Stat581 HW5 Solutions

1.(3') Let B_{1}, \ldots, B_{n} be independent events. Show

$$
P\left(\bigcup_{i=1}^{n} B_{i}\right)=1-\prod_{i=1}^{n}\left(1-P\left(B_{i}\right)\right)
$$

Proof:

$$
\begin{aligned}
P\left(\bigcap_{i=1}^{n} B_{i}\right)=\prod_{i=1}^{n} P\left(B_{i}\right) & \Rightarrow P\left(\bigcap_{i=1}^{n} B_{i}^{c}\right)=\prod_{i=1}^{n} P\left(B_{i}^{c}\right) \\
& \Rightarrow P\left(\left[\bigcup_{i=1}^{n} B_{i}\right]^{c}\right)=\prod_{i=1}^{n}\left(1-P\left(B_{i}\right)\right) \\
& \Rightarrow P\left(\bigcup_{i=1}^{n} B_{i}\right)=1-\prod_{i=1}^{n}\left(1-P\left(B_{i}\right)\right)
\end{aligned}
$$

Note, B_{1}, \ldots, B_{n} are independent implies that $B_{1}^{c}, \ldots, B_{n}^{c}$ are also independent. You can prove this by letting $\mathcal{B}_{i}=\left\{\emptyset, B_{i}\right\}$, and prove \mathcal{B}_{i} are independent, by basic criterion, so are $\sigma\left(\mathcal{B}_{i}\right)$, and therefore B_{i}^{c} are independent. Or simply use inclusion-exclusion formula to prove.
2.(2') What is the minimum number of points a sample space must contain in order that there exist n independent events B_{1}, \ldots, B_{n}, none of which has probability zero or one?

Clearly, in order that there exist n independent events B_{1}, \ldots, B_{n}, none of which has probability zero or one, there must be at least 2^{n} points in the sample space, each one belongs to a single partition generated by B_{1}, \ldots, B_{n}.

Note, these strict inequalities hold:
$0=P(\emptyset)<P\left(\bigcap_{k=1}^{n} B_{k}\right)<\ldots<P\left(B_{i} \cap B_{j}\right)<P\left(B_{i}\right)<P(\Omega)=1, \forall i \in 1, \ldots, n$
4. $\mathbf{3}^{\prime}$) Suppose (Ω, \mathcal{B}, P) is the uniform probability space; that is, $([0,1], \mathcal{B}, \lambda)$ where λ is the uniform probability distribution. Define

$$
X(\omega)=\omega .
$$

(a) Does there exist a bounded random variable that is both independent of X and not constant almost surely?

No. Suppose Y is a bounded random variable. Since $X(\omega)=\omega, Y(\omega)=$ $Y(X(\omega))$, therefore Y is a function of X, hence Y is X-measurable, i.e., $\sigma(Y) \subset \sigma(X)$.

Suppose $Y \Perp X, \forall A \in \sigma(Y) \subset \sigma(X), P(A)=P(A A)=P(A)^{2}$, so $P(A)=0$ or 1 , therefore $\exists c \in[0,1]$, s.t. $F_{Y}(y)=\left\{\begin{array}{ll}0, & y<c \\ 1, & y \geq c\end{array}\right.$, i.e., $Y \stackrel{\text { a.s. }}{=} c$
(b) Define $Y=X(1-X)$. Construct a random variable Z which is not almost surely constant and such that Z and Y are independent.

Let $Z=\left\{\begin{array}{ll}0, & \omega \in[0,1 / 2] \\ 1, & \omega \in(1 / 2,1]\end{array}\right.$, clearly, Z is not almost surely constant. Now,

$$
\begin{aligned}
P(Y \leq y, Z \leq z) & =P(\{\omega: \omega(1-\omega) \leq y\} \cap\{\omega: Z(\omega) \leq z\}), \\
& =\left\{\begin{array}{c}
\frac{1}{2} P(Y \leq y), \quad z=0 \\
P(Y \leq y), \quad z=1
\end{array}\right. \\
& =P(Y \leq y) P(Z \leq z)
\end{aligned}
$$

So, $Y \Perp Z$.
5.(b)($\left.2^{\prime}\right)$ Suppose X is a random variable. If there exists a measurable

$$
g:(\mathbb{R}, \mathcal{B}(\mathbb{R})) \mapsto(\mathbb{R}, \mathcal{B}(\mathbb{R})),
$$

such that X and $g(X)$ are independent, then prove there exists $c \in \mathbb{R}$ such that

$$
P[g(X)=c]=1
$$

Proof:
Since $\sigma(g(X)) \subset \sigma(X)$, and $g(X) \Perp X$, from problem4, we know $\forall A \in$ $\sigma(g(X)), P(A)=0$ or 1 , and since $g:(\mathbb{R}, \mathcal{B}(\mathbb{R})) \mapsto(\mathbb{R}, \mathcal{B}(\mathbb{R}))$, therefore $\exists c \in$ \mathbb{R}, s.t., $P[g(X)=c]=1$. Here, $c=\sup \left\{x: F_{g(X)}(x)=P(g(X) \leq x)=0\right\}$.
7.(3') If A, B, C are independent events, show directly that both $A \cup B$ and $A \backslash B$ are independent of C.

