
Statistics 581 MATHEMATICAL PROBABILITY I

STRUCTURES

Algebras and σ−algebras

Set operations and closure

Set class (family) is closed under set operation if the result of the

operation on sets from this class also belongs to this class.
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Countable union

∪∞

j=1Aj

What classes (families) of sets might be closed under countable union?

1. Consider set Ω its power set 2Ω. 2Ω is closed under countable

union since any union of subsets of Ω is a subset of Ω.

2. Consider the family of finite unions of intervals of the form [a, b),

where a, b ∈ R. This family is not closed under countable union.
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Arbitrary union

∪t∈T At

1. Discrete sets (sets of isolated points) are usually closed under

countable union, but not closed if #{T} = C.

2. More generally, open sets are closed under arbitrary union (by

definition), but closed sets not necessarily (these latter are closed

under arbitrary intersection).
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Definition 1.5.2. A field (=algebra) A is a non-empty class of subsets

of Ω closed under finite union, intersection, and complementation.

Minimum set of postulates

1. Ω ∈ A

2. A ∈ A ⇒ Ac ∈ A

3. A, B ∈ A ⇒ A ∪ B ∈ A

Some comments ...
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Definition 1.5.3. A σ−field (σ−algebra) B is a non-empty class of

subsets of Ω closed under countable union, countable intersection, and

complementation. Minimum set of postulates

1. Ω ∈ B

2. A ∈ B ⇒ Ac ∈ B

3. B1, B2, . . . , Bi, . . . ∈ B ⇒ ∪∞
i=1Bi ∈ B

Examples: Power set, trivial σ−field, countable/co-countable...

Consider the family of finite unions of intervals of the form [a, b),

where a, b ∈ (0, 1]. It is a field but not a σ−field.
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Minimal σ−fields = σ−fields generated by a class of sets

Theorem (w/o proof). Family of families {Ct, t ∈ T} such that each

family Ct closed under operation O. Then

C = ∩t∈T Ct is closed under O

⇒ Arbitrary intersection of σ−fields is a σ−field!
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Proposition 1.6.1. There exists a minimal σ−field σ(C) containing a

given class C of subsets of Ω.

Proof

K = {B : B is a σ − field, C ⊆ B}

⇒ and ∩B∈K B is a σ − field

Is ∩B∈KB =σ(C)?

Suppose ∃σ′ (a σ − field):

C ⊆ σ′ ⊆ ∩B∈KB

But C ⊆ σ′ ⇒ σ′ ∈ K ⇒ ∩B∈KB ⊆ σ′ ⇒ ∩B∈KB = σ′

�
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Borel sets on the real line

Suppose Ω = R

C = {(a, b],−∞ ≤ a ≤ b < ∞}

Define “the Borel sets of R” as

B(R) := σ(C)

Marek Kimmel Fall 2004



Statistics 581 MATHEMATICAL PROBABILITY I

“Obvious properties”

B(R) = σ{(a, b],−∞ ≤ a ≤ b < ∞} = σ(C( ])

= σ{[a, b],−∞ ≤ a ≤ b < ∞} = σ(C [ ])

= σ{[a, b),−∞ ≤ a ≤ b < ∞} = σ(C [ ))

= σ{(a, b),−∞ ≤ a ≤ b < ∞} = σ(C( ))

give a sample proof ...
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Also,

B(R) := σ(C( )) = σ( open sets )

Proof is based on the following property

O is an open set on R

=⇒ O = ∪∞

j=1Ij , where {Ij} are disjoint open intervals
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Therefore,

Ij ∈ C( ) ⊂ σ(C( )) =⇒ ∀O = ∪∞

j=1Ij ∈ σ(C( ))

=⇒ σ( open sets ) ⊆ σ(C( ))

and on the other hand

C( ) ⊆ {open sets} =⇒ σ(C( )) ⊆ σ( open sets )

�
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Comparing Borel sets (self-study)

Suppose Ω0 ⊂ Ω; define a restriction of class C to subspace Ω0

C ∩ Ω0 := C0 = {A ∩ Ω0 : A ∈ C}

Theorem

σ(C0) = σ(C) ∩ Ω0
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