1 Solution to Exercise 2.1.

Problem Statement: Give timeseries plot and lagged scatterplots at lags 1 and 2 of

the given series. Guess at possible autocorrelation by inspecting the graphs.
Solution: I downloaded the file from the website into the working directory. Here

is the Splus code to read in the data and do the plots:

> reactor=scan("reactor.txt")

> tsplot(reactor)

> #Looks autocorrelated to me.

> length(reactor)

[1] 36

> plot(reactor[1:35] ,reactor[2:36] ,main="Lag 1 Scatterplot")
> #Clearly a positive correlation

> plot(reactor[1:34] ,reactor[3:36] ,main="Lag 2 Scatterplot")

> #maybe a positive correlation; not so obvious

Follow the following links to see postscript files of the plots

> output from tsplot(reactor);

> output from plot (reactor[1:35] ,reactor[2:36] ,main="Lag 1 Scatterplot");
> output from plot (reactor[1:34] ,reactor[3:36] ,main="Lag 2 Scatterplot");

Here is a Matlab session. For some reason, there were a bunch of extra '13”s in
my input which had to be eliminated. They must have been invisible end of line

characters left in the file after downloading to my PC.

z=dlmread(’c:\windows\profiles\dennis™1.cox\desktop\hwi\sdir\reactor.txt’);

size(z)



ans =

74 1

z(1:6)

ans =

200
13
202
13
208
13

z(70:74)

ans =

13
204
13
13
13

z=z(1:2:71);



size(z)

ans =

36 1

plot(z)

print -dbitmap
plot(z(1:35),z(2:36),’.7)
print -dbitmap
plot(z(1:34),z(3:36),’.")

print -dbitmap

Follow the following links to see JPEG files of the plots
& output from plot(z);

& output from plot(z(1:35),z(2:36),’.7);

& output from plot(z(1:34),z(3:36),’.7).



2 Solution to Exercise 2.2.

Problem Statement: Are the following valid autocorrelation functions?
(a) p1 = .8, po = .55, pr. =0 for k > 2.
(a) p1r = .8, po = .28, pr. = 0 for k > 2.

Solution: In order for a given sequence to be a valid autocorrelation function,
we must of course have pg = 1. We assume this is intended, as the value of pg is not

explicitly stated. Furthermore, as in section 2.1.3, all of the correlation matrices

L pt pr o o
P1 1 P1 - Pn=2
p2 ,01 1 P pn_3
= P,
L Pn-1 Pn-2 Pn-3 --- 1 ]

must be nonnegative definite (this is a correction to what’s in the book - they say
positive definite) for all n = 2, 3, .... This business with positive definiteness vs.
nonnegative definiteness is discussed in the notes below.

On p. 28 we see the conditions

-1< 1 < 17 (1)
-1< P2 < 17 (2)
1< 2o (3)

l—p?

Actually, all the < should be < (because it is only necessary that the determinants
that were evaluated to produce these be nonnegative, not positive). In fact, these

are necessary but not sufficient for the given function to be a valid autocorrelation



function since they only verify positivity of the determinants of P, for n = 1, 2, and
3, not all n. We can apply these conditions to the given potential autocorrelation
functions, and if any of the conditions fails, then we know the given functions are
not valid autocorrelation functions. However, even if all three conditions are verified,
then we cannot be sure that the given function is an autocorrelation function because
we don’t know about the sign of the determinant of P, for n > 3.

In both cases, clearly (1) and (2) hold, so there only remains to check (3). For
the putative autocorrelation in (a),

55 — .82

T— 2 = —.25,

so that one is OK by (3), and for (b), the Matlab computations are

format long

(.28-.8"2)/(1-.872)
ans =

-1.00000000000000

It looks like it fails the condition as stated in the book, but doesn’t fail it according
to the amended statement as above (and mentioned in class).

