
Stat581 HW6 Solutions

1.(2’) Consider the triangle with vertices (-1,0),(1,0),(0,1) and suppose

(X1, X2) is a random vector uniformly distributed on this triangle. Compute

E(X1 + X2).

E(X1 + X2) =

∫
(X1 + X2)P (dω)

=

∫
S

(x1 + x2)f(x1, x2)d(x1 × x2)

=

∫ 1

0

dx2

∫ 1−x2

x2−1

(x1 + x2)dx1

= 1/3

2.(1’) Argue without a computation that if X ∈ L2 and c ∈ R, then

V ar(c) = 0 and V ar(X + c) = V ar(X).

Since V ar(X) = E[(X − E(X))2], the two equations V ar(c) = 0 and

V ar(X + c) = V ar(X) can easily be explained by properties of expectation.

3.(3’) Refer to Renyi’s theorem 4.3.1 in Chapter 4. Let

L1 := inf{j ≥ 2 : Xj is a record.}

Check E(L1) = ∞.

Proof:

E(L1) =
∑
i≥2

iP (L1 = i) =
∑
i≥2

i−1∏
k=2

(1− 1

k
) diverges.
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4.)(2’) Let (X, Y ) be uniformly distributed on the discrete points

(-1,0),(1,0),(0,1),(0,-1). Verify X, Y are not independent but E(XY ) =

E(X)E(Y ).

Proof:

P (X = 0, Y = 1) = 1/4 6= P (X = 0)P (Y = 1) = 1/2× 1/4 = 1/8

E(XY ) = E(X) = E(Y ) = E(X)E(Y ) = 0

Note, ⊥⊥⇒⊥ but not vice versa.

5(c).(2’) If X, Y are random variables with distribution function F, G

which have no common discontinuities, then

E(F (Y )) + E(G(X)) = 1.

Interpret the sum of expectations on the left as a probability.

Proof:

E(F (Y )) + E(G(X)) =

∫
F (y)G(dy) +

∫
G(x)F (dx)

=

∫
P (X ≤ y)G(dy) +

∫
P (Y ≤ x)F (dx)

= E(P (X ≤ Y )) + E(P (Y ≤ X))

= 1.

Or, write as
∫ ∫

1x≤yF (dx)G(dy) +
∫ ∫

1y≤xG(dy)F (dx) and by Fubini.

6.(4’) Suppose X ∈ L1 and A and An are events.

(a) Show ∫
[|X|>n]

XdP → 0.
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Proof: By DCT(or MCT, replacing the bounded condition with a monotonic-

ity condition),

X(1[|X|>n]) → 0 pointwisely
X(1[|X|>n]) ≤ X ∈ L1

}
⇒ E[X(1[|X|>n])] → 0 ⇒

∫
[|X|>n]

XdP → 0.

(b) Show that if P (An) → 0, then∫
An

XdP → 0.

Proof:∫
An

|X|dP =

∫
An∩[|X|≤M ]

|X|dP +

∫
An∩[|X|>M ]

|X|dP

≤
∫

An∩[|X|≤M ]

MdP +

∫
[|X|>M ]

|X|dP

≤ MP (An) +

∫
[|X|>M ]

|X|dP

→ 0, (note, we can always find M large enough when n →∞)

Therefore,
∫

An
XdP ≤

∫
An
|X|dP → 0.

(c) Show ∫
A

|X|dP = 0 iff P (A ∩ [|X| > 0]) = 0.

Proof:

⇒ ∫
A

|X|dP = 0 ⇒
∫

A∩[|X|>0]

|X|dP +

∫
A∩[|X|=0]

|X|dP = 0

⇒
∫

A∩[|X|>0]

|X|dP = 0

⇒
∫

A∩[|X|>0]

εdP ≤ 0,∃ε > 0

⇒ εP (A ∩ [|X| > 0]) ≤ 0

⇒ P (A ∩ [|X| > 0]) = 0.
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⇐∫
A

|X|dP =

∫
A∩[|X|>0]

|X|dP +

∫
A∩[|X|=0]

|X|dP =

∫
A∩[|X|>0]

|X|dP = 0,

the last equality is from (b), consider An = A ∩ [|X| > 0].

10.(3’) For X ≥ 0, let

X∗
n =

∞∑
k=1

k

2n
1[ k−1

2n ≤X≤ k
2n ] +∞1[X=∞].

Show

E(X∗
n) ↓ E(X).

Proof:

Note that X∗
n ↓ X, so we want to use MCT.

(1) If X < ∞, i.e., X < C, then X∗
n(ω) =

∑pC2nq
k=1

k
2n 1[ k−1

2n ≤X(ω)≤ k
2n ], and

∀ω,X∗
n(ω) − X(ω) ≤ 2−n ↓ 0, also, note that X∗

n ∈ L1 since X∗
n ≤ X + 1.

Therefore, MCT applies, E(X∗
n) ↓ E(X).

(2) If X = ∞, then X∗
n = ∞, so E(X∗

n) ↓ E(X).

15.(3’) Suppose X is a non-negtive random variable satisfying

P (0 ≤ X < ∞) = 1.

Show

(a) lim
n→∞

nE(
1

X
1[X>n]) = 0,

(b) lim
n→∞

n−1E(
1

X
1[X>n−1]) = 0.

Proof:

4



(a)

lim
n→∞

nE(
1

X
1[X>n]) ≤ lim

n→∞
E(1[X>n]) = lim

n→∞
P (X > n) = 0.

(b)

n−1E(
1

X
1[X>n−1]) = E(

1

nX
1[ 1

nX
<1])

= E(
1

nX
1[0< 1

nX
≤M ]) + E(

1

nX
1[M< 1

nX
<1])

≤ M + P (M <
1

nX
< 1)

Now, choose M to be small enough, then first term → 0, and for fixed M,

second term also → 0 as n →∞.
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