STAT421: Practice Final Solutions

May 5, 1999



1. 50 points Consider an MA(2) process Z; defined as follows:
Zi = a; + (7/6)as—1 + (1/3)as—g,

where .
Zt — Zt - 10,

and a; is an i.i.d. N(0,25) sequence.
(a) Verify that Z; is invertible.
(b) Compute p = E[Z4], 0% = Var[Z], and the autocorrelation function ps, h = 0,1,. ...

(¢) Suppose you are given that a_y = 6 and ey = —9. Compute forecast values for Z; and
7.

(d) Compute the forecast variance Var[Z1|ag,a—1] and Var[Z3|ag, a_1] for your results in
part (c).

(e) What are the forecasts and forecast variances for Z;, t > 2 given ag and a_?

Solutions: To check invertibility, we compute the roots of the characteristic equation:
1+ (7/6)v + (1/3)v* = 0.
The l.h.s. can be factored:
(1+(2/3)v)(1+ (1/2)v) = 0.
The roots are
vl = —3/2 & Uy = —2.
These are clearly outside the unit circle, so the process is invertible.
Clearly E[Z;] =0 and E[Z;] = 10. For Var[Z;] = Var[Z;] we have
Var[Z] = FE[Z}]
= B+ (7/6)a1 + (1/3)ai-)’]
= Eldf] + (7/6)*Elai_,] + (1/3)*E[a}_,)]
(1+49/36+1/9)02
= (89/36)-25 = 2225/36 = 61.81.

Turning now to the ACF py, since it is an MA(2) we have
pr = 0, |h|> 2.

Of course, pg = 1, so we need only compute p; and py. We can pretend 02 = 1 and use the
MA equation. Multiplying through by Z;_; and taking expectations gives

BlZiZia] = Ella+ (1/6)as + (1/3)ar2) (amr + (7/6)ar—s + (1/3)ar—3)]
= (1/6)-1+ (1/3)- (7/6)
= 28/18 = 14/9,



S0

p1 = (14/9)/(89/36) = 56/89 = 0.6292135.
For py; we have
ElZiZis) = Ellas+ (1/6)ar+ (1/3)ar-2) (a2 + (7/6)ar—s + (1/3)ar—a)]
= 1/3.

and

p2 = (1/3)/(89/36) = 12/89 = 0.1348315.
Turning now to part (c), we have in general by linearity of conditional expectation that
E[Z|ag,a—] = Elas+ (7/6)ar—1 + (1/3)ai—z2|ag, a_1]
= FElaiao,a-1] + (7/6)Elaz—1|ag, a—1] + (1/3) E[as—2|ao, a—1],
and of course since a; is a white noise

a ift=0o0rt=-1
Elatag, a—q] = { !

0 otherwise.
Thus,
E[Ziag,a_1] = 0 + (7/6)ag + (1/3)a_y = (7/6)-(=9) + (1/3)-6 = —8.5,

o)
E[Zi]ag,a—y] = 10 + (—8.5) = 1.5.
Continuing )
E[Zs|ag,a_1] = 0+ (7/6)-0 + (1/3)ap = -3,
and

E[Z2|a0,a_1] = 10 + (—3) = 7.

For part (d), since the a;’s are a mutually independent mean 0 stationary white noise
process, we have

o? if t/ne0 and t/ne — 1,
Varlalag, a—1] = Elay]ao, a-1] = { Oa if t/: Oort :/—1.

and
Covlay, aslag,a_1] = 0, Vs #t.
This is clearly true if neither s nor ¢ is 0 or —1, and if one or the other is one of the given
a’s then it is treated as a constant which has 0 covariance with anything. Thus,
Var[Zi|ag,a_y] = Var[Zi|aog,a_]
Var[ay|ao,a_1] + (7/6)*Var[ao|ag, a_1] + (1/3)*Var[a_,|ao, a_1]

Var[aq|ag,a_1] + 04+ 0

2
a

= g



Also,

Var[Z3|ap,a—1] = Var[ag|ag,a_1] + (7/6)2Var[a1|a0,a_1] + (1/3)2Var[a0|a0,a_1]
= o 4+ (7/6)%?% + 0
(85/36)02.

For part (e), as already noted above Z; is independent of ag and a_; once ¢ > 1, since
then Z; is a linear combination of 3 a;’s which are disjoint from ag and a_;. Thus, the
conditional mean and variance will be the same as the unconditional mean and variance
already given in part (b):

E[Zt|a0,a_1] = 10
Var[Z;|ag, a_1] 61.81.



