Stat581 HW4 Solutions

2.(3') Let $(\Omega, \mathcal{B}, P) = ((0, 1], \mathcal{B}(0, 1], \lambda)$ where λ is a Lebesgue measure. Define

$$X_1(\omega) = 0, \forall \omega \in \Omega,$$

$$X_2(\omega) = 1_{1/2}(\omega),$$

$$X_3(\omega) = 1_Q(\omega)$$

where $\mathbb{Q} \subset (0, 1]$ are the rational numbers in (0, 1]. Note

$$P[X_1 = X_2 = X_3 = 0] = 1$$

and give

 $\sigma(X_i), i = 1, 2, 3.$

(1)

$$\Omega' = \{0\}, \mathcal{B}' = \sigma(\{0\}) = \{\emptyset, \{0\}\}$$
$$X_1^{-1}(\emptyset) = \emptyset, X_1^{-1}(\{0\}) = \Omega,$$
$$\sigma(X_1) = \{X_1^{-1}(B) : B \in \mathcal{B}'\} = \{\emptyset, \Omega\} = \{\emptyset, (0, 1]\}.$$

(2)

$$\Omega' = \{0, 1\}, \mathcal{B}' = \sigma(\{0, 1\}) = \{\emptyset, \{0, 1\} \{0\}, \{1\}\}$$
$$X_2^{-1}(\emptyset) = \emptyset, X_2^{-1}(\{0, 1\}) = \Omega, X_2^{-1}(\{0\}) = \Omega \setminus \{1/2\}, X_2^{-1}(\{1\}) = \{1/2\}$$
$$\sigma(X_2) = \{X_2^{-1}(B) : B \in \mathcal{B}'\} = \{\emptyset, \Omega, \Omega \setminus \{1/2\}, \{1/2\}\}.$$

(3)

$$\Omega' = \{0, 1\}, \mathcal{B}' = \sigma(\{0, 1\}) = \{\emptyset, \{0, 1\}, \{0\}, \{1\}\}\$$

$$X_3^{-1}(\emptyset) = \emptyset, X_3^{-1}(\{0,1\}) = \Omega, X_3^{-1}(\{0\}) = \mathbb{Q}^c, X_3^{-1}(\{1\}) = \mathbb{Q}$$
$$\sigma(X_3) = \{X_3^{-1}(B) : B \in \mathcal{B}'\} = \{\emptyset, \Omega, \mathbb{Q}^c, \mathbb{Q}\}.$$

3.(2') Suppose $f : \mathbb{R}^k \to \mathbb{R}$, and $f \in \mathcal{B}(\mathbb{R}^k)/\mathcal{B}(\mathbb{R})$. Let $X_1, ..., X_k$ be random variables on (Ω, \mathcal{B}) . Then

$$f(X_1, ..., X_k) \in \sigma(X_1, ..., X_k).$$

Proof:

Let $\mathbb{X} = (X_1, ..., X_k)$, then \mathbb{X} is a random vector $(\Omega, \mathcal{B}) \mapsto (\mathbb{R}^k, \mathcal{B}(\mathbb{R}^k))$ since $X_1, ..., X_k$ are random variables. So $\sigma(\mathbb{X}) = \mathbb{X}^{-1}(\mathcal{B}(\mathbb{R}^k)) \subset \mathcal{B}$. Since $f \in \mathcal{B}(\mathbb{R}^k)/\mathcal{B}(\mathbb{R}), f(\mathbb{X})$ is a random variable $(\Omega, \mathcal{B}) \mapsto (\mathbb{R}, \mathcal{B}(\mathbb{R}))$, and $\sigma(f(\mathbb{X})) = (f \circ \mathbb{X})^{-1}(\mathcal{B}(\mathbb{R})) = \mathbb{X}^{-1}(f^{-1}(\mathcal{B}(\mathbb{R})))$. At the same time, since $f \in \mathcal{B}(\mathbb{R}^k)/\mathcal{B}(\mathbb{R})$, f itself is a random variable, and $\sigma(f) = f^{-1}(\mathcal{B}(\mathbb{R})) \subset \mathcal{B}(\mathbb{R}^k)$. Therefore, $\mathbb{X}^{-1}(f^{-1}(\mathcal{B}(\mathbb{R}))) \subset \mathbb{X}^{-1}(\mathcal{B}(\mathbb{R}^k))$. So, $f(X_1, ..., X_k) = f(\mathbb{X}) \in \mathcal{A}$.

$$\sigma(\mathbb{X}) = \sigma(X_1, ..., X_k).$$

8.(3') Let X and Y be random variables and let $A \in \mathcal{B}$. Prove that the function

$$Z(\omega) = \begin{cases} X(\omega), & \text{if } \omega \in A \\ Y(\omega), & \text{if } \omega \in A^c \end{cases}$$

is a random variable.

Proof:

It's easy to show that: if X and Y are random variables, then XY and

X + Y are also random variables. Now 1_A and 1_{A^c} are random variables, and $Z = X 1_A + Y 1_{A^c}$.

9.(3') Suppose that $\{B_n, n \ge 1\}$ is a countable partition of Ω and define $\mathcal{B} = \sigma(B_n, n \ge 1)$. Show a function $X : \Omega \mapsto (-\infty, \infty]$ is \mathcal{B} -measurable iff X is of the form

$$X = \sum_{i=1}^{\infty} c_i \mathbb{1}_{B_i},$$

for constants $\{c_i\}$.(What is \mathcal{B} ?)

