1. Which of the following are statistics?
 a. All of these choices.
 b. median
 c. mean
 d. standard deviation
 e. the population mean
 f. the population standard deviation
 g. the sample proportion
 h. the population proportion, \(\pi \)

2. What is the distribution of the values of a statistic called?
 a. a sample
 b. a sampling distribution
 c. Central Limit Theorem
 d. a mean

3. Which of the following defines the sampling distribution of \(\bar{X} \)?
 a. It is the distribution of the sample means for all samples of the same size from the population.
 b. It is the probability distribution of a population mean.
 c. It is the probability distribution of the sample proportion based on a random sample of size \(n \).
 d. It is the probability distribution of the sample means for all possible sample sizes from the population.

4. When can the Central Limit Theorem be safely applied using the conservative rule?
 a. When \(n \) is greater than 30
Problem 1

Sample Test 2

4/22/05

1. b. When \(n \) is greater than or equal to 10
 c. When \(n \) is less than 10
 d. When \(n \) is greater than 20

5. Suppose a random sample of 15 snow throwers has a mean lifespan of 20 years. If it is known
 that \(\sigma = 4 \), what is the test statistic for testing \(H_0: \mu = 18 \) versus \(H_a: \mu < 18 \)?
 a. 0.026
 b. \(z = -1.94 \)
 c. –0.50
 d. \(t = 1.94 \) with \(df = 14 \)

6. What is the probability of a Type I error of a test \(H_0: \pi = 0.62 \) versus \(H_a: \pi = 0.62 \) if a 0.05
 level of significance is used for the test?
 a. 0.62
 b. 0.05
 c. The sample data is needed to determine the probability of a Type I error for a test.
 d. 0.10

7. Suppose 15 students pass an exam in a class of size 25. If the population proportion of
 students who pass the exam is 0.65, what are the mean and standard deviation for the
 sampling distribution of \(\hat{p} \)?
 a. \(\mu = 0.65, \sigma = 0.095 \)
 b. \(\mu = 0.05, \sigma = 0.0455 \)
 c. \(\mu = 0.60, \sigma = 0.095 \)
 d. \(\mu = 0.60, \sigma = 0.098 \)

8. When are two population means considered identical?
 a. when \(\overline{x}_1 = \overline{x}_2 \)
 b. when \(\sigma_1 = \sigma_2 \)
 c. when \(\mu_1 = \mu_2 \)
d. when $H_1 > H_2$

9. What is the test statistic for testing whether or not the true proportion of adults who visit a dentist regularly is indeed $\mu = 0.72$ or whether it is less? Suppose a random sample of 30 adults found that the proportion who visited a dentist regularly was $\hat{p} = 0.67$.

- a. $z = 0.61$
- b. $z = -0.6099$
- c. $z = -0.5824$
- d. $z = 7.8044$
10. What is the P-value for a test of $H_0 : \mu = 0.4$ versus $H_a : \mu \neq 0.4$ with a test statistic of $z = 1.8$?
 a. 1.928
 b. 0.9641
 c. 0.072
 d. 0.036

11. Which of the following is not true with regards to a P-value?
 a. A P-value indicates the strength of the evidence against the null hypothesis.
 b. A P-value does not tell us the probability that the null hypothesis is true.
 c. A P-value is a probability and must be between 0 and 1.
 d. The larger the P-value the more conclusive the evidence is against the null hypothesis.

12. If a computer is not available, what is a conservative estimate of the number of degrees of freedom for the t curve when computing a two-sample confidence interval for the difference between two independent population means if $n_1 = 40$ and $n_2 = 20$?
 a. 60
 b. 19
 c. 39
 d. 20
13. The following Minitab output shows a comparison in yield for two types of wheat planted by Farmer Fred. What can you conclude from the information given?
Two-sample T for Yield

<table>
<thead>
<tr>
<th>Field</th>
<th>N</th>
<th>Mean</th>
<th>StDev</th>
<th>SE Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6</td>
<td>2.940</td>
<td>0.303</td>
<td>0.12</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>2.960</td>
<td>0.373</td>
<td>0.15</td>
</tr>
</tbody>
</table>

Difference = μ1 - μ2

Estimate for difference: 0.020000
95% CI for difference: (-0.463483, 0.423483)
T-Test of difference = 0 (vs not =) T-Value = -0.10 P-Value = 0.921 DF = 9

a. There is no evidence to support a difference in the yield of the two types of wheat.

b. The hypotheses being tested are \(H_0 : \mu_1 - \mu_2 = 0 \) versus \(H_a : \mu_1 - \mu_2 > 0 \).

c. The test statistic is \(z = -0.10 \).

d. A 90% confidence interval for the difference in the mean yields is (-0.46, 0.42).
1. Fill in the blank. An unbiased statistic is a statistic whose mean value is __________ the population characteristic estimated.
 - [] a. equal to
 - [] b. half the value of
 - [] c. greater than
 - [] d. less than

2. What is the confidence level associated with an interval for estimating \(\hat{p} \) that has the form
 \[
 \left(\hat{p} - 1.96 \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}, \hat{p} + 1.96 \sqrt{\frac{\hat{p}(1-\hat{p})}{n}} \right)
 \]?
 - [] a. 5%
 - [] b. 95%
 - [] c. 90%
 - [] d. 1.96

3. Consider the Minitab output given below. What is the value for the sample proportion used to compute the 95% confidence interval?