2. 30 points A statistician buys a new car and records his gas mileage on the first 118
fillups (REAL DATA!). Figure 1 on the next page shows a time series plot, sample ACF,
and sample PACF for the original series. Figure 2 shows the analogous plots for the series
when the first 40 observations are deleted (only the last 78 observations are kept). The
objective is to predict mileage for fillups 119, 120, ... .

(a) For each series (full series, last 78 observations), describe a tentative ARMA model
identification based on the information provided. Justify your answers.

(b) Would you recommend using the full series or just the last 78 observations for model
fitting and then forecasting? Justify your answer.

Solution. Although the level of the series appears to be roughly constant at roughly
16 mpg, the first 40 or so observations seem to be much less variable than the last 78
observations, so we would question as to whether the original data come from a stationary
process. When looking at the top plot in Figure 2, however, the level and variability look
fairly constant. Clearly the last 78 observations are more relevant to the observations just
beyond what we have observed, so based on this I would advocate using only the last 78
observations to build a model. This seems like an adequate number of observations to build
a low order ARMA model.

Also, looking at the ACF and PACF, we see that the full 118 observations suggests
an initial identification of either an MA(4) or an AR(2), whereas the last 78 observations
suggest an MA(3) or an AR(1). If the AR(1) model were to proved adequate after fitting,
this would be far simpler than any of the other models. So it appears that using only the
last 78 observations will permit a more parsimonious model as well.
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Figure 1: Time Series Plot, sample ACF, and sample PACF for the full series in Problem
2.
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Figure 2: Time Series Plot, sample ACF, and sample PACF for the last 78 observations of
the series in Problem 2.



(3) 36 points (Forecasts for MA processes.) Consider an MA(1) process

Zt = a; — Hat_l

where the a;’s are i.i.d. N(0,02).

(a) Show that E[Zi|ag] is —fag.

(b) Show that F[Z3|Z1,ag] is —0[Z1 — Bag).

(c¢) What is E[Z3|Z3, Z1,a0)?

(d) Show how one can recursively compute E[Z¢|Z;_1, Zi—2, ..., 71, ag).

(e) Of course, in practice we won’t observe ag. Show that F[Z;| 7, ..., Z;_1] is given by

ElZ| Zy, ..., Zs1] = /E[Zh---Zt—hflo]

1
V2ro?

(f) Describe an algorithm for computing the forecasts for 7,11 ,Z,49, ..
(z1,...,2,) modeled by the MA(1) process above.

Solutions: Just as in part (c) of Problem 1,

E[Zl|a0] = E[a1|a0] — 0E[CLQ|CLQ]
= 0 - 0(10.

Now for part (b), we have similarly
E[Z3| 7y, a0] = FElag|Zy,a0] — 0F[ay| 71, ag).
Now as is independent of Z; and ag, so
Elag|Zy,a0) = Elag] = 0.
Also, aq is determined exactly if we know Z; and ag since
a; = 21 + Oag.

Thus,
E[Z2|Zl, CLQ] = — 0 (Zl —|— 0(10)

Looks like there is an incorrect sign in the statement of the problem.
Turning to part (c),

E[Z3|Z27Z17a0] = E[a3|Z27Z17a0] - HE[Q2|Z27Z17QO]-
Again, a3 is independent of (73, 71, ag) so

E[(13|ZQ, Z17 (LQ] = 0.

exp {—a%/(Qag)} dag.

o e given data



From (Z3, Z1, ag) we can perfectly determine az, viz.
ay = Zy+ Oy
= ZQ + O(Zl + 0@0).
Thus,
E[ZngQ, Z17 ao] = -0 [Z2 + O(Zl + 0(10)]
= — [HZQ + 0221 + 03(10} .

It looks like in general,
E[Zt|Zt_17Zt_2, .. .,Zhao] = — [OZt_l + 02Zt_2 + - 4+ Ht_lZl + Otao} . (1)

Clearly
Elay|Zi—1, 719, ..., Z1,a0] = 0,
by the same independence argument as above, and a;_; can be determined exactly from
(Zt—la Zt—27 RS Z17 (Lo) via
a_1 = Zi_1 + Bag_y
= Zi1 + 0729 + 0Pas_s
= L+ 029+ 0 Z_5 + 0Pas_y
= L+ 02 0+ 0L 5+ 0L g+ -+ 0727 + 0 a.
One can use an induction argument for complete mathematical rigor. So
E[Zt|ZL‘—17 Zt—27 ey Zl7 (10]
= E[atlzt—h Zt—?a ey Z17 aO] - 0E[“t—1|Zt—17 Zt—27 ey Z17 aO]
= 0= 0|Z1 + 0Zia + 0*Zi s + 0% s + -+ 07 + 0 g
which proves (1).

