Assignment 4, CAAM/STAT 581, due October 8

1. Let $\Omega = \Omega' = [0, \infty)$ and let $\mathcal{B} = \mathcal{B}' = \text{Borel}$ sets.

 a. For each of the following functions, find the σ-field it generates.

 (i) $h(x) = x$

 (ii) $h(x) = x^2$

 (iii) $h(x) = 1$ if x is rational, $h(x) = 0$ otherwise

 b. Give an example of a function h which is not measurable.

2. Let $\Omega = [0, \infty)$ and let \mathcal{C} be the class of singletons, $\mathcal{C} = \{\{x\}, x \geq 0\}$. Let $\mathcal{A} = \{B \subseteq \mathbb{R} : B \text{ is countable or } B^c \text{ is countable}\}$, the so called countable/co-countable σ-field (see book, p.13).

 a. Show that $\mathcal{A} = \sigma(\mathcal{C})$.

 b. Give an example of a Borel set which is not in \mathcal{A}.

 c. Let $\Omega' = [0, \infty)$ and let \mathcal{B}' be the Borel σ-field. Which of the following functions are measurable \mathcal{A}/\mathcal{B}'?

 (i) $h(x) = x$

 (ii) $h(x) = x$ if x is rational, $h(x) = 0$ otherwise

 (iii) $h(x) = 0$ if x is rational, $h(x) = x$ otherwise

 (iv) $h(x) = 1$ if $x \leq 1$, $h(x) = 0$ otherwise