<table>
<thead>
<tr>
<th>Sample</th>
<th>X</th>
<th>N</th>
<th>Sample p</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>38</td>
<td>70</td>
<td>???</td>
<td>(0.419421, 0.662552)</td>
</tr>
</tbody>
</table>

 - [] a. 0.6625
 - [] b. 0.542857
 - [] c. 38
 - [] d. 0.4194

4. What sample size should be used if we would like to estimate the mean age of the college students at a particular campus with 99% confidence? We would also like to be accurate within 3 years and we will assume the population is normally distributed with a standard deviation of 4.5 years.

 - [] a. A sample size of at least 14 should be used.
 - [] b. A sample size of at least 9 should be used.
 - [] c. A sample size of at least 15 should be used.
d. A sample size of at least 26 should be used.

5. How are t distributions distinguished from one another?
 a. their standard deviation
 b. All t distributions are exactly the same.
 c. their mean
 d. their degrees of freedom

6. What is a point estimate for the population mean of GPA based on the Minitab output below from a random sample of data from the population?

 One-Sample T: GPA

 Variable N Mean StDev SE Mean 99% CI
 GPA 200 2.63000 0.58033 0.04104 (2.52328, 2.73672)

 a. 2.63
 b. (2.52328, 2.73672)
 c. 0.58
 d. 200

7. Which of the following is the test statistic for a hypothesis of a population mean if the population standard deviation is unknown?

 a. $z = \frac{\bar{X} - \mu_{hypothesized}}{\sigma / \sqrt{n}}$
 b. $t = \frac{\bar{X} - \mu_{hypothesized}}{\sigma / \sqrt{n}}$, df=n-2
 c. $t = \frac{\bar{X} - \mu_{hypothesized}}{s / \sqrt{n}}$, df=n-1
8. Which of the following is the correct formula for constructing a confidence interval for \(\mu \) when \(\sigma \) is unknown and either the sample size is large or the population distribution is normal?

a. \(\bar{x} \pm z \text{ critical value} \frac{s}{\sqrt{n}} \)

b. \(p \pm z \text{ critical value} \sqrt{p(1-p)} \frac{1}{\sqrt{n}} \)

c. \(\bar{x} \pm z \text{ critical value} \frac{\sigma}{\sqrt{n}} \)

d. \(\mu \pm z \text{ critical value} \frac{\sigma}{\sqrt{n}} \)
9. Suppose the \(P \)-value equals 0.09 for testing whether grocery stores stocked on average more than 30 varieties of potato chips. Which of the following conclusions would be correct for testing the \(H_0: \mu = 30 \) versus \(H_a: \mu > 30 \) hypotheses?

- It can be concluded that stores stock more than 30 varieties on average using the \(\alpha = 0.01 \) significance level.
- It can be concluded that stores stock more than 30 varieties on average using the \(\alpha = 0.05 \) significance level.
- It can be concluded that on average stores do not stock more than 30 varieties using the \(\alpha = 0.10 \) significance level.
- It can be concluded that on average stores do not stock more than 30 varieties using the \(\alpha = 0.05 \) significance level.

10. Which of the following is the correct null hypothesis for testing whether two population means are the same?

- \(H_0: \mu_1 - \mu_2 = 0 \)
- \(H_0: \bar{x}_1 - \bar{x}_2 = 0 \)
- \(H_0: \mu_1 - \mu_2 \neq 0 \)
- \(H_0: \mu_1 - \mu_2 = 1 \)

11. If two independent random samples gave the following information, what would be the \(t \) value for testing that the population means are identical? Assume the populations are approximately normal.

\[
\begin{align*}
\text{Sample A:} & \quad n_A = 10, \bar{x}_A = 10, s_A = 5 \\
\text{Sample B:} & \quad n_B = 20, \bar{x}_B = 12, s_B = 6
\end{align*}
\]

- \(t = 2.0 \)
- \(t = -0.96 \)
- \(t = 5.79 \)
- \(t = -2.24 \)

12. What can be concluded from the following Minitab output in a study the heights of six randomly chosen first graders at the beginning of the school year (September) and the end of the school year (June)?

Paired T for height in June - height in September
Since the mean difference is 1.45 we can conclude that students grown on average 1.45 inches per year and thus there is a difference between mean heights of the students at the beginning of the school year and the mean height of students at the end of the school year at the $\alpha=0.01$ level.

The data support the theory that there is not a difference between mean heights of the

a. students at the beginning of the school year and the mean height of students at the end of the school year at the $\alpha=0.05$ level.

The data support the theory that there is a difference between mean heights of the

b. students at the beginning of the school year and the mean height of students at the end of the school year at the $\alpha=0.05$ level.

c. students at the beginning of the school year and the mean height of students at the end of the school year at the $\alpha=0.01$ level.

The data support the theory that there is a difference between mean heights of the

d. students at the beginning of the school year and the mean height of students at the end of the school year at the $\alpha=0.01$ level.

13. What is the formula used to compute?

a. It is the test statistic for comparing two population proportions.

b. It is the standard deviation used when constructing a confidence interval for $\pi_1=\pi_2$.

c. It is the pooled standard deviation for two proportions.

d. It is the statistic for estimating the common population proportion when $\pi_1=\pi_2$.

$$p_c = \frac{n_1p_1 + n_2p_2}{n_1 + n_2}$$