On Estimating Survival Functions Under Stochastic Order

Juan Gallegos1, Daisy (Yan) Huang2, Thien T. Nguyen3, and Gregory Schrage4

1University of Houston Downtown, 2University of California, 3University of California, San Diego, 4Wabash College

Abstract

Let \hat{H}, \tilde{G}, and \hat{H} be survival functions satisfying the constraint $\hat{F} \leq \hat{H} \leq \tilde{G}$. Lee, Yan, and Shi (1999) had developed an algorithm to estimate the survival function \hat{H} when \hat{F} and \tilde{G} are known. However, lacking a closed form of the estimator makes the investigations of the properties of the estimators difficult. In this paper, we propose alternative estimators for \hat{H} in the case where \hat{F} and \tilde{G} are known. However, lacking a closed form of the estimator makes the investigations of the properties of the estimator difficult. In this paper we propose alternative estimators for \hat{H} in the case where \hat{F} and \tilde{G} are known and in the case where they are unknown. The estimators are proved to be strongly uniformly consistent in both cases: the formulas for the bias and the mean squared error (MSE) are also derived. In the simulations the MSE of our estimators, when \hat{F} and \tilde{G} are known, are uniformly better than that of Lee, Yan, and Shi when the sample size is small (30): when the sample size is large, further investigation is needed.