So at this point, we don’t really know more than when we started. It is quite
impossible to check the conditions that the determinant of P, is nonnegative for all
n. However, as mentioned in class, 7, is a valid autocovariance if and only if

9(f) = 0 + 2 ykcos(27 fk) (4)
k=1
is a nonnegative function. This is sort of alluded to in the book. About midway

down p. 28, “As will be shown in Section 2.2.3, all of these conditions can be brought



together in the definition of the spectrum.” However, all I can find in Section 2.2.3 is
the following statement in the first paragraph on p. 40, “Conversely, since the {~;}
from a positive definite sequence, it follows from Herglotz’s theorem ... that a unique
function p(f) exists such that ...” It doesn’t actually state that nonnegativeness of
the Fourier series transform as in (4) is equivalent to the nonnegative definiteness
property.

Anyway, applying this fancier condition to the first alleged autocorrelation func-

tion, the corresponding spectrum (or spectral density function) is
g(f) = 1 + 1.6cos(2nf) + 1.1 cos(4n f).

The plot of this function can be found at this link. This function clearly goes negative,

so we do not have a valid autocorrelation function. For the spectral density in part(b):

g(f) = 1 + 1.6cos(2mf) + .56 cos(4n f),

the corresponding plot is here. We see this one also goes negative in places, so we do
not have a valid autocorrelation function for this one either.

Comments: [ don’t expect you to understand necessarily what is going on with
this problem. The take home message is that it is nontrivial to determine if a given
function is an autocorrelation function unless it is computed from a process known
to be stationary.

Also, regarding the requirement of (strict) positive definiteness of all P,, vs. non-
negative definiteness, the latter is all that is needed, but if one of the determinants
is 0, that says there is some linear combination of finitely many values of the process
which is almost surely a constant (0 if the process mean is 0). This would mean
that the process if perfectly predictable given a large enough block of past observa-
tions. This never occurs in practice, so the condition as stated in the text is “safe”

in practice but not mathematically correct.



3 Solution to Exercise 2.3.

Problem Statement: Two stochastic processes Zy; and Za have autocovariance

functions

AT Y=05 m=2 =0 722

Z2t . Yo = 230, Y1 = —143, Y2 = .3, Y= 0, ] 2 3.

Calculate the autocovariance function for the process Zzy = Z1;+ 275 and verify that
it is a valid stationary process.

Solution: Of course, we have to assume something about the joint distribution
of the processes Z; and Zy;, so that we can compute Cov[Zy;, Zas] for all s and ¢. As
stated in lecture, just assume that the two processes are independent in the strictly
stationary case and uncorrelated in the second order case, i.e. that Cov[Zy;, Zo5] = 0
for all s and t. This is typical — if people don’t know (“people” meaning the statis-
tically unsophisticated), given a couple of marginal distributions and needing a joint
distribution, they assume independence. But this is just an exercise from a textbook
and [ assume the authors were just careless in not stating the assumption that would
make the problem tractable at this stage. If we don’t make some such assumption,
then the problem is not do-able in the sense that we can’t compute the autocovariance
of the linear combination from the autocovariances of the components. Furthermore,
it is entirely possible to have two processses which themselves are (second order)
stationary but the vector valued process is not (second order) stationary.

But life is easy with the uncorrelatedness assumption.

Definition Two time series type stochastic processes (Zy4 11 = ... —2,—1,0,1,2,...)
and (Zy 1t =...—2,—1,0,1,2,...) are called uncorrelated if Cov[Z1s, Zas| = 0 for all
s and t.

Proposition If 7y, and Zy; are uncorrelated time series type slochastic processes



which are (second order) stationary with autocovariances 1 and vz, respectively, then
for any constants ay and ay, Z; = a1Zy4+ ayZy is a (second order) stationary process

and the autocovariance function is given by

y(h) = Cov(Zy, Zipn) = ain(h) + azya(h). (5)

Proof. Of course, we have two theorems to prove, one for the strictly stationary
case and one for the second order stationary case (that’s why “second order” is in
parentheses, in case you didn’t know). What we’ll do here is quickly dispense with
the second order stuff (which also takes care of the formula for the autocovariance
function in the strictly stationary case) and handwave the stationary case.

