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October 30, 2018

Solution to Exercise 2.4.4

(a) This is trivial by properties of the determinant: the determinant of
a product is the product of the determinant, and taking transpose doesn’t
change the determinant. Thus, if V = AA?, then

det(V) = det(AA") = det(A)det(A") = det(A)%

Actually, since we could have det(A) < 0, we can only conclude det(A) =
| det(V)1/2|. Of course, det(A) # 0 if and only if det(V) # 0.

(b) By Proposition 1.3.3 and Proposition 1.4.3, Law[Z] < m™ and the
Lebesgue density is

fz(2) = (@2m) " exp(—2'2/2).

If we can find a matrix A such that AA* =V, then we know from Exercise
2.3.3(b) that AZ 4+ p ~ N(u, V). Assuming det(V') # 0 and hence det(A) #
0, the transformation h : IR" — IR™ is a bijection with inverse h™'(y) =

A7y — p) and derivative Dh™'(y) = A~ so the Jacobian is |det(A™")| =
det(V)~'/2. Thus, by Proposition 2.4.2, if Y = AZ + p~ N(p, V) then the
Lebesgue density for Y is given by

frly) = det(V)2f, (A7 (y - )
= @n) (V) e | (A7 - ) (A7 - )]
= (27) "2 det(V) V2 exp (y — p)t (A_l)t ANy —
— (22 det(V) 2 exp |(y — ) (44Y) " (y — )

= (2m)"2det(V) V2 exp (g — W'V (y — g)} :

This gives the desired Lebesgue density for the N(u, V') distribution.

There does remain one detail: how do we know there exists a matrix A
such that AA* = V? Well, there are many such matrices, but one obvious
one is V2 which is defined as follows. Let V = UAU! be the spectral
decomposition of V' (Theorem 2.1.6). Here, A = diag(Aq,...,\,) where the



diagonal entries of A are the eigenvalues of V', which are nonnegative since V'
is nonnegative definite. Defining A2 by diag(A’%,. .., A\/2), then it is easy
to check that V1/2 = UAY2U! is a symmetric matrix and (V'/2)2 = V. Thus,

we may take A = V1/2,

Solution to Exercise 2.4.6: Note that T ranges over positive and
negative real numbers, so we may restrict attention to m being an integer
(else we would have to deal with complex numbers). Clearly E[T™] for m
even, but it may be co. Now we just try to do the integral:

*© W L(r+1)/2)

my 2/,)~(v+1)/2
E[T™] " Ty L) dt

In order for the integral to be finite, we need

o) tm
/0 (1 + 2/0) D)2 dt < oo.

If m < 0 the integrand blows up at the origin. If m > 0, then the problematic
part of the integral is the large values of t. Note that as ¢t — oo, t™/[(1 +
t2/v)#+1/2] behaves like t™~~1. Put somewhat more formally,

m
ElCla 02 € (07 OO) Yt > 1, Cltm_y_l < S C2tm—1/—1.

= (1 +£2/v)wtD/2

Now,
/ tm v 1dt < oo if and only if m — v — 1 < —1 if and only if m < v.
1

Thus, for m > 0, we conclude that that E[T™] is finite (and hence exists) if
and only if m < v, and if m > v and m is even, then the integral exists but
is infinite. If m > v and m is odd, then t™ has the same sign as ¢, and we
will get an oo — oo when we try to do the integral, so it will be undefined.

Recall that if Z ~ N(0,1) and V ~ x?2 are independent, then
T = Z/(V/v)'?,
has a t-distribution with v d.f. Clearly, then we have

E[T™ = v"?E[Z" V™
Vm/QE[Zm]E[me/Z]’



provided everything is finite, i.e. 0 < m < v. Note that the sign of the
exponent of v given in the text is incorrect. Now, we just have to check if the
formula holds if is even but m < 0 or m > v, i.e., make sure the r.h.s. if co in
these cases. If m < 0 and even , then E[Z™] = co and E[V~™/2] > 0, so the
r.h.s. with be co. If m > v and m is even, then E[Z™] > 0. The important
factors in v=™/2 fy-(v) will for v near 0 the powers of v, (the exponential e~"/2
is bounded away from 0 and oo for v near 0), i.e. v=™/2**/2=1 and this will
lead to an infinite integral (on say, (0, 1)) if the exponent is < —1, i.e. m > v.
This completes the exercise.

