
Solutions to Homework 2
September 24, 2018

Solution to Exercise 1.4.5: Note that Pλ({n}) > 0 for all n ∈ IN ,
so if B ⊂ IN , then Pλ(B) =

∑
n∈B Pλ({n}), > 0 unless B = ∅. The only Pλ

null set is ∅, for all λ, so Pλ � P1.
If we let µ be counting measure on IN , then Pλ � µ since for B ⊂ IN ,

µ(B) = 0 implies B = ∅, which implies Pλ(B) = 0. The density is given by

fλ(n) =
dPλ
dµ

(n) = e−λλn/n!, ∀n ∈ IN.

To see this, note that for B ⊂ IN ,

Pλ(B) =
∑
n∈B

Pλ({n}) =
∫
B
fλdµ.

(Note: we don’t actually need this, but it is probably the most natural way
to think of this problem for statistics students.) Therefore,

Pλ(B) = =
∫
B
fλdµ =

∫
B

fλ
f1

f1dµ =
∫
B

fλ
f1

dP1,

i.e.
dPλ
dP1

(n) =
fλ(n)

f1(n)
=

e−λλn/n!

e−1/n!
= e−λ+1λn.

One could also use Proposition 1.4.2 (c) here.

Solution to Exercise 1.4.9: First of all note that� is a transitive
relationship, i.e., ν � µ and µ � λ implies ν � λ. To see this, if we let
N (µ) denote the collection of µ-null sets for any measure µ, then ν � µ is the
same as N (ν) ⊃ N (µ), and µ� λ means N (µ) ⊃ N (λ), so the transitivity
property of set inclusion gives us that N (ν) ⊃ N (λ) and hence that ν � λ.

Turning to the more substantive part of the problem, we have that the
defining property of dν/dµ says

ν(A) =
∫
A

(
dν

dµ

)
dµ ∀A measurable.
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Since µ� λ, we can apply part (a) of Proposition 1.4.2 to the r.h.s. and we
obtain

ν(A) =
∫
A

(
dν

dµ

)(
dµ

dλ

)
dλ ∀A measurable.

However, this just state that (dν/dµ)(dµ/dλ) satisfies the defining property
of dν/dλ, which we know exists and is essentially unique by the Radon-
Nikodym theorem since we are assuming µ and λ are σ-finite and we know
from the previous paragraph that ν � λ. Thus, we conclude

dν

dλ
=

(
dν

dµ

)(
dµ

dλ

)
, λ− a.e.

Finally, assuming µ ' ν, i.e., that both ν � µ and µ � ν, we can
substitute ν for λ in the above and get

1 =
dν

dν
, ν − a.e.

=

(
dν

dµ

)(
dµ

dν

)
, ν − a.e.

where the first equality follows since the constant function 1 satisfies the
defining property to be the Radon-Nikodym derivative (namely,

∫
A 1dν =

ν(A)). Now the equality above shows that both factors in the last expression
must be nonzero, ν-a.e. So the reciprocal (dµ/dν)−1 is well defined ν-a.e.,
and the result follows.

Solution to Exercise 1.4.11: (a) Assume of course that the µi
are σ-finite, and that the joint density factors. Then

P [X1 ∈ A1 &X2 ∈ A2]

= P [(X1, X2) ∈ A1 × A2]

=
∫
A1×A2

f(x1, x2)d(µ1 × µ2)(x1, x2)

=
∫
IA1×A2(x1, x2)f(x1, x2)d(µ1 × µ2)(x1, x2)

=
∫
IA1(x1)IA2(x2)f1(x1)f2(x2)d(µ1 × µ2)(x1, x2)

=
∫ ∫

IA1(x1)IA2(x2)f1(x1)f2(x2)dµ1(x1)dµ2(x2)
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=
∫
IA2(x2)f2(x2)

∫
IA1(x1)f1(x1)dµ1(x1)dµ2(x2)

=
∫
IA1(x1)f1(x1)dµ1(x1)

∫
IA2(x2)f2(x2)dµ2(x2).

In the second to last line, we factored out the functions of x2 from the
dµ1(x1) integral since they are “constants” (because the value of x2 is held
fixed when computing

∫
· · · dµ1(x1)). In the last line, we factored out the

constant from the
∫
· · · dµ2(x2)

∫
IA1(x1)f1(x1)dµ1(x1) from the

∫
· · · dµ2(x2)

(since it doesn’t involve x2). We recognize the final expression as P [X1 ∈
A1]P [X2 ∈ A2], and since A1 and A2 are arbitrary (measurable) sets, this
shows X1 and X2 are independent.

