next up previous
Next: Problem 4. Up: No Title Previous: Problem 2.

Problem 3.

Let A and B be events with

\begin{displaymath}
P(A) \; = \; .5 , \quad
P(B) \; = \; .2 , \quad
P(A \cap B) \; = \; .1 .\end{displaymath}

(a) True or False: A and B are independent events. Justify your answer.

Solution: We check if the events satisfy the definition:

\begin{displaymath}
P(A) P(B) \; = \; .5 * .2 \; = \; .1 .\end{displaymath}

This equals $P(A \cap B)$, so ``Yes,'' the events are independent.

(b) Compute $P(A \cup B)$.

Solution: Using the formula in the Proposition on p. 62,

\begin{displaymath}
P(A \cup B) \; = \; P(A) + P(B) - P(A \cap B)
 \; = \; 
.5 + .2 - .1 \; = \; .6 .\end{displaymath}



Dennis Cox
3/25/2001