How can this be used for a recursive algorithm? Letting 7, denote E[Z|Zi—1, Z1—o, ..., 71, a9),
we have

Doy = = |0Zia+ 025+ 67 g + o+ 072 + 07 4]

so from (1)

Zt — —O(Zt_l - OZt_l).

This gives a recursive algorithm.
There seems to be a typo in part (d). Maybe it should read

EZ\Z 1, Zi—g, ..., 71]
= [ BlZNZit, Ziay . 71, a0l (0o) dao 2)

9



and then of course

flag) = —= 0

ag) = exp |——5

0 V2ro, P 202

is the N(0,02) density for ag. To attempt a verification of (2), note that by definition of
the conditional mean

E[Zt|Zt—1 =zt 1, L2 =2t_2,..., 01 = 21#10]
= / zef (2] ze=1, 21—2, - . ., 21, Qo) dz4.
and
E[Zt|Zt—1 =zt 1, L—2=24_2,..., L1 = 2’1]
= / zef (2] ze=1, 2t—2y - oy 21) d2y.
Now by definition of conditional density:

f(zh 21y R%t—2y - - '721)
f(zt—h Zt—2y .- '721)

f(Ztlzt—17Zt—27"'7ZI) =
and
f(Zt7 Zt—1y2t—25 -+ =y Zl) = / f(zt7 Zt—1y 2t—2y - - =3 21, aO) daO-
But I don’t see how we can get to

f(zt7zt—17zt—27 . '721700)
f(Zt—17Zt—27 .. .72’17(10)

f(Zt|Zt—17Zt—27"'7217a0) =

since this would require integrating over ag in both the numerator and denominator. There

seems to be no way to get to (2). It seems Dr. Cox may have screwed up this problem

worse than it appears on first glance. I hope there aren’t such screw ups on the real final.
Well, let’s see what we can salvage. Our argument above in fact shows that

Zt = ay — 0at_1
= a — [OZt—1 + 0 Z g+ 02+ 97“(10} .
Thus,
E(Z|Zi_1, Zi—g, ..., Z1]
= - {OZt—1 + 02 Zg + o+ 02 + 0 Flag| Zi—1, Zia, . - -le]} (3)

Since we only have 3 hours (for the real final), we can’t hope to correct all of Dr. Cox’s
mistakes. However, we can note that as long as t is relatively large and @ is less than 1 in
magnitude, then the contribution from the term

0'Elag|Zi—1, Zi—a, . . ., Z1]

10



decreases exponentially so is probably not too large. Therefore,

E[Zt|Zt—17Zt—27"'7Z1] = Zl‘
= {024+ 0 Zis -+ 07 2}

and that Z; can be computed by the same recursion as we found in part (d), namely

Zt - —O(Zt_l _HZt—l)-

Proceeding to part (f), of course when we forecast Z;4; given Z;_1, Zy_o, ..., Z1 we just
use the mean of the process because 7,1 is independent of Z;_1, Z;_o,..., Z1. It is not
clear if we are to assume a mean 0 process or not, so here’s the algorithm for computing
approzimately the forecasts:

(1) Compute z, the mean of the observed data. Compute 2; = z; — z for 1 <t < n.

(2) Let 3, = %, and fort =2,...,n+ 1, let

27} — —0(21‘_1 - 021‘—1)-

This gives §n+17 the forecast for Zn+1, and the forecast for 7,1 is

Zn+1 = zZ+ gn—f-l-

(38) The forecasts for Z, 49, ..., Z,4s are just

Zn-l—k = z, k > 1.

11



(4) 20 points Consider an MA(4) process of the form
Zy = a; + 04a;_4.

Write this as an AR(o0) process of the form

Zy = Zﬂ'th—k + ay.
k=1

What is the range of 8, values for which the process is invertible?
Solutions: In operator notation
Zt = (1—|— 04B4)at.

