
Solutions to Homework 2
September 27, 2017

Solution to Exercise 1.2.26: We want to show that∫
fd# =

∑
i

f(ai) .

Start with simple functions. Let

φ =
∑
i

biIBi
,

be in canonical form with all bi ≥ 0. Then∫
φd# =

∑
i

bi#(Bi).

Given any aj ∈ Ω, there is exactly one i such that aj ∈ Bi, and then φ(aj)
= bi. Thus,

bi#(Bi) =
∑

j:aj∈Bi

φ(aj).

Thus, ∫
φd# =

∑
i

∑
j:aj∈Bi

φ(aj) =
∑
j

φ(aj).

Turning now to nonnegative functions f ≥ 0, define simple functions

φn(a) =
n∑

i=1

f(ai)I{ai}.

Note that this is not generally the canonical form since the ai’s may not be
distinct and

⋃n
i=1{ai} may not be all of Ω, but∫

φnd# =
∑
j

φn(aj) =
n∑

i=1

f(ai).

Note that if Ω is finite, say #(Ω) = m, then φn = f for all n ≥ m, and we
are done. So, assuming #(Ω) =∞, then 0 ≤ φn ↑ f , so by MCT∫

fd# = lim
n

∫
φnd# = lim

n

n∑
i=1

f(ai) =
∞∑
i=1

f(ai).
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Turning finally to the general case, f = f+ − f−, we have of course that∫
f±d# =

∑
i f±(ai). Assuming at least one of

∫
f±d# < ∞ so that

∫
fd#

is defined, then∫
f+d#−

∫
f−d# =

∑
i

f+(ai)−
∑
i

f−(ai) =
∑
i

(f+(ai)− f−(ai)) =
∑
i

f(ai),

as claimed.

Solution to Exercise 1.2.27: We want to show that∫
fdµ =

∑
i

f(ai)µ({ai}) ,

Start with nonnegative simple functions. Let

φ =
∑
i

biIBi
,

be in canonical form with all bi ≥ 0 and the Bi a partition of Ω. Then∫
φdµ =

∑
i

biµ(Bi)

=
∑
i

bi
∑

j:aj∈Bi

µ({aj})

=
∑
i

∑
j:aj∈Bi

biµ({aj})

=
∑
i

∑
j:aj∈Bi

φ(aj)µ({aj})

=
∑

j:aj∈Ω

φ(aj)µ({aj}) .

The first equation is the definition of the integral of a nonnegative simple
function, the second follows since the Bi can be represented as the count-
able disjoint union of their elements, the third is trivial, the fourth since
by the construction of the canonical representiation of a simple function,
aj ∈ Bi =⇒ φ(aj) = bi, and the last equation since the Bi form a partition
of Ω.

Turning now to nonnegative functions f ≥ 0, let 0 ≤ φn ↑ f be a sequence
of simple functions. Then by MCT,∫

fdµ = lim
n→∞

∫
φndµ

= lim
n→∞

∑
i

φn(ai)µ({ai}).
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If we can interchange the limit and the summation, then we get∫
fdµ =

∑
i

lim
n→∞

φn(ai)µ({ai})

=
∑
i

f(ai)µ({ai}) ,

which is the desired result. Note by the previous exercise (which was shown
in class) we can write ∑

i

φn(ai)µ({ai}) =
∫
gnd#,

where 0 ≤ gn(ai) = φn(ai)µ({ai}) ↑ f(ai)µ({ai}) = g(ai), and
∑

i f(ai)µ({ai})
=
∫
gd#, so by MCT applied to counting measure on Ω, we have

lim
n→∞

∑
i

φn(ai)µ({ai}) = lim
n→∞

∫
gnd#

=
∫
gd#

=
∑
i

f(ai)µ({ai}).

This shows the desired result for f ≥ 0.
Turning to general f = f+ − f−, of course the previous part applies to

both of f±: ∫
f±dµ =

∑
i

f(ai)µ({ai}).

Assume that
∫
fdµ is defined, i.e. that one of

∫
f±dµ <∞, say

∫
f+dµ <∞.

This implies that for all ai ∈ Ω, f+(ai)µ({ai}) < ∞. If Ω is finite, say
#(Ω) = m, then there is no ∞−∞ possible in computing∫

f+dµ −
∫
f−dµ =

m∑
i=1

f+(ai)µ({ai}) −
m∑
i=1

f−(ai)µ({ai})

=
m∑
i=1

[f+(ai)µ({ai})− f−(ai)µ({ai})]

=
m∑
i=1

[f+(ai)− f−(ai)]µ({ai})

=
m∑
i=1

f(ai)µ({ai}).
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In the first line, we know that the first summation is <∞. In the second line,
we know that the terms f+(ai)µ({ai}) are all finite, and only −∞ is possible,
no +∞ term. In the third line, it is possible that f+(ai) =∞ (which would
imply µ({ai}) = 0, but then f−(ai) = 0.

If #(Ω) =∞, then put limm→∞ in front of all of the finite summations in
the previous calculation. All of the finite sums are defined with no problem,
and if any infinite quantities come from the limits, it will be only −∞ since
we are assuming

∫
f+dµ <∞.