Proof:
Either by inclusion-exclusion, or by basic criterion.
Note easy to show that $\{A, B, A \cap B\} \Perp C$, therefore $\sigma(A, B) \Perp C \Rightarrow$ $\{A \cup B\} \Perp C$ and $\{A \backslash B\} \Perp C$.
8.(2') If X and Y are independent random variables and f, g are measurable and real valued, why are $f(X)$ and $g(Y)$ independent?

Because $f(X) \in \sigma(X)$ and $g(Y) \in \sigma(Y)$.
9.(3') Suppose $\left\{A_{n}\right\}$ are independent events satisfying $P\left(A_{n}\right)<1$, for all n. Show

$$
P\left(\bigcup_{n=1}^{\infty} A_{n}\right)=1 \text { iff } P\left(A_{n} \text { i.o. }\right)=1
$$

Give an example to show that the condition $P\left(A_{n}\right)<1$ cannot be dropped.
Proof:
\Leftarrow

$$
\begin{aligned}
P\left(A_{n} \text { i.o. }\right)=1 & \Rightarrow P\left(\lim \sup _{\infty} A_{n}\right)=1 \\
& \Rightarrow \lim _{n \rightarrow \infty} P\left(\bigcup_{k=n}^{\infty} A_{k}\right)=1 \\
& \Rightarrow P\left(\bigcup_{k=1}^{\infty} A_{k}\right)=1
\end{aligned}
$$

\Rightarrow

$$
\begin{aligned}
P\left[\bigcup_{n=1}^{\infty} A_{n}\right]=1 & \Rightarrow P\left(\bigcap_{n=1}^{\infty} A_{n}^{c}\right)=0 \\
& \Rightarrow \prod_{k=1}^{n} P\left(A_{k}^{c}\right) \prod_{k=n+1}^{\infty} P\left(A_{k}^{c}\right)=0 \\
& \Rightarrow P\left(\bigcap_{k=n+1}^{\infty} A_{k}^{c}\right)=0 \\
& \Rightarrow P\left(\liminf A_{n}^{c}\right)=0 \\
& \Rightarrow P\left(\limsup A_{n}\right)=1 \\
& \Rightarrow P\left(A_{n} \text { i.o. }\right)=1
\end{aligned}
$$

Example: $A_{1}=\Omega$ and $A_{i}=\emptyset, \forall i \neq 1$.
13.(3') Let $\left\{X_{n}, n \geq 1\right\}$ be iid with $P\left[X_{1}=1\right]=p=1-P\left[X_{1}=0\right]$. What is the probability that the pattern $1,0,1$ appears infinitely often?

By hint, let $A_{k}=\left[X_{k}=1, X_{k+1}=0, X_{k+2}=1\right]$, easy to see that $A_{3 k-2}$ are independent, and $\sum_{k} P\left(A_{k}\right) \geq \sum_{k} P\left(A_{3 k-2}\right)=\lim _{k \rightarrow \infty} k p^{2}(1-p)=\infty$, so $P\left(A_{k}\right.$ i.o. $)=1$.
14.(3') In a sequence of independent Bernoulli random variables $\left\{X_{n}, n \geq\right.$ $1\}$ with

$$
P\left[X_{n}=1\right]=p=1-P\left[X_{n}=0\right],
$$

Let A_{n} be the event that a run of n consective 1's occurs between the 2^{n} and 2^{n+1} st trial. If $p \geq 1 / 2$, then there is probability 1 that infinitely many A_{n} occur.

Proof: Easy to see that A_{n} are independent. And $P\left(A_{n}^{c}\right) \leq\left(1-p^{n}\right)^{2^{n}-n+1} \leq$ $e^{-(2 p)^{n}+(n-1) p^{n}}$, so $P\left(A_{n}\right) \geq 1-e^{-(2 p)^{n}+(n-1) p^{n}}$, now note that $\sum_{n} e^{-\left(2^{n}-n+1\right) p^{n}}$ converges if $e^{-\left(2^{n+1}-n\right) p^{n+1}+\left(2^{n}-n+1\right) p^{n}}<1$, therefore when $p \geq 1 / 2, \sum_{n} P\left(A_{n}\right) \rightarrow$ ∞ as $n \rightarrow \infty$. By Borel 0-1 Law, $P\left(A_{n}\right.$ i.o. $)=1$.