By Box/Jenkins notation, it should probably be —thetay, but that won’t make much dif-
ference as long as we are consistent. Then computing the inverse in

a; = (1 + 04B4)_1Zt,

we see from the geometric series

(1407 = > (-v)*
k=0
that
a¢ = Z(—H4B4)th
k=0

= Zi+ Y (-0sBYF7,
k=1
= Zy — 047 4+ QZZt—s - Hi’Zt_m + ...
so the AR(oo) form has the coefficients

S —(—thetay)’ if k = 4 for some positive integer 7,
k= 0 otherwise.

The invertibility condition would be based on the roots of
14 04’04 == 07

which are £|64]~'/* and +i|64]~'/*. These are outside the unit circle provided |84] < 1.

12



(5) 20 points To the same data set, one statistician fits an MA(2) model of the form
Zy = ar — 1.0as_1 + .09as_9,
while another statistician fits an ARMA(1,1) model of the form
Zy = =121+ ap — 9a;_q.

The diagnostics for the fit models do not show any signficant lack of fit for either, and the
two statisticians spend hours arguing that their own models are the “right ones.”
Show in fact that the two models are almost equal.

Solutions: We can write the MA(2) model as
Z; = (1-B+.09B%a; = (1-.9B)(1 - .1B)ay,
and the ARMA(1,1) model as
(1+.1B)Z; = (1 - .9B)a.
The key to the claim that the two models are almost equal is that
(1+.1B)"" = 1 - 1B+ .01B* - .001B° 4 .0001B* —... = 1 - .1B
and hence the ARMA(1,1) model is
Zy = (14+.1B)7'(1 - .9B)a; = (1- .1B)(1 - .9B)a,

which is the MA(2) model.

13



(6) 44 points A statician analyzes a series z; with 200 observations in Splus. Below is
the Splus code:

par (mfrow=c(3,1))

tsplot(z)

acfz_acf(z)

pacfz_acf(z,type="partial")

par(mfrow=c(1,1))
fit.arl_arima.mle(z,model=1list(ar=0))
diag.arl_arima.diag(fit.arl)
fit.ar4_arima.mle(z,model=1ist(ar=c(0,0,0,0)))
diag.ar4_arima.diag(fit.ar4)
fit.ma4_arima.mle(z,model=1ist(ma=c(0,0,0,0)))
diag.ma4_arima.diag(fit.ma4)

VvV V V V V V V V V VYV

Figure 3 shows the time series plot, sample ACF, and sample PACF. Figure 4 shows the
output from the diagnostics of the AR(1) fit. Figure 5 shows the output from diagnostics
fo the AR(4) fit. Figure 6 shows the output from the diagnostics of the MA(4) fit.

Based on this information, which of the three fits do you believe is the best? Do you
believe any of the three fits is adequate? Justify your answers.

Solutions: The ACF in Figure 3 suggests an MA (4) model and the PACF in the bottom
of Figure 3 suggests either an AR(1) model (if we ignore the slightly significant PACF value
at lag 5) or an AR(5) model. Of course, a mixed model may also be appropriate, but that
is not considered here. The AR(1) model is treated first in Figure 4. The residual plot
(top panel in Figure 4) seems OK but the residual ACF (middle panel in Figure 4) shows
a significant value at lag 4, and the Portmanteau test (bottom panel in Figure 4) shows
signficant values for all lags > 4. Based on the latter two observations, we cannot regard
the AR(1) model as adequate.

Regarding the diagnostics for the AR(4) model in Figure 5, the residual time plot doesn’t
show much (looks pretty much the same as in the previous case) and the residual ACF shows
slightly significant values at lags 4 and 5, but the Portmanteau test gives significant values
for all lags (> 4), so this model seems inadequate as well. An AR(5) model might have
worked to pass the Portmanteau test, but we aren’t considering it.

Moving on to the MA(4) model as diagnosed in Figure 6, there appears a slightly signif-
icant value in the residual ACF at lag 11 but the Portmanteau test statistic is insignificant
for all lags depicted (4 through 13), so we conclude that there is not strong evidence for
the invalidity of this model whereas there is strong evidence for the invalidity of the other
two.

The MA(4) model is clearly the best, given the available information.

14



0 50 100 150 200

Series : z

Lag
Series : z

Lag

Figure 3: Time Series plot, sample ACF, and sample PACF in Problem 6.
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Problem 6.
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Figure 5: Diagnostic plots for AR(4) model fit to series in Problem 6.
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Figure 6: Diagnostic plots for MA(4) model fit to series in Problem 6.
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