(b) For n random variables X1, . . ., Xn such that Law[X1, . . . , Xn] � µ
= µ1 × · · · × µn, where µi is on the range of Xi, and all the µi are σ-finite,
then if the joint density f1···n = dLaw[X1, . . . , Xn]/dµ factors as

f1···n(x1, . . . , xn) =
n∏
i=1

fi(xi),

(where of course fi = dLaw[Xi]/dµi), then X1, . . ., Xn are independent.
Essentially the same argument as in part (a) will work. We start with

P [X1 ∈ A1 & · · ·&Xn ∈ An],

write it in terms of a multiple integral using Fubini’s theorem, and we can
factor out each of the individual integrals of the form

∫
Ai
fidµi, and express

the probability above as
∏n
i=1 P [Xi ∈ Ai].

Solution to Exercise 1.5.2: To verify Remark 1.5.4, we simply
need to check that IAi

= I{ai}(Y ), but this is immediate since the Ais are
disjoint and the ais are distinct, so Y (ω) = ai if and only if ω ∈ Ai.

To verify equation (1.70), if we define

h(y) =
∫

Λ1

g(x, y) fX|Y (x|y) dµ1(x),

then we observe from the previous equation that

h(Y ) = E[g(X, Y )|Y ].
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Solution to Exercise 1.5.7: For part (a), let’s start with

E[(X − E[X|G])2|G]

= E[X2|G] − 2E[E[X|G]X|G] + E[E[X|G]2|G]

= E[X2|G] − 2E[X|G]E[X|G] + E[X|G]2.

In the last equality, we used that E[X|G] is G measurable, so can be “fac-
tored” out from E[·|G] (Theorem 1.5.7 (h)), and E[X|G]2 is G measurable, so
it’s conditional expectation w.r.t. G is itself (Theorem 1.5.7 (f)). Of course,
now the −2E[X|G]2 in the middle term combines with the final term to give
the desired result.

For part (b), we start with the definition of Var[X]:

E[(X − E[X])2]

= E[(X − E[X|G] + E[X|G]− E[X])2]

adding and subtracting E[X|G]

= E[(X − E[X|G])2] + 2E[(X − E[X|G])(E[X|G]− E[X])] + E[(E[X]− E[X|G])2]

by algebra and linearity of expectation

= E[E[(X − E[X|G])2|G]] + 2E[E[(X − E[X|G])(E[X|G]− E[X])|G]]

+E[(E[X|G]− E[X])2]

by total expectation (twice)

= E[Var[X|G]] + 2E[(E[X|G]− E[X])E[(X − E[X|G])|G]] + E[(E[X|G]− E[X])2]

by the factorization result (Theorem 1.5.7 (h))

= E[Var[X|G]] + 2E[(E[X|G]− E[X])(E[X|G]− E[X|G])] + E[(E[X|G]− E[X])2]

by linearity of E[·|G] and Theorem 1.5.7 (f) applied to E[X|G]

= E[Var[X|G]] + Var[E[X|G]]

since E[E[X|G]] = E[X] by total expectation.

It follows immediately that E[Var[X|G]] = Var[X] − Var[E[X|G]]. Also,
since Var[E[X|G]] ≥ 0, we have E[Var[X|G]] ≤ Var[X].

For part (c), it is clear that if X = E[X|G] a.s., then Var[X|G] = 0, a.s.
It seems reasonable that this would be necessary as well for Var[X|G] = 0,
a.s. Assume Var[X|G] = 0, a.s., so

0 = E[Var[X|G]]

= E[E[(X − E[X|G])2|G]]

= E[(X − E[X|G])2],
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where the last equality follows by total expectation. But (X − E[X|G])2 is
a nonnegative r.v., so its expectation being 0 implies (X − E[X|G])2 = 0,
a.s., i.e., X = E[X|G] a.s. This shows X = E[X|G] a.s. is a necessary and
sufficient condition for Var[X|G] = 0, a.s.

Under our supposition, we have from part (a) that

Var[X|G] = E[X2|G] − E[X|G]2

= Y 2 − Y 2

= 0, a.s.

Thus, by part (c), X = E[X|G] = Y , a.s.

