next up previous
Next: About this document ... Up: No Title Previous: Solution to Exercise 7.14.

Solution to Exercise 7.22.

  Using the formula on p. 293, the large sample upper confidence bound for $\mu$ is

\begin{displaymath}
\bar{x}+ z_{\alpha} * s /\sqrt{n} .\end{displaymath}

As in all the formulae for confidence bounds for a proportion p, we replace $\bar{x}$ by $\hat{p}$ and s by $\sqrt{\hat{p}\hat{q}}$. We have

\begin{displaymath}
\hat{p} \; = \; .072 , \quad
\hat{q} \; = \; 1-.072 \; = \; 0.928 .\end{displaymath}

Also, z.01 = 2.326 (for 99% confidence). Thus, our 99% upper confidence bound is

\begin{displaymath}
\hat{p}+ z_{\alpha} * \sqrt{\hat{p}\hat{q}/n}
 \; = \; 
.072 + 2.326 * \sqrt{.072*.928/487}\end{displaymath}

\begin{displaymath}
\; = \; 
.072 + 0.09924492
 \; = \; 
.072 + 0.099
 \; = \; 0.171 .\end{displaymath}



Dennis Cox
3/24/2001