OK, for the second order stuff we only have to verify that the mean is constant

and the autocovariance only depends on the lag. The mean, as usual, is pretty easy:
EZ:] = FElaiZi + a3Zy]
= aFE[Zy] + aaE[ 7]
= aifly + azftg,
where I just made up the notations y; = FE[Z;], which don’t depend on ¢ by assump-

tion. Clearly E[Z;] is a constant, independent of {. Now the autocovariance, using

properties of the covariance operator already discussed in class:

v(h) = Cov(Zi, Zipn)
= Cov(a1Z1t + asZot, a1 Z1 14 + a2 Z2141)
=  Cov(a1Z1t,a1Z1 041) + Cov (a1 Z11,a272441) +
Cov (a2Zat, a1 71 141) + Cov (axZat, azZa1h)
(k) + 040+ a(h) (6
= am(h) + agn(h).
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Here, the zeroes in (6) are from our uncorrelatedness of the process assumption. Since
the autocovariance function depends only on the lag h, this completes the proof of
second order stationarity and verifies the formula for the autocovariance function.
Turning to the issue of strict stationarity, assume Z;; and Zy; are strictly station-
ary and independent processes. Consider the typical case where any finite number
of random variables from the process will have a joint density (i.e., has a continu-
ous distribution, as opposed to a discrete distribution where we would have a joint
probability mass function). Subscripts to the joint density will indicate what random

variables it is the density of. In order to avoid too much notation, let
Zz[t,h] - (Zitazi,t+17---7Zi,t+h)7 h 2 0, ’L - 1,2

Also, let z; denote a vector of dimension 2 + 1 which will be used as a variable. The

joint density of (Z1[t, k], Z2[t, h]) is

le [t7h]7Z2[t7h] (217 22)

= pzth(21)Pz,[0(22) (7)
= pzon(21)pzy[0.1(22) (8)
= Pzi0hZl0h(21, 22)- (9)

i.e. the product of the marginals. Here, (7) and (9) follow from the independence
assumption, and (8) from the stationarity assumptions on the individual processes.
Thus, we see that the distribution of the vector valued process (Zi4, Zo:) is shift
invariant, hence if g is any function of two variables, the distribution of g(Z1+, Za:)
will be shift invariant, i.e. the process will be stationary.

This completes the proof. Application to the original problem is trivial. Plugging

in the values:

Yz, = Yz T 47Z2



9.7 k=0,
—5.52 k=1,
’.YZS(k) =
1.2 k=2,
0 k> 2.

10



4 Solution to Exercise 2.4.

Problem Statement: Calculate the sample autocovariance and autocorrelation func-

tion for the reactor data up to lag 2. Graph.

Solution: Of course, we can do it for a lot more lags than 2. T made a matlab
function to do an Splus style plot of the ACF. You can download the function here.
A jpeg of the plot may be viewed here. The computed values at lags 1 and 2 are
4910 and .1639, respectively.

11



5 Solution to Exercise 2.5.

Problem Statement: Under the supposilion that p; =0 for 5 > 2,

(a) Obtain approximate standard errors for ry, rq, and rj, j > 2.
(b) Obtain the approzimate correlation between ry and rs.

Solution: For part (a), we apply (2.1.11), p. 32:

1 o0
Varlni] ~ & ), (02 + putkpu—i — Apkpupu—r + 29%p%) (10)
1 0 &0 o0
= ylosmd S e X s -0 3 ] (1)

Here, (10) is right out of the book, and (11) is just a different version. Of course, the
standard error is just the square root of this. There will only be finitely many terms

in the sum since py = 0 for k > 2.