Solution to Exercise 1.5.9: Part (a) is easy: we know E[X|Y ] =
k if X = k, a.s. The function φ(y) ≡ k is Borel measurable from the range
space of Y to IR, and E[X|Y ] = φ(Y ), a.s.

For part (b), if X1 ≤ X2, a.s., then φ1(Y ) = E[X1|Y ] ≤ E[X2|Y ] =
φ2(Y ), a.s., so we claim that φ1(y) = E[X1|Y = y] ≤ E[X2|Y = y] = φ2(y),
PY -a.s. Letting A = {y : φ1(y) > φ2(y)}, we have PY (A) = P (Y −1(A)) =
P ({ω : Y (ω) ∈ A}) = P ({ω : φ1(Y (ω)) > φ2(Y (ω))}) = 0.

For part (c), the obvious conjecture is that

E[a1X1 + a2X2|Y = y] = a1E[X1|Y = y] + a2E[X2|Y = y] , PY a.s.

We have from the theorem that

E[a1X1 + a2X2|Y ] = a1E[X1|Y ] + a2E[X2|Y ] , P a.s.

Now we know that E[a1X1 + a2X2|Y ], E[X1|Y ], and E[X2|Y ] can each be
expressed as a function of Y , say

E[a1X1 + a2X2|Y ] = h(Y )

E[X1|Y ] = h1(Y )

E[X2|Y ] = h2(Y ).

See the discussion beginning in the middle of p. 70. Our equation above then
says

h(Y ) = a1h1(Y ) + a1h1(Y ) , P a.s.
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Also, by definition,

E[a1X1 + a2X2|Y = y] = h(y)

E[X1|Y = y] = h1(y)

E[X2|Y = y] = h2(y).

So, can’t we conclude that

h(y) = a1h1(y) + a1h1(y) , PY a.s.?

Let
A = {y : h(y) 6= a1h1(y) + a1h1(y)}.

This is a subset of the range space of Y . It is measurable in that space since
it is the inverse image of the Borel set IR \ {0} under the measurable map
h− (a1h1 + a2h2). We want to show that PY (A) = 0. Now

PY (A) = P
(
Y −1(A)

)
= P ({ω : h(Y (ω)) 6= a1h1(Y (ω)) + a1h1(Y (ω))}) .

We already observed this latter event has probability 0 when we noted that
h(Y ) = a1h1(Y ) + a1h1(Y ), P -a.s. So we are done.

The previous paragraph illustrates one way of proving a result for the
conditional expectation of the type E[X|Y = y]: prove the corresponding
result for for conditional expectation of the type E[X|Y ] and simply translate
it over. This will work in most cases, so one doesn’t have to do separate
proofs. The P -null sets in Ω where an equality fails will automatically become
a PY -null set on the range of Y by the same sort of argument as above.
However, most students seem to want to derive a result using the defining
properties of E[X|Y = y]. So, for example, we observe that a1E[X1|Y =
y] + a2E[X2|Y = y] is a Borel measurable function of y (whose domain is
the range space of Y ), and if A is a measurable set in the range space of Y ,
then∫
Y −1(A)

(a1X1 + a2X2) dP =
∫
Y −1(A)

(a1E[X1|Y ] + a2E[X2|Y ]) dP

=
∫
A

(a1E[X1|Y = y] + a2E[X2|Y = y]) dPY (y),

which shows that a1E[X1|Y = y] + a2E[X2|Y = y] has satisifies the integral
property to be E[a1X1 + a2X2|Y = y].
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Moving on to part (d), it is very tempting to write “E[E[X|Y = y]]” but
this doesn’t make sense. For a r.v. Z, E[Z] =

∫
Ω ZdP is an integral over the

underlying probability space, but the domain of the function E[X|Y = y] is
the range of Y , not Ω. Of course, the range of Y has the probability measure
PY , so it makes sense to write∫

Λ
E[X|Y = y] dPY (y) = E[X],

where Λ is the range of Y . Since E[X|Y = y]|y=Y is E[X|Y ], we have by the
law of the unconscious statistician that∫

Λ
E[X|Y = y] dPY (y) =

∫
Y −1(Λ)

E[X|Y ] dP = E[E[X|Y ]] = E[X]

where the last equality follows by part (d) of Theorem 1.5.7(d).
To deal with part (e) of the theorem, we need to translate E[X|{∅,Ω}]

into some kind of statement about E[X|Y = y], we need to think of it as
E[X|Y ] where σ(Y ) = {∅,Ω}. But this happens if and only if Y is a constant
r.v. (Check it out!). Hence, we claim

If Y is a constant r.v., E[X|Y = y] = E[X], PY -a.s..

