Stat581 HW6 Solutions

1.(2') Consider the triangle with vertices $(-1,0),(1,0),(0,1)$ and suppose $\left(X_{1}, X_{2}\right)$ is a random vector uniformly distributed on this triangle. Compute $E\left(X_{1}+X_{2}\right)$.

$$
\begin{aligned}
E\left(X_{1}+X_{2}\right) & =\int\left(X_{1}+X_{2}\right) P(d \omega) \\
& =\int_{S}\left(x_{1}+x_{2}\right) f\left(x_{1}, x_{2}\right) d\left(x_{1} \times x_{2}\right) \\
& =\int_{0}^{1} d x_{2} \int_{x_{2}-1}^{1-x_{2}}\left(x_{1}+x_{2}\right) d x_{1} \\
& =1 / 3
\end{aligned}
$$

2.(1') Argue without a computation that if $X \in L_{2}$ and $c \in \mathbb{R}$, then $\operatorname{Var}(c)=0$ and $\operatorname{Var}(X+c)=\operatorname{Var}(X)$.

Since $\operatorname{Var}(X)=E\left[(X-E(X))^{2}\right]$, the two equations $\operatorname{Var}(c)=0$ and $\operatorname{Var}(X+c)=\operatorname{Var}(X)$ can easily be explained by properties of expectation.
3.(3') Refer to Renyi's theorem 4.3.1 in Chapter 4. Let

$$
L_{1}:=\inf \left\{j \geq 2: X_{j} \text { is a record. }\right\}
$$

Check $E\left(L_{1}\right)=\infty$.
Proof:

$$
E\left(L_{1}\right)=\sum_{i \geq 2} i P\left(L_{1}=i\right)=\sum_{i \geq 2} \prod_{k=2}^{i-1}\left(1-\frac{1}{k}\right) \text { diverges }
$$

4.) (2') Let (X, Y) be uniformly distributed on the discrete points $(-1,0),(1,0),(0,1),(0,-1)$. Verify X, Y are not independent but $E(X Y)=$ $E(X) E(Y)$.

Proof:

$$
\begin{gathered}
P(X=0, Y=1)=1 / 4 \neq P(X=0) P(Y=1)=1 / 2 \times 1 / 4=1 / 8 \\
E(X Y)=E(X)=E(Y)=E(X) E(Y)=0
\end{gathered}
$$

Note, $\Perp \Rightarrow \perp$ but not vice versa.
$\mathbf{5 (c) . (2 ')}$ If X, Y are random variables with distribution function F, G which have no common discontinuities, then

$$
E(F(Y))+E(G(X))=1
$$

Interpret the sum of expectations on the left as a probability.
Proof:

$$
\begin{aligned}
E(F(Y))+E(G(X)) & =\int F(y) G(d y)+\int G(x) F(d x) \\
& =\int P(X \leq y) G(d y)+\int P(Y \leq x) F(d x) \\
& =E(P(X \leq Y))+E(P(Y \leq X)) \\
& =1
\end{aligned}
$$

Or, write as $\iint 1_{x \leq y} F(d x) G(d y)+\iint 1_{y \leq x} G(d y) F(d x)$ and by Fubini.
6. (4') Suppose $X \in L_{1}$ and A and A_{n} are events.
(a) Show

$$
\int_{[|X|>n]} X d P \rightarrow 0
$$

Proof: By DCT(or MCT, replacing the bounded condition with a monotonicity condition),

$$
\left.\begin{array}{l}
X\left(1_{[|X|>n]}\right) \rightarrow 0 \text { pointwisely } \\
X\left(1_{[|X|>n]}\right) \leq X \in L_{1}
\end{array}\right\} \Rightarrow E\left[X\left(1_{[|X|>n]}\right)\right] \rightarrow 0 \Rightarrow \int_{[|X|>n]} X d P \rightarrow 0 .
$$

(b) Show that if $P\left(A_{n}\right) \rightarrow 0$, then

$$
\int_{A_{n}} X d P \rightarrow 0
$$

Proof:

$$
\begin{aligned}
\int_{A_{n}}|X| d P & =\int_{A_{n} \cap[|X| \leq M]}|X| d P+\int_{A_{n} \cap[|X|>M]}|X| d P \\
& \leq \int_{A_{n} \cap[|X| \leq M]} M d P+\int_{[|X|>M]}|X| d P \\
& \leq M P\left(A_{n}\right)+\int_{[|X|>M]}|X| d P \\
& \rightarrow 0, \text { (note, we can always find M large enough when } n \rightarrow \infty)
\end{aligned}
$$

