
\sigma\left(X_{2}\right)=\left\{X_{2}^{-1}(B): B \in \mathcal{B}^{\prime}\right\}=\{\emptyset, \Omega, \Omega \backslash\{1 / 2\},\{1 / 2\}\} .
\end{gathered}
$$

$$
\begin{equation*}
\Omega^{\prime}=\{0,1\}, \mathcal{B}^{\prime}=\sigma(\{0,1\})=\{\emptyset,\{0,1\}\{0\},\{1\}\} \tag{3}
\end{equation*}
$$

$$
\begin{gathered}
X_{3}^{-1}(\emptyset)=\emptyset, X_{3}^{-1}(\{0,1\})=\Omega, X_{3}^{-1}(\{0\})=\mathbb{Q}^{c}, X_{3}^{-1}(\{1\})=\mathbb{Q} \\
\sigma\left(X_{3}\right)=\left\{X_{3}^{-1}(B): B \in \mathcal{B}^{\prime}\right\}=\left\{\emptyset, \Omega, \mathbb{Q}^{c}, \mathbb{Q}\right\}
\end{gathered}
$$

3. (2') Suppose $f: \mathbb{R}^{k} \mapsto \mathbb{R}$, and $f \in \mathcal{B}\left(\mathbb{R}^{k}\right) / \mathcal{B}(\mathbb{R})$. Let X_{1}, \ldots, X_{k} be random variables on (Ω, \mathcal{B}). Then

$$
f\left(X_{1}, \ldots, X_{k}\right) \in \sigma\left(X_{1}, \ldots, X_{k}\right)
$$

Proof:
Let $\mathbb{X}=\left(X_{1}, \ldots, X_{k}\right)$, then \mathbb{X} is a random vector $(\Omega, \mathcal{B}) \mapsto\left(\mathbb{R}^{k}, \mathcal{B}\left(\mathbb{R}^{k}\right)\right)$ since X_{1}, \ldots, X_{k} are random variables. So $\sigma(\mathbb{X})=\mathbb{X}^{-1}\left(\mathcal{B}\left(\mathbb{R}^{k}\right)\right) \subset \mathcal{B}$.

Since $f \in \mathcal{B}\left(\mathbb{R}^{k}\right) / \mathcal{B}(\mathbb{R}), f(\mathbb{X})$ is a random variable $(\Omega, \mathcal{B}) \mapsto(\mathbb{R}, \mathcal{B}(\mathbb{R}))$, and $\sigma(f(\mathbb{X}))=(f \circ \mathbb{X})^{-1}(\mathcal{B}(\mathbb{R}))=\mathbb{X}^{-1}\left(f^{-1}(\mathcal{B}(\mathbb{R}))\right)$.

At the same time, since $f \in \mathcal{B}\left(\mathbb{R}^{k}\right) / \mathcal{B}(\mathbb{R})$, f itself is a random variable, and $\sigma(f)=f^{-1}(\mathcal{B}(\mathbb{R})) \subset \mathcal{B}\left(\mathbb{R}^{k}\right)$.

Therefore, $\mathbb{X}^{-1}\left(f^{-1}(\mathcal{B}(\mathbb{R}))\right) \subset \mathbb{X}^{-1}\left(\mathcal{B}\left(\mathbb{R}^{k}\right)\right)$. So, $f\left(X_{1}, \ldots, X_{k}\right)=f(\mathbb{X}) \in$ $\sigma(\mathbb{X})=\sigma\left(X_{1}, \ldots, X_{k}\right)$.
8.(3') Let X and Y be random variables and let $A \in \mathcal{B}$. Prove that the function

$$
Z(\omega)= \begin{cases}X(\omega), & \text { if } \omega \in A \\ Y(\omega), & \text { if } \omega \in A^{c}\end{cases}
$$

is a random variable.

Proof:
It's easy to show that: if X and Y are random variables, then $X Y$ and
$X+Y$ are also random variables. Now 1_{A} and $1_{A^{c}}$ are random variables, and $Z=X 1_{A}+Y 1_{A^{c}}$.
9.(3') Suppose that $\left\{B_{n}, n \geq 1\right\}$ is a countable partition of Ω and define $\mathcal{B}=\sigma\left(B_{n}, n \geq 1\right)$. Show a function $X: \Omega \mapsto(-\infty, \infty]$ is \mathcal{B}-measurable iff X is of the form

$$
X=\sum_{i=1}^{\infty} c_{i} 1_{B_{i}}
$$

for constants $\left\{c_{i}\right\}$.(What is \mathcal{B} ?)

Proof:
$" \Leftarrow "$
Note that X is the limit of the summation of random variables $c_{i} 1_{B_{i}}$, and in each component, both c_{i} and $1_{B_{i}}$ are \mathcal{B}-measurable, therefore every $c_{i} 1_{B_{i}}$ is \mathcal{B}-measurable, hence X is \mathcal{B}-measurable.

Or,

$$
\begin{aligned}
\forall(a, b] \subset \mathbb{R}, X^{-1}((a, b]) & =X^{-1}\left(\left\{c_{i}: \sum c_{i} 1_{B_{i}} \in(a, b]\right\}\right) \\
& =\cup\left(B_{i}: \sum c_{i} 1_{B_{i}} \in(a, b]\right) \in \sigma\left(B_{n}\right)
\end{aligned}
$$

$" \Rightarrow$ "
By contradiction. Suppose X is not of this form, then

$$
\begin{array}{r}
\exists B_{i}=B_{i 1}+B_{i 2}, \text { s.t. } X(\omega)>c_{i}, \forall \omega \in B_{i 2} \\
X(\omega) \leq c_{i}, \forall \omega \in B_{i 1}
\end{array}
$$

Then, $\exists\left(c_{i}, c_{i}^{\prime}\right), X^{-1}\left(c_{i}, c_{i}^{\prime}\right)=B_{i 2} \notin \sigma\left(B_{n}\right)$, therefore X is not \mathcal{B}-measurable.
12.(3') Show that a monotone real function is measurable.

