ELEC 533 Homework 3

Due date: In class on Friday, September 28th, 2001

Instructor: Dr. Rudolf Riedi

11. We return to the simplified Roulette (without “zero”): \(\Omega = \{1, \ldots, 36\} \), \(P([n]) = 1/36 \) for all \(n \in \Omega \). There are 3 events we are interested in: \(E \) are the even numbers, \(R \) are the red numbers, and \(F \) are the numbers in the first row, i.e. \(F = \{1, 4, 7, 10, 13, 16, 19, 22, 25, 28, 31, 34\} \). Unlike true roulette let us assume that the red numbers are \(R = \{1, 2, 3, 7, 8, 12, 13, 14, 15, 19, 20, 24, 25, 26, 27, 31, 32, 36\} \):

\[
\begin{array}{cccccccccccc}
1 & 4 & 7 & 10 & 13 & 16 & 19 & 22 & 25 & 28 & 31 & 34 \\
2 & 5 & 8 & 11 & 14 & 17 & 20 & 23 & 26 & 29 & 32 & 35 \\
3 & 6 & 9 & 12 & 15 & 18 & 21 & 24 & 27 & 30 & 33 & 36
\end{array}
\]

Consider the random variables \(X, Y \) and \(Z \) given by:

\[
X(\omega) = \begin{cases}
4 & \text{if } \omega \text{ is even} \\
0 & \text{else}
\end{cases} \quad Y(\omega) = \begin{cases}
7 & \text{if } \omega \text{ is red} \\
0 & \text{else}
\end{cases} \quad Z(\omega) = \begin{cases}
-3 & \text{if } \omega \text{ is in the first row} \\
0 & \text{else}
\end{cases}
\]

(a) Compute the marginal distributions of \(X, Y \) and \(Z \), i.e., compute \(P[X = t], P[Y = t], P[Z = t] \) for all \(t \in \mathbb{R} \).

(b) Compute the pairwise joint marginal distributions of \((X,Y) \), \((X,Z) \) and \((Y,Z) \), i.e., compute \(P[X = s \text{ and } Y = t], P[X = s \text{ and } Z = t], P[Y = s \text{ and } Z = t] \) for all \(s, t \in \mathbb{R} \).

(c) Compute the full joint marginal distributions of \((X,Y,Z) \), i.e., compute \(P[X = s \text{ and } Y = t \text{ and } Z = u] \) for all \(s, t, u \in \mathbb{R} \).

(d) Are the random variables \(X \) and \(Y \) independent?

(e) Are the random variables \(X \) and \(Z \) independent?

(f) Are the random variables \(Y \) and \(Z \) independent?

(g) Are the random variables \(X, Y \) and \(Z \) independent?

(h) Let us assume that instead of the first row, \(Z(\omega) \) equals \(-3\) if the number \(\omega \) is in the third row, i.e. in \(\{3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36\} \). Of all the questions in 11a to 11g, exactly two have now a different answer. Which are they, and what are the new answers?

The main lesson of this problem is: Given three random variables, it is not enough to check pairwise independence to decide whether the three random variables are independent. Also, the joint distribution \(F_{XYZ} \) of three variables can not be computed from the pairwise joint distributions \(F_{XY}, F_{XZ} \) and \(F_{YZ} \) since different joint distribution functions \(F_{XYZ} \) can have the same pairwise joint marginals \(F_{XY}, F_{XZ} \) and \(F_{YZ} \).

12. Compute expectation and variance of the following random variables:

(a) \(X \approx \mathcal{U}(0, 2\pi) \): Uniform on \([0, 2\pi]\)

\[
f_X(x) = \begin{cases}
\frac{1}{2\pi} & \text{for } x \in [0, 2\pi], \\
0 & \text{otherwise.}
\end{cases}
\]

(b) \(X \approx \text{Cauchy} \):

\[
f_X(x) = \frac{1}{\pi(1 + x^2)} \quad \text{for every } x \in \mathbb{R}.
\]

(c) \(N \approx \text{Pois}(\lambda) \): Poisson with parameter \(\lambda > 0 \), which is given by

\[
P[N = n] = P_N(n) = \begin{cases}
e^{-\lambda} \frac{\lambda^n}{n!} & \text{for } n = 0, 1, 2, \cdots \\
0 & \text{otherwise.}
\end{cases}
\]
(d) $X \sim \mathcal{N}(\mu, \sigma^2)$: Gaussian or normal distribution with parameters $\sigma^2 > 0$ and $\mu \in \mathbb{R}$, which is given through the density

$$f_X(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right).$$

(You don’t have to show that this is indeed a probability density.)

(e) $X \sim \exp(\lambda)$: One sided exponential with parameter $\lambda > 0$, which is given through the density

$$f_X(x) = \begin{cases} \lambda e^{-\lambda x} & \text{for } x \geq 0 \\ 0 & \text{otherwise.} \end{cases}$$

13. Assume that X and Y are independent Gaussian random variables with zero mean and variance 1.

Compute the distribution of the random variable $Z = \exp\left(-\frac{X^2 + Y^2}{2}\right)$.

Hint: the transformation from Cartesian to polar coordinates goes as $x = r \sin(\phi)$, $y = r \cos(\phi)$, $dx\,dy = rd\rho\,d\phi$.

14. Given is a r.v. X which is uniformly distributed on $[0, \pi]$. We are interested in the r.v. $Y = g(X)$ where $g(t) = \sin(t)$.

(a) Compute $\mathbb{E}[\sin(X)] = \int \sin(x) f_X(x) \, dx$.

(b) Compute the pdf (density) f_Y of Y. (You might find it convenient to compute first the CDF F_Y of Y.)

(c) Compute $\mathbb{E}[Y] = \int y f_Y(y) \, dy$. Check whether you got the same answer as in (a).

15. (a) Let X be a continuous r.v. Using the definition of expectation and the rules of integration derive

$$\mathbb{E}[aX + b] = a \mathbb{E}[X] + b,$$

where a and b are constants. Also show that

$$\mathbb{E}[(aX + b)^2] = a^2 \mathbb{E}[X^2] + 2ab \mathbb{E}[X] + b^2.$$

Conclude that $\text{var}(aX + b) = a^2 \text{var}(X)$.

(b) Suppose $X \sim \mathcal{N}(\mu, \sigma^2)$ and $Y = aX + b$. The mean and variance of Y can be computed using 15a. Find the p.d.f of Y.

(c) Repeat 15b for $X \sim U(0, 2\pi)$.