Therefore, $\int_{A_{n}} X d P \leq \int_{A_{n}}|X| d P \rightarrow 0$.
(c) Show

$$
\int_{A}|X| d P=0 \text { iff } P(A \cap[|X|>0])=0 .
$$

Proof:
\Rightarrow

$$
\begin{aligned}
\int_{A}|X| d P=0 & \Rightarrow \int_{A \cap[|X|>0]}|X| d P+\int_{A \cap[|X|=0]}|X| d P=0 \\
& \Rightarrow \int_{A \cap[|X|>0]}|X| d P=0 \\
& \Rightarrow \int_{A \cap[|X|>0]} \epsilon d P \leq 0, \exists \epsilon>0 \\
& \Rightarrow \epsilon P(A \cap[|X|>0]) \leq 0 \\
& \Rightarrow P(A \cap[|X|>0])=0 .
\end{aligned}
$$

$$
\begin{aligned}
& \Leftarrow \\
& \qquad \int_{A}|X| d P=\int_{A \cap[|X|>0]}|X| d P+\int_{A \cap[|X|=0]}|X| d P=\int_{A \cap[|X|>0]}|X| d P=0,
\end{aligned}
$$

the last equality is from (b), consider $A_{n}=A \cap[|X|>0]$.
10.(3') For $X \geq 0$, let

$$
X_{n}^{*}=\sum_{k=1}^{\infty} \frac{k}{2^{n}} 1_{\left[\frac{k-1}{2^{n}} \leq X \leq \frac{k}{\left.2^{n}\right]}\right.}+\infty 1_{[X=\infty]} .
$$

Show

$$
E\left(X_{n}^{*}\right) \downarrow E(X)
$$

Proof:
Note that $X_{n}^{*} \downarrow X$, so we want to use MCT.
(1) If $X<\infty$, i.e., $X<C$, then $X_{n}^{*}(\omega)=\sum_{k=1}^{\left\ulcorner C 2^{n}\right\urcorner} \frac{k}{2^{n}} 1_{\left[\frac{k-1}{n^{n}} \leq X(\omega) \leq \frac{k}{\left.2^{n}\right]}\right.}$, and $\forall \omega, X_{n}^{*}(\omega)-X(\omega) \leq 2^{-n} \downarrow 0$, also, note that $X_{n}^{*} \in L_{1}$ since $X_{n}^{*} \leq X+1$. Therefore, MCT applies, $E\left(X_{n}^{*}\right) \downarrow E(X)$.
(2) If $X=\infty$, then $X_{n}^{*}=\infty$, so $E\left(X_{n}^{*}\right) \downarrow E(X)$.
15.(3') Suppose X is a non-negtive random variable satisfying

$$
P(0 \leq X<\infty)=1
$$

Show

$$
\begin{aligned}
& \text { (a) } \lim _{n \rightarrow \infty} n E\left(\frac{1}{X} 1_{[X>n]}\right)=0, \\
& \text { (b) } \lim _{n \rightarrow \infty} n^{-1} E\left(\frac{1}{X} 1_{\left[X>n^{-1}\right]}\right)=0 .
\end{aligned}
$$

Proof:
(a)

$$
\lim _{n \rightarrow \infty} n E\left(\frac{1}{X} 1_{[X>n]}\right) \leq \lim _{n \rightarrow \infty} E\left(1_{[X>n]}\right)=\lim _{n \rightarrow \infty} P(X>n)=0 .
$$

(b)

$$
\begin{aligned}
n^{-1} E\left(\frac{1}{X} 1_{\left[X>n^{-1}\right]}\right) & =E\left(\frac{1}{n X} 1_{\left[\frac{1}{n X}<1\right]}\right) \\
& =E\left(\frac{1}{n X} 1_{\left[0<\frac{1}{n X} \leq M\right]}\right)+E\left(\frac{1}{n X} 1_{\left[M<\frac{1}{n X}<1\right]}\right) \\
& \leq M+P\left(M<\frac{1}{n X}<1\right)
\end{aligned}
$$

Now, choose M to be small enough, then first term $\rightarrow 0$, and for fixed M, second term also $\rightarrow 0$ as $n \rightarrow \infty$.