Of course, the same argument applies (but with sign changes) if
∫
f−dµ <

∞.

Solution to Exercise 1.2.37: Let gm =
∑m

i=1 fn. Since the fn ≥ 0
a.e., it follows that the gm are nonnegative and monotonically increasing a.e..
Hence, by the Monotone Convergence Theorem,

∞∑
n=1

∫
fn dµ

= lim
m→∞

m∑
n=1

∫
fn dµ

= lim
m→∞

∫ m∑
n=1

fn dµ

= lim
m→∞

∫
gm dµ

=
∫

lim
m→∞

gm dµ

=
∫ ∞∑

n=1

fn dµ.

Note that the first equality depends on linearity of the integral, and it is the
third equality where the MCT is used.

Solution to Exercise 1.3.6: We will proceed without naming all
the measurable spaces implied in Theorem 1.3.4. Let A and B be measurable
sets in the ranges of g and h, respectively. Then,

P [g(X) ∈ A&h(Y ) ∈ B] = P [X ∈ g−1(A) &Y ∈ h−1(B)]

= P [X ∈ g−1(A)]P [Y ∈ h−1(B)]

= P [g(X) ∈ A]P [h(Y ) ∈ B].
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The first and third equalities follow from the definition of inverse images and
the second from independence of X and Y . The result establishes indepen-
dence of g(X) and h(Y ).

Solution to Exercise 1.3.15: If we take ν to be counting measure
on ZZ+ = {1, 2, . . .}. Then it was shown in class that

∫
gdν =

∞∑
n=1

g(n).

Let f : ZZ+ × IR → ĪR. Assuming
∫
fd(ν × m) exists, then by Fubini’s

theorem, ∫
fd(ν ×m) =

∫
IR

∫
ZZ+

f(n, x)dν(n)dx (?)

=
∫
ZZ+

∫
IR
f(n, x)dxdν(n) (??).

If we denote f(n, x) = fn(x), then the expressions in (?) and (??) and their
equality may be written as∫

IR

∞∑
n=1

fn(x)dx =
∞∑
n=1

∫
IR
fn(x)dx.

Now, existence of the integral requires measurability f : (ZZ+ × IR,P(ZZ+)× B) −→(
ĪR, B̄

)
, and that at least one of

∫
f±d(ν ×m) < ∞. Since f± ≥ 0, Fubini’s

theorem applies to each of them, and so a sufficient condition for interchange
of summation and integration is at least one of∫ ∑

fn,±(x)dx < ∞.

In particular, if all fn ≥ 0 so that fn,− = 0, we can interchange
∫

and
∑∞

n=1.
Thus, we have actually generalized what we got in Exercise 1.2.33 by using
Fubini’s theorem.

In Exercise 1.2.33 we assumed that each fn was Borel measurable. We
need to show that this implies f is measurable w.r.t. the product σ-field
P(ZZ+)×B. Assume f(n, ·) = fn is extended Borel for each n. If B ∈ B̄, then
f−1(B) = {(n, x) : f(n, x) ∈ B} =

⋃
n ({n} × IR) ∩ {(n, x) : f(n, x) ∈ B} =⋃

n{n}×f−1
n (B) ∈ P(ZZ+)×B. (Note: It is also easy to see that measurability
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of f implies measurability for each fn, so the condition is necessary and
sufficient.)

Solution to Exercise 1.3.18: It is easy to see

{(x1, x2, ..., xn) : xi = xj for some i 6= j}

=
n−1⋃
i=1

n⋃
j=i+1

{(x1, x2, ..., xn) : xi = xj} .

If we set
Bij = {(x1, x2, ..., xn) : xi = xj} ,

then it suffices to show mn(Bij) = 0 for all i < j. For notational simplicity,
we will take i = 1 and j = 2, then

mn(B12) =
∫
IB12dm

n

=
∫
IRn−2

∫
IR2
IB12(x1, x2, . . . , xn)dm2(x1, x2)dmn−2(x3, . . . , xn).

In the last equation, we used the fact that we can represent mn = m2×mn−2.
Now for any fixed (x2, . . . , xn), the inner integral above may be written∫

IR2
IB12(x1, x2, . . . , xn)dm2(x1, x2) = m2({(x1, x2) : x1 = x2} = 0,

where the last equality follows from Exercise 1.3.17. This shows mn(B12) = 0.
If i < j but (i, j) 6= (1, 2), then we can appeal to an “obvious symme-
try,” or repeat the above argument with more complex notation (like writing
dmn−2(x1, . . . , xi−1, xi+1, . . . , xj−1, xj+1, . . . , xn) for the outer integral above).

Since Exercise 1.3.17 was not assigned, we provide its solution. Let C =
{(x1, x2) : x1 = x2}. For any x1, IC(x1, x2) is nonzero at only one value of
x2, namely, when x1 = x2. Thus, for any x1, m({x2 : IC(x1, x2) 6= 0}) = 0.
Thus, by Fubini’s theorem,

m2(C) =
∫ ∫

IC(x1, x2)dx2dx1

=
∫
m({x2 : IC(x1, x2) = 1}) dx1

=
∫

0 dx1

= 0.
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