Clearly if Y = c where c ∈ Λ is fixed, then for h(Y ) = E[X|Y ] = E[X], we
must have h(c) = E[X], and h(y) can be defined arbitrarily for y 6= c. But
this means h(y) = E[X], PY -a.s., since PY = δc.

Theorem 1.5.7(f) tells us that if σ(X) ⊂ σ(Y ), then E[X|Y ] = X, a.s.
Now, it wouldn’t make sense to claim E[X|Y = y] is equal to X, since they
are functions with different domains. However, if σ(X) ⊂ σ(Y ), then we
know from Theorem 1.5.1 that X = φ(Y ) for some function φ whose domain
is Λ, the range of Y . Thus, it would make sense to claim that

If X = φ(Y )for some measurable φ, then E[X|Y = y] = φ(y), PY − a.s.

The proof is immediate from

φ(Y ) = X = E[X|Y ], a.s.

Part (g) is a little trickier. Suppose Y1 is some other random element
(with range space (Λ1,G1), say), and σ(Y1) ⊂ σ(Y ). We know (at least if the
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range of Y1 is (IR,B) that then Y1 = ψ(Y ), for some ψ, by Theorem 1.5.1.
So let us just assume

Y1 = ψ(Y ), ψ : (Λ,G) −→ (Λ1,G1).

Now it makes no sense to write “E[E[X|Y1 = y1]|Y = y]” since the domain
of E[X|Y1 = y1] is Λ1, and not Ω. (Recall that when we write E[Z|Y = y],
Z must be a r.v., i.e. a mapping from Ω to IR.) Also, how are we to match
up the given values y1 and y? If we are given Y = y and Y1 = ψ(Y ), then it
must be that Y1 = ψ(y). So let’s try the following:

If Y1 = ψ(Y ), then E[E[X|Y1]|Y = y] = E[X|Y1 = ψ(y)], PY1 − a.s.

Of course, we haven’t fully interpreted E[E[X|Y1]|Y = y] into the requisite
kind of conditional expectation, but there is no way to do so. Also, what
does the r.h.s. mean? We are taking the function h1 given by h1(y1) =
E[X|Y1 = y1] and composing it with ψ, i.e. the r.h.s. is h ◦ ψ evaluated at y,
and h ◦ ψ is a map from Λ to IR, so the domains and ranges of the two sides
match. Again, the proof is trivial: E[X|Y1] = h(Y1) = h(ψ(Y )) = (h◦ψ)(Y ),
so we apply our result above on part (f) of the theorem.

Now for the other side of the Law of Successive conditioning, we need to
deal with E[E[X|Y ]|Y1 = y1] when Y1 = ψ(Y ). We could just write

If Y1 = ψ(Y ), then E[E[X|Y ]|Y1 = y1] = E[X|Y1 = y1], PY1 − a.s.

Certainly everything makes sense: the l.h.s. and r.h.s. of the equation are
the same kind of objects (both sides are functions with argument y1 varying
over the domain Λ1 and the ranges are IR). And we know that E[E[X|Y ]|Y1]
= E[X|Y1] a.s. in this case, which proves the result. This one is easy.

Finally, part (h) is fairly straightforward: If X1 is σ(Y )-measurable, then
X1 = ψ(Y ) for some measurable ψ, and we claim that E[ψ(Y )X2|Y = y] =
ψ(y)E[X2|Y = y]. We see that φ(y) = ψ(y)E[X2|Y = y] is a Borel measur-
able function on the range of Y (since it is the product of two such functions),
and φ(Y ) = ψ(Y )E[X2|Y ] = E[ψ(Y )X2|Y ], where the last equality follows
from the result given in the theorem.

The translation and proof of Theorem 1.5.8 is straightforward. For part
(a), if 0 ≤ Xn ↑ X, then we claim E[Xn|Y = y]→ E[X|Y = y], PY -a.s. We
know that φn(Y ) = E[Xn|Y ] → E[X|Y ] = φ(Y ), a.s. Simply translate the
null set to the range space of Y as in part (b) of the previous theorem. The
dominated convergence theorem is similar.
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