For k =1,
Var[r]
1 o0 o0 o0
R [(1+2pf) Yoot Y periper — Ao Y pupu—ll
1 2 1 2
= (1201 22 oo+ X porape-t = 4p1 X pupe (12)
v==2 v=-—1 v=-—1
B 1 2 2 2 2
= ¥ [(1+20) (1+207 +203) + (0 +202) — 4p1 (20102 +2p1)]  (13)
1
= ¥ 1= 3p% + 202 + 4p + 4p1p% + 292 — 8plps] . (14)

Here, (12) is obtained by eliminating the summands which we know are 0 from the
assumption pr = 0, k > 2, (13) is just all the summations expanded out, and (14)

was obtained by “simplifying” the expression in Maple:
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> 5:=(142%r1°2)* (1+2*r1°2+2*r2°2) + (r1"2+2*r2) -4*r1* (2*xri1*r2+2*ril) ;
2 2 2 2

=(1+2r1) 1 +2r1 +21r2)+rl +2r2-41r1 (21r1r2+ 271l

> simplify(s);
2 2 4 2 2 2

1-3r1 +2r2 +4r1 +4r1 r2 +2zr2-8r1r1 r2

Now, for k = 2,
1
Varlry] ~ < |( [1+292 E Py + E Pusapu—z — 4p2 E Pupu— 2]
1 2 0 2
= 5 |(1+202) 20 o0+ D perapez = 4p2 ) pupus (15)
v==2 v=0 v=0
1
= 5 [(1+202) (1+ 202 +202) + p3 — 4p2 (202 + 9} (16)
1
= 3 [1+4pF — 503 + 4p1 + 4pip} — 4plp)] (17)

The steps are all the same as before. Here is the Maple code for the simplification:

> t:=(142%r17°2)* (142*r1 " 2+2*r2"2) +r2" 2-4*r2* (2*r2+r1~2) ;
2 2 2 2 2

=(1+2r1) (1 +2r1 +21r2)+1r2 -4712 (1l + 2712

> simplify(t);
2 2 4 2 2 2

1+4r1 -5r2 +4r1 +4r1 r2 -4r1 r2

Finally, the last part of (a) is & > 2. By supposition, p; = 0, so we can immediately
drop the terms 2p Y02 _ _ p2 and 4pg, .02 _ . pypu—k from (11). Also, for any integer v,

13



at least one of v+k or v—k is outside the interval [—2, 2], so the term 300 pyyrpu—t

is also 0. Thus,

1 o
Var[ry] =~ N S ol

V=—00

= 5 (142422 (18)

Finally, for part (b), we use (2.1.14), p. 34. Since 4 and 5 are bigger than 2, this
formula applies (note that it only applies once we are into the region where k& > ¢

and ¢ is the lag of the last nonzero autocorrelation). We have

1 2
Covlry,rs] =~ N E PuPu+1

v=—2
1
= —(2 2 19
N( p2p1 + 2p1) (19)
1
= =2 1 20
N p1(pz+1) (20)

Remarks: The takehome message is that these formulae exist. If you are like me
and aren’t satisfied until you know where they come from, you can take our advanced
time series class. The chances of these formulae ever coming up on an exam are two:
slim and none.

Remember: these results are valid for Gaussian processes. Under a “long range”
independence assumption, one can derive formulae for the approximate variances
(variances of asymptotic normal distributions) which depend on the first four mo-
ments, basically. The particular algebraic forms are highly dependent on the moments

of multivariate normal distributions.

14



6 Solution to Exercise 2.6.

Problem Statement: “Using the data of Exercise 2.1, calculate the periodogram for

the periods 36, 18, 12, 9, 36/5, 6 and draw up an analysis of variance table showing
the mean squares associated with these periods and the residual mean square.”

Solution: Don’t you just love the Brits and the way that they cling to these
archaic usages. Not. I guess | had enough people in my office about this one: just
get the periodogram, test if the frequencies associated with the periods mentioned
are significantly larger than for the other frequencies (these are the frequencies used
for computing the “residual mean square”).

There are 36 degrees of freedom in the data, but we lose 1 from the mean (DC
component, if you are an ECE major), leaving 35. The problem axes us to test for
significant size of frequencies 1/36, 1/18 = 2/36, 1/12 = 3/36, 1/9 = 4/36, 5/36,
and 1/6 = 6/36, which just happen to be the first 6 (nonzero) Fourier frequencies
(“fooyer freaks”, in street talk, where the subtleties of the French language are not
appreciated). Basically, they want us to check for a low-frequency signal in these
data. The 6 values of the periodogram have 12 degrees of freedom (2 each) and the
and the other 12 “residual” values in the periodogram (corresponding to the higher
frequencies) have 23 degrees of freedom. This can be seen in two ways: 23 = 35 — 12,
the total degrees of freedom minus the degrees of freedom in the low frequencies being
tested, and in the 12 “residual”values, 11 have 2 degrees of freedom each and the last
one has only 1 degree of freedom (this is always the case with an even sample size
that the highest frequency only has a real or cosine part and hence only 1 degree of
freedom), so 2 x 11 + 1 = 23.