Solution to Exercise 3.1.12 Let
00 ‘,L,ozfl

: (a)

e *dzx.

F(z) =

There are a lot of integration by parts games we could play here, but in
general we should separate the power function %! from the exponential
e”™ because we can’t get a simple, explicit form for an indefinite integral,
otherwise. So let’s start with

u = x>t dv = e *dz,
du = (a— 1)z %dx v = —e "
We obtain
Fz) = ) e =) = M) [ (= 1am (e ) do

For x >z, 2272 < 2°7!/z, so

o0
/ 22 dr <
V4

Plugging this into our previous calculation and remebering that I'(«) /T'(a—1)
= o — 1 is just an unimportant constant, we get

F(z) = [[()] " 227 te™ + O(1/2)F(2).



The O(1/z) is of course as z — oo. Now we subtract the last term from both
sides to obtain

F(2)[1+0(1/2)] = [[(a)] " 22 te .

Now we apply the same argument as in the normal tail example (see the
discussion of (3.8) from (3.7)) to conclude

F(z) = [[(@)] 2 e [1+0(1/2)].

Interestingly, the tail area in the Gamma distribution is asymptotically equiv-
alent to the density.

Solution to Exercise 3.2.8: We can solve this fairly easily using
Proposition 3.2.8 by computing second moments. Since the X;’s are assumed
to have mean 0 and finite variance ¢* > 0, we have (using the assumed
independence of the X;’s in the variance calculation)

ElY,] = 0,
Varly,] = o°> i
i=1

Now we employ the simple trick from analysis of bounding the sum by a
pair of integrals (with possibly additional terms). There are a few cases to
consider.

p > 0: In this case, the mapping = — x?P is nondecreasing, so
ﬁp[[pl,i}(ﬁ) < Z'Qp][ifl,i]@) < xQPI[i,i+1}(x)-

Adding up over 1 < i < n and integrating gives

2p+1 n n n+1 2p+1
" < / 2?Pdr < E i< / 2?Pdr < (n+1) 1.
2p+1 0 P 1 2p+1

Since n?*! — oo, it is easy to see that

(n+ 1)t —1
2p+1

= O(n**h).



We do not really need the lower bound, but using it we can check that
in fact E[Y?] ~ o?n?*!/(2p+1). To see the claim in the last equation,
note that the term —1/(2p+1) = o(n?*™!) and since [(n+1)/n]*™ —
1, we also have (n + 1)?*! = O(n?*!). So, we have

E[Y?] = O(n**)

n

and this implies by the proposition that

Yn = Op(np+1/2).

—1/2 < p < 0: In this case, the map is decreasing, so an appropriate upper
bound is

iQpI[i,Hl] ($) < x2pl[i,i+l] ($)
Adding up and integrating again, we get

n n
Z i< / x?Pdr =
i=1 1

n2p+1 -1

T oy,
2p+1 (™)
Then from the proposition we get Y;, = Op(nP*1/2).

p = —1/2: For this case, the same upper bound from the previous case ap-
plies, but the integral is now

/nx_ldm = log(n)
1

and so we get Y, = Op((logn)'/?).

p < —1/2: The same upper bound as the previous two cases applies, but now
the integral is bounded as n — oo:

n 2 1 — p2ptl
dr = —— 1/(—(2p+1
[ e = Z5 ey o (=),

since of course 2p + 1 < 0. Hence, E[Y;?] is bounded and so is O(1), so
Y, = Op(1).



