STRUCTURES

Algebras and σ-algebras

Set operations and closure
Set class (family) is closed under set operation if the result of the operation on sets from this class also belongs to this class.

Countable union

$$
\cup_{j=1}^{\infty} A_{j}
$$

What classes (families) of sets might be closed under countable union?

1. Consider set Ω its power set 2^{Ω}. 2^{Ω} is closed under countable union since any union of subsets of Ω is a subset of Ω.
2. Consider the family of finite unions of intervals of the form $[a, b)$, where $a, b \in R$. This family is not closed under countable union.

Arbitrary union

$$
\cup_{t \in T} A_{t}
$$

1. Discrete sets (sets of isolated points) are usually closed under countable union, but not closed if $\#\{T\}=\mathfrak{C}$.
2. More generally, open sets are closed under arbitrary union (by definition), but closed sets not necessarily (these latter are closed under arbitrary intersection).

Definition 1.5.2. A field (=algebra) \mathcal{A} is a non-empty class of subsets of Ω closed under finite union, intersection, and complementation. Minimum set of postulates

1. $\Omega \in \mathcal{A}$
2. $A \in \mathcal{A} \Rightarrow A^{c} \in \mathcal{A}$
3. $A, B \in \mathcal{A} \Rightarrow A \cup B \in \mathcal{A}$

Some comments ...

Definition 1.5.3. A σ-field (σ-algebra) \mathcal{B} is a non-empty class of subsets of Ω closed under countable union, countable intersection, and complementation. Minimum set of postulates

1. $\Omega \in \mathcal{B}$
2. $A \in \mathcal{B} \Rightarrow A^{c} \in \mathcal{B}$
3. $B_{1}, B_{2}, \ldots, B_{i}, \ldots \in \mathcal{B} \Rightarrow \cup_{i=1}^{\infty} B_{i} \in \mathcal{B}$

Examples: Power set, trivial σ-field, countable/co-countable...
Consider the family of finite unions of intervals of the form $[a, b)$, where $a, b \in(0,1]$. It is a field but not a σ-field.

Minimal $\sigma-$ fields $=\sigma$-fields generated by a class of sets

Theorem ($w /$ o proof). Family of families $\left\{C_{t}, t \in T\right\}$ such that each family C_{t} closed under operation O. Then

$$
C=\cap_{t \in T} C_{t} \text { is closed under } O
$$

\Rightarrow Arbitrary intersection of σ-fields is a σ-field!

Proposition 1.6.1. There exists a minimal σ-field $\sigma(C)$ containing a given class C of subsets of Ω.

Proof

$$
\begin{aligned}
\mathfrak{K} & =\{\mathcal{B}: \mathcal{B} \text { is a } \sigma-\text { field, } C \subseteq \mathcal{B}\} \\
& \Rightarrow \text { and } \cap_{\mathcal{B} \in \mathfrak{K}} \mathcal{B} \text { is a } \sigma-\text { field }
\end{aligned}
$$

Is $\cap_{\mathcal{B} \in \mathfrak{K}} \mathcal{B}=\sigma(C)$?
Suppose $\exists \sigma^{\prime}$ (a $\sigma-$ field):

$$
C \subseteq \sigma^{\prime} \subseteq \cap_{\mathcal{B} \in \mathfrak{R}} \mathcal{B}
$$

But $C \subseteq \sigma^{\prime} \Rightarrow \sigma^{\prime} \in \mathfrak{K} \Rightarrow \cap_{\mathcal{B} \in \mathfrak{K}} \mathcal{B} \subseteq \sigma^{\prime} \Rightarrow \cap_{\mathcal{B} \in \mathfrak{K}} \mathcal{B}=\sigma^{\prime}$

Borel sets on the real line

Suppose $\Omega=\mathbb{R}$

$$
C=\{(a, b],-\infty \leq a \leq b<\infty\}
$$

Define "the Borel sets of \mathbb{R} " as

$$
\mathcal{B}(\mathbb{R}):=\sigma(C)
$$

"Obvious properties"

$$
\begin{aligned}
\mathcal{B}(\mathbb{R}) & =\sigma\{(a, b],-\infty \leq a \leq b<\infty\}=\sigma\left(C^{(]}\right) \\
& =\sigma\{[a, b],-\infty \leq a \leq b<\infty\}=\sigma\left(C^{[]}\right) \\
& =\sigma\{[a, b),-\infty \leq a \leq b<\infty\}=\sigma\left(C^{[)}\right) \\
& =\sigma\{(a, b),-\infty \leq a \leq b<\infty\}=\sigma\left(C^{()}\right)
\end{aligned}
$$

give a sample proof ...

Also,

$$
\mathcal{B}(\mathbb{R}):=\sigma\left(C^{()}\right)=\sigma(\text { open sets })
$$

Proof is based on the following property
O is an open set on \mathbb{R}
$\Longrightarrow \quad O=\cup_{j=1}^{\infty} I_{j}$, where $\left\{I_{j}\right\}$ are disjoint open intervals

Therefore,

$$
\begin{aligned}
I_{j} & \in C^{()} \subset \sigma\left(C^{()}\right) \Longrightarrow \forall O=\cup_{j=1}^{\infty} I_{j} \in \sigma\left(C^{()}\right) \\
& \Longrightarrow \sigma(\text { open sets }) \subseteq \sigma\left(C^{()}\right)
\end{aligned}
$$

and on the other hand

$$
C^{()} \subseteq\{\text { open sets }\} \Longrightarrow \sigma\left(C^{()}\right) \subseteq \sigma(\text { open sets })
$$

Comparing Borel sets (self-study)

Suppose $\Omega_{0} \subset \Omega$; define a restriction of class C to subspace Ω_{0}

$$
C \cap \Omega_{0}:=C_{0}=\left\{A \cap \Omega_{0}: A \in C\right\}
$$

Theorem

$$
\sigma\left(C_{0}\right)=\sigma(C) \cap \Omega_{0}
$$