Thus, our test statistic will be

(sum of first 6 periodogram values)/12

F =

(sum of last 12 periodogram values)/6 "

If the null hypothesis (that the values come from a Gaussian white noise) is true,

15



then the sampling distribution of this test statistic has an F-distribution with (12,23)
degrees of freedom. The null hypothesis is rejected if F' is too large. The 5% critical
value in the upper tail of the F distribution with (12,23) degrees of freedom is 2.2036,
so we reject the null hypothesis at the .05 level of significance if the observed value of
the test statistic is larger than 2.2036. We can compute a p-value by computing the
the area under the density of the F'(12,23) distribution to the right of the observed
value, and reject at the .05 level of significance if the p-value is less than .05 (reject
at any level « if the p-value is less than «).

Here is the computation in Splus. 1 had already “scanned” in the data into

reactor.

> spec=spec.pgram(reactor,taper=0,pad=0,detrend=F,demean=T)
> length(spec$spec)

[1] 19

> spec$freq[2]

[1] 0.02777778

> 1/36

[1] 0.02777778

> #No extra padding -- That’s Good!'!!

> pgram=10~(.1*spec$spec)

> plot(pgram)

> #Boy, that 3’rd frequency has a lot of energy
> test=(sum(pgram[2:7])/12)/(sum(pgram[8:19])/23)
> test

[1] 3.635956

> 1-pf(test,12,23)

[1] 0.003814983

16



> #0K, it’s statistically significant. There’s something going

> #on in the 1st 6 fourier freq’s.

The p-value is about 0.0038, which is pretty highly statistically significant. Yes,
Virginia, there is a low frequency signal in these data.

Here’s the corresponding calculation in Matlab, using the pdgrm function I created
and using fcdf (the cumulative distribution function of the F-distribution) from the

statistics toolbox (not available everywhere).

pgram=pdgrm(z) ;
test=(sum(pgram(1:6))/12)/(sum(pgram(7:18))/23);

test

test =

3.6360

1-fcdf (test,12,23)

ans =

0.0038

Same p-value. The plot of the periodogram is shown here.

Axe me if you don’t know what a p-value is.
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7 Solution to Exercise 2.7 The Last Onelll.

Problem Statement: A circular stochastic process with period N is defined by Z; =

Ziyn, for all t.
(a) Show that when N = 2n, the latent roots of the N x N autocorrelation malriz of

Ze are

n-l mik
M = 1+ 22,02' CoS (—) + pncos(mk), (21)
n

i=1
fork=1,2,...,N, and that the latent vectors corresponding to A, Any_p (with A\, =

AN_k) are

or = ([ ] ).

(b) Verify that as N — oo, with k/N fized, Ay tends to g(k/N)/2, where g(f) is the

b (o] e[ o) o

spectral density function, showing that in the limit the latent roots of the autocorrela-
tion matrix trace out the spectral curve.

Solution: This problem is probably the most difficult of the assignment. I con-
templated not assigning it, but left it in in a foolish moment of confidence in the
abilities of Rice students (not to detract from that). One problem was with the
quaint British terminology of “latent root” and “latent vector.” We colonists know
them more by their Anglicized (“Americanized(?)”) German terms of “eigenvalues”
and “eigenvectors.” Then several students struggled with the sine-cosine stuff and I
hinted “complex exponential” and they went away and never came back, probably
because they eventually gave up. But then the real corker is figuring out how to get
the correlation matrix written down correctly so that it incorporates the information

that the process is circular. Since Z; = Z;.n = Z;_n, we have

pr. = Cort[Zy, Ziir] = Corr|Zisn, Zivk] = pN—k- (24)

18



Therefore, there are really only n — 1 different values. Also, we have for instance

So, when we get to p, in a row of the

in the subscript.