Proof:

"⇐"

Note that X is the limit of the summation of random variables $c_i 1_{B_i}$, and in each component, both c_i and 1_{B_i} are \mathcal{B} -measurable, therefore every $c_i 1_{B_i}$ is \mathcal{B} -measurable, hence X is \mathcal{B} -measurable.

Or,

$$\begin{aligned} \forall (a,b] \subset \mathbb{R}, X^{-1}((a,b]) &= X^{-1}(\{c_i : \sum c_i 1_{B_i} \in (a,b]\}) \\ &= \cup (B_i : \sum c_i 1_{B_i} \in (a,b]) \in \sigma(B_n). \end{aligned}$$

 \Rightarrow

By contradiction. Suppose X is not of this form, then

$$\exists B_i = B_{i1} + B_{i2}, s.t. X(\omega) > c_i, \forall \omega \in B_{i2}$$
$$X(\omega) \le c_i, \forall \omega \in B_{i1}$$

Then, $\exists (c_i, c'_i), X^{-1}(c_i, c'_i) = B_{i2} \notin \sigma(B_n)$, therefore X is not \mathcal{B} -measurable.

12.(3') Show that a monotone real function is measurable.

Proof:

Let $f : (a, b] \to (c, d], (a, b, c, d \in \mathbb{R}$ and can be $\pm \infty$) be monotone, then inverse f exists and is unique. And it's easy to show that $\forall (c_i, d_i] \subset (c, d], f^{-1}((c_i, d_i]) = (a_i, b_i] \in \mathcal{B}((a, b])$. Therefore, $\forall C = \cup (c_i, d_i] \in \mathcal{B}((c, d]),$ $f^{-1}(C) = f^{-1}(\cup (c_i, d_i]) = \cup f^{-1}((c_i, d_i]) = \cup (a_i, b_i] \in \mathcal{B}((a, b])$, hence f is $\mathcal{B}((a, b])$ -measurable.

22.(3') Suppose $\{X_n, n \ge 1\}$ are random variables on the probability space (Ω, \mathcal{B}, P) and define the induced random walk by

$$S_0 = 0, S_n = \sum_{i=1}^n X_i, n \ge 1.$$

Let

$$\tau := \inf\{n > 0 : S_n > 0\}$$

be the first updoing ladder time. Prove τ is a random variable. Assume we know $\tau(\omega) < \infty$ for all $\omega \in \Omega$. Prove S_{τ} is a random variable.

Proof:

(1) Let $S = (S_0, S_1, ..., S_n)$, then $S : (\Omega, \mathcal{B}) \mapsto (\mathbb{R}^{n+1}, \mathcal{B}(\mathbb{R}^{n+1}))$ is measurable. Now $\tau : (\Omega, \mathcal{B}) \to (\mathbb{Z}^+, 2^{\mathbb{Z}^+})$, and $\forall \{k\} \in 2^{\mathbb{Z}^+}, \tau^{-1}(\{k\}) = \{\omega : \tau(\omega) = k\} = \{\omega : S_0, S_1, ..., S_{k-1} \leq 0, S_k > 0\} \in \mathcal{B}$ since S is measurable. So τ is a random variable. (2) Note $S_{\tau} : (\Omega, \mathcal{B}) \mapsto (\mathbb{R}, \mathcal{B}(\mathbb{R}))$, and $\forall (a, b] \in \mathcal{B}(\mathbb{R})$,

$$S_{\tau}^{-1}((a,b]) = \{\omega : S_{\tau}(\omega) \in (a,b]\}$$
$$= \sum_{k} \{\omega : S_{\tau}(\omega) \in (a,b]\} \cap \{\omega : \tau(\omega) = k\}$$
$$= \sum_{k} \{\omega : S_{k}(\omega) \in (a,b]\} \cap \{\omega : \tau(\omega) = k\}.$$

Now $\{\omega : S_k(\omega) \in (a, b]\} \in \mathcal{B}$ since S_k is measurable, and $\{\omega : \tau(\omega) = k\} \in \mathcal{B}$ since τ is measurable, so $S_{\tau}^{-1}((a, b]) \in \mathcal{B}$, therefore S_{τ} is a random variable. Or, you may use a one line proof: $S_{\tau} = S_k \mathbb{1}_{[\tau=k]}$.

23.(3') Suppose $\{X_1, ..., X_n\}$ are random variables on the probability space (Ω, \mathcal{B}, P) such that

$$P[Ties] := P\{\bigcup_{i \neq j, 1 \le i, j \le n} [X_i = X_j]\} = 0.$$

Define the relative rank R_n of X_n among $\{X_1, ..., X_n\}$ to be

$$R_n = \begin{cases} \sum_{i=1}^n 1_{[X_i \ge X_n]}, & \text{on } [Ties]^c, \\ 17, & \text{on } [Ties]. \end{cases}$$

Prove R_n is a random variable.

Proof:

$$R_{n}: (\Omega, \mathcal{B}(\Omega)) \to (\Omega', \mathcal{B}') \text{ where } \Omega' = \{1, ..., n\} \cup \{17\}, \mathcal{B}' = \mathcal{B}(\Omega').$$

$$\forall \{k\} \in \mathcal{B}', R_{n}^{-1}(\{k\}) = \{[Ties] \cap [k = 17]\} \cup \{[Ties]^{c} \cap [\sum_{i=1}^{n} 1_{[X_{i} \geq X_{n}]}] = k]\},$$

and every component here is measurable.

Or, you may use a one line proof: $R_n = [\sum_{i=1}^n 1_{[X_i \ge X_n]}] 1_{[Ties]^c} + 17 \cdot 1_{[Ties]}.$