![]()
![]()
To do the analysis, I entered the data into minitab. In
order to use the cross classified data choice under
Stat
Tables, I had to unstack the columns
and make appropriate columns with the levels of the factors
using the Manip and Calc menus. The final data appears
below:
| Mgtype | M/M | M/F | F/F | Mgt2 | SxCmb | counts |
| 1 | 35 | 80 | 39 | 1 | 1 | 35 |
| 2 | 41 | 84 | 45 | 2 | 1 | 41 |
| 3 | 33 | 87 | 31 | 3 | 1 | 33 |
| 4 | 8 | 26 | 8 | 4 | 1 | 8 |
| 5 | 5 | 11 | 6 | 5 | 1 | 5 |
| 6 | 30 | 65 | 20 | 6 | 1 | 30 |
| 1 | 2 | 80 | ||||
| 2 | 2 | 84 | ||||
| 3 | 2 | 87 | ||||
| 4 | 2 | 26 | ||||
| 5 | 2 | 11 | ||||
| 6 | 2 | 65 | ||||
| 1 | 3 | 39 | ||||
| 2 | 3 | 45 | ||||
| 3 | 3 | 31 | ||||
| 4 | 3 | 8 | ||||
| 5 | 3 | 6 | ||||
| 6 | 3 | 20 |
Then I ran the minitab Tables with Frequencies in the ``counts'' column. The output appears below:
Tabulated Statistics
Rows: MGeno2 Columns: SexComb
1 2 3 All
1 22.73 51.95 25.32 100.00
23.03 22.66 26.17 23.55
5.35 12.23 5.96 23.55
35 80 39 154
2 24.12 49.41 26.47 100.00
26.97 23.80 30.20 25.99
6.27 12.84 6.88 25.99
41 84 45 170
3 21.85 57.62 20.53 100.00
21.71 24.65 20.81 23.09
5.05 13.30 4.74 23.09
33 87 31 151
4 19.05 61.90 19.05 100.00
5.26 7.37 5.37 6.42
1.22 3.98 1.22 6.42
8 26 8 42
5 22.73 50.00 27.27 100.00
3.29 3.12 4.03 3.36
0.76 1.68 0.92 3.36
5 11 6 22
6 26.09 56.52 17.39 100.00
19.74 18.41 13.42 17.58
4.59 9.94 3.06 17.58
30 65 20 115
All 23.24 53.98 22.78 100.00
100.00 100.00 100.00 100.00
23.24 53.98 22.78 100.00
152 353 149 654
Chi-Square = 6.463, DF = 10, P-Value = 0.775
Cell Contents --
% of Row
% of Col
% of Tbl
Count
The P-value of 0.775 says that these data do not have a statistically significant departure from the hypothesis that the distribution of sex combinations is homogeneous with respect to the different genotypes.