The N x N correlation matrix for (71, ...

Pn+k =

1 P1 P2 Pn—1

P1 1 P1 Pn—2

P2 P1 1 Pn-3
| P P2 P3 " Pn

PN —(n+k)
Pon—n—k

Prn—k-

, Zn) is then

Pn Pn—1
Pn—1 Pn
Pn—2 Pn-1
Pn—1 Pn-2

P2
P3
P4

P1

P1
P2
P3

1

correlation matrix, we start going backwards

(25)

Note how each row is obtained from the previous one by a cyclic permutation wherein

the last element is taken off and put in the first position. This is the property of being

a circulant matrix (just for future reference). Now consider the complex vector

(o =

= 4 + ln_y.

To complete the proof, we will show that

R’Uk = /\kvk.

(exp[2mik /N, exp[dmik/N],explb6mik/N],... exp[2Nmik/N])

(26)
(27)

(28)

Since R and A are real, there is no mixing of real and imaginary parts in either side

of (28), so we may match up the real and imaginary parts using (27) to conclude

Rt = M4y,

19
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which proves the claims about the “latent” vectors and their corresponding “latent”
roots.

To prove (28), consider the first entry of Ruy, i.e.
1 -exp[2mik/N] + p1 - exp[dmik/N] + po - exp[6mik/N] + - - -

+pn-1 - exp2nmik/N]| + p, - exp[2(n + 1)wik/N| + pn_1 - exp[2(n + 2)mik/N] + - - -

+pq - exp[2(N — 1)mik/N] + p1 - exp[2Nmik /N] (29)

= exp[2mik/N]{1 + p1 (exp[2mik/N]| 4+ exp[2(N — 1)mik/N]) +
p2 (exp[dmik /N] + exp[2(N — 2)mik/N]) + - -

+pn-1 (exp[2(n — 1)mik/N] + exp[2(N — (n — 1))7ik/N]]) 4+ pn exp[2nmik/N]}
(30)
= exp[2mik/N]|{1 + p1 (exp[2mik/N] + exp[—2mik/N]) +

p2 (exp[dmik/N] + exp[—4mik/N]) + - -

+pn1 (exp[2(n — 1)mik/N] + exp[—2(n — 1)mik/N]]) + p, exp[2nmik/N]}  (31)

= exp[2mik/N]| {1 + 2p; cos[2wk/N] 4 2p; cos[dnk/N] + - - -

+pn_1cos2(n — 1)wk/N] + p,, cos[7k]} (32)

= M exp[2mik/N]. (33)
Justifications:

(29) This follows from the definition of matrix multiplication: the first row of R in
(25) inner product with vy.
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(30) We've factored out exp[2mik/N] from all terms and collected the terms with a
common p; and factored out that pi. Also, we rewrote some of the complex

exponentials, viz.
exp[2(n + 1)mik/N] = exp[2(N — (n — 1))mik/N]], (34)
which follows since N = 2n.

(31) Of course, exp[2n Nijk/N] = 1 for any integers j, k. This was substituted into
(30) to obtain (31).

(32) This follows from exp[if] + exp[—i0] = 2cos 0. Also, exp[2nmik/N]| = exp[nik]
= cos[rk] = (—=1)*.

(33) This is clear from the previous line and the definition of A in (21). Note that

(33) is Ay times the first entry in vy.