Proof:
Let $f:(a, b] \rightarrow(c, d],(a, b, c, d \in \mathbb{R}$ and can be $\pm \infty)$ be monotone, then inverse f exists and is unique.

And it's easy to show that $\forall\left(c_{i}, d_{i}\right] \subset(c, d], f^{-1}\left(\left(c_{i}, d_{i}\right]\right)=\left(a_{i}, b_{i}\right] \in \mathcal{B}((a, b])$. Therefore, $\forall C=\cup\left(c_{i}, d_{i}\right] \in \mathcal{B}((c, d])$,
$f^{-1}(C)=f^{-1}\left(\cup\left(c_{i}, d_{i}\right]\right)=\cup f^{-1}\left(\left(c_{i}, d_{i}\right]\right)=\cup\left(a_{i}, b_{i}\right] \in \mathcal{B}((a, b])$, hence f is $\mathcal{B}((a, b])$-measurable.
22.(3') Suppose $\left\{X_{n}, n \geq 1\right\}$ are random variables on the probability space (Ω, \mathcal{B}, P) and define the induced random walk by

$$
S_{0}=0, S_{n}=\sum_{i=1}^{n} X_{i}, n \geq 1
$$

Let

$$
\tau:=\inf \left\{n>0: S_{n}>0\right\}
$$

be the first updoing ladder time. Prove τ is a random variable. Assume we know $\tau(\omega)<\infty$ for all $\omega \in \Omega$. Prove S_{τ} is a random variable.

Proof:
(1) Let $S=\left(S_{0}, S_{1}, \ldots, S_{n}\right)$, then $S:(\Omega, \mathcal{B}) \mapsto\left(\mathbb{R}^{n+1}, \mathcal{B}\left(\mathbb{R}^{n+1}\right)\right)$ is measurable. Now $\tau:(\Omega, \mathcal{B}) \rightarrow\left(\mathbb{Z}^{+}, 2^{\mathbb{Z}^{+}}\right)$, and $\forall\{k\} \in 2^{\mathbb{Z}^{+}}, \tau^{-1}(\{k\})=\{\omega: \tau(\omega)=k\}=$ $\left\{\omega: S_{0}, S_{1}, \ldots, S_{k-1} \leq 0, S_{k}>0\right\} \in \mathcal{B}$ since S is measurable.
So τ is a random variable.
(2) Note $S_{\tau}:(\Omega, \mathcal{B}) \mapsto(\mathbb{R}, \mathcal{B}(\mathbb{R}))$, and $\forall(a, b] \in \mathcal{B}(\mathbb{R})$,

$$
\begin{aligned}
S_{\tau}^{-1}((a, b]) & =\left\{\omega: S_{\tau}(\omega) \in(a, b]\right\} \\
& =\sum_{k}\left\{\omega: S_{\tau}(\omega) \in(a, b]\right\} \cap\{\omega: \tau(\omega)=k\} \\
& =\sum_{k}\left\{\omega: S_{k}(\omega) \in(a, b]\right\} \cap\{\omega: \tau(\omega)=k\} .
\end{aligned}
$$

Now $\left\{\omega: S_{k}(\omega) \in(a, b]\right\} \in \mathcal{B}$ since S_{k} is measurable, and $\{\omega: \tau(\omega)=k\} \in \mathcal{B}$ since τ is measurable, so $S_{\tau}^{-1}((a, b]) \in \mathcal{B}$, therefore S_{τ} is a random variable. Or, you may use a one line proof: $S_{\tau}=S_{k} 1_{[\tau=k]}$.
23.(3') Suppose $\left\{X_{1}, \ldots X_{n}\right\}$ are random variables on the probability space (Ω, \mathcal{B}, P) such that

$$
P[\text { Ties }]:=P\left\{\cup_{i \neq j, 1 \leq i, j \leq n}\left[X_{i}=X_{j}\right]\right\}=0 .
$$

Define the relative rank R_{n} of X_{n} among $\left\{X_{1}, \ldots, X_{n}\right\}$ to be

$$
R_{n}=\left\{\begin{array}{cc}
\sum_{i=1}^{n} 1_{\left[X_{i} \geq X_{n}\right]}, & \text { on }[\text { Ties }]^{c}, \\
17, & \text { on }[\text { Ties }] .
\end{array}\right.
$$

Prove R_{n} is a random variable.

Proof:
$R_{n}:(\Omega, \mathcal{B}(\Omega)) \rightarrow\left(\Omega^{\prime}, \mathcal{B}^{\prime}\right)$ where $\Omega^{\prime}=\{1, \ldots, n\} \cup\{17\}, \mathcal{B}^{\prime}=\mathcal{B}\left(\Omega^{\prime}\right)$.
$\forall\{k\} \in \mathcal{B}^{\prime}, R_{n}^{-1}(\{k\})=\{[$ Ties $\left.] \cap[k=17]\} \cup\left\{[\text { Ties }]^{c} \cap\left[\sum_{i=1}^{n} 1_{\left[X_{i} \geq X_{n}\right]}\right]=k\right]\right\}$, and every component here is measurable.

Or, you may use a one line proof: $R_{n}=\left[\sum_{i=1}^{n} 1_{\left[X_{i} \geq X_{n}\right]}\right] 1_{[\text {Ties }]^{c}}+17 \cdot 1_{[\text {Ties }]}$.