Now let’s move on to the second component of Rvj. This is
p1-exp2mik/N] + 1 - exp[dmik/N] + p1 - exp[bmik/N] + - -

+pn_g - exp2nmik /N] + pn_1 - exp[2(n + 1)mik/N] + p, - exp[2(n + 2)mik/N] + - - -

+ps - exp[2(N — 1)mik/N] + p2 - exp[2Nmik /N] (35)

= expldmik/N]{1 + p1 (exp[—2mik/N]| + exp[2mik/N]) +
p2 (exp[dmik /N] + exp[2(N — 2)mik/N]) + - -

+pn_1 (exp[2(n — 1)mik/N] + exp[2(N — (n — 1))wik/N]]) 4+ pn exp[2nmik/N|}
(36)
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= exp[dmik/N]| {1 + 2p; cos[2mk/N] 4 2p; cos[dnk/N] + - - -

+pn_1cos2(n — 1)wk/N]| + p,, cos[7k]} (37)

= Mg expldmik/N]. (38)

The justifications are pretty much the same. Note that at (36) we factored out
exp[4mik/N] from everything since this is the second component of v; and we want
to see something (namely Ay) times it in the end (i.e. (38).

You are probably getting the general idea by now. Can we make a formal math-

ematical argument? Let
r, = (,Oi—la Pi—2,- .. 7,02')
denote the N x 1 vector which is the transpose of the :’th row of R. Of course, py = 1,

p—k = pr, and priny = pp. Let

_() 0 0 0 1_
1 00 0 0
010 0 0
M 0 0 1 0 0
000 ---10

be the cyclic N x N permutation matrix which takes the last element off an N-vector

and moves it to the front. Then

ri = M7 'ry = M'r,
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where 7¢ is defined in the obvious way. Note that the transpose M7 is the inverse,

i.e. it moves the first element to the end of the vector. Also,

M"v, = (exp[dnik/N],exp[6mik/N], ... exp[2Nmik/N], exp[2mik/N])
= (exp[dmik/N],explb6mik/N],... exp[2Nmik/N],exp[2(N + 1)mik/N])
= exp[2mik/N](exp[2mik/N], exp[dmik/N], ... exp[2(N — 1)mik/N],exp[2Nmik/N])

= exp[2mik/N]v.
The j’th entry of Ruvy is

i, = rI(MT) v,
= rl(exp[2jmik/N]vy)

= = (rlvy)exp[2jmik/N],

which is just the j’th entry of (rlwvg)vy. This shows that multiplying R times vy
gives vy back again but multiplied by (rlwvy). We have already worked out that
(rlvy) = Ai, so we have completed a fairly rigorous proof of (28).

Part (b) sort of seems trivial at this point. If N — oo but k/N = f is always

fixed, then of course

N2 2mik
A = 142 ; picos( N ) + pN/Qcos(Wk)
N/2-1

= 142 Z picos (2mif) + pN/Qcos(ﬂk)

=1
— 1+ QEpicos(Zﬂz'f)
=1
= g(f)/2,
where g(f) is given in (2.2.13), p. 40. Clearly, we are assuming that py/, — oo as

N — oo.
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Well, this is all a little hard to swallow, because the process was circular with
period N (remember that 7, = Z,4n for all N which gave us that p, = pryn for all
k), so we can’t be talking about the same process for all N, i.e. there is a different
process for each N so all the p;’s need an additional subscript or something to show
they depend on N, and then they would be involved in taking the limit as N — oc.
Hmm. What’s it all about? Well, one can actually make sense of what the authors
are getting at at this point. Let Z; be a fixed stationary process satisfying a few nice
properties (e.g., that 372, |px] < o0). For each N construct a circular process of
period N from Z; by

(N) _
Zi = Z(t—i—fi)modN

where smod N 1is the remainder on division of s by NV and & is a random number which
is uniformly distributed on 0,1,..., N — 1 (discrete uniform distribution). Here, we
basically take Zg, 71, ..., Zny_1 and repeat them over and over as a block, and then
give a random starting point x. This creates a circular process with period N that
looks a lot like the original Z;. In particular, if p; is the ACF for the original Z;, then
the lag 1 ACF for Zt(N) is (1 = 1/N)p1 + (1/N)pn-1 where the perturbation comes
from sticking the value of Zy_; next to Zy in forming Zt(N). Similarly, the lag 2 ACF
for Z{™ is (1 = 2/N)pa + (1/N)(pn—1 + pv-2), etc. Anyway, these modified ACF

values will converge to the originals as N — oco. ‘Nuff said.
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