Solutions Homework 6
November 12, 2018

Solution to Exercise 3.3.1 (a) FALSE: Here is a counterexample
to the statement: Let U and V be independent N(0,1) random variables.
Define a sequence of bivariate random vectors by

(Xn, Yn) = (U,V), Vn.

Then X, 3 U, Y, 2 U (since X, 2, 2 U). However, (X,,Y,) does not
converge in distribution to the bivariate random vector (U,U) (which has a
singular normal distribution in JR? whereas the common distribution for all
(X, Y,) has a nonsingular normal distribution).

(b) FALSE: Counterexample: let U ~ Unif(0,1), X, = nl1/m)(U).
The P[X, # 0] = 1/n which — 0, so X,, = 0 and hence also X,, = 0.
However F[X,| =1 for all n while E[0] = 0, of course.

(c) TRUE: Use Continuous Mapping Principle with h(x) = x°.

(d) TRUE: Apply the Cramer-Wold device. Suppose that X, LB X and
Y, Y ¢, where X,,, Y,, are random k-vectors. Let v be a fixed k-vector, they
by the Continuous Mapping Principle, v’ X, B X and 'Y, 2 v'e. By the
univariate Slutksky result, v'X, + v'Y, = v/(X, + Y,) 2 v/(X + ¢). Since
this holds for all v/, the result that X, + Y, 2 X + ¢ follows.

Solution to Exercise 3.3.2: This should be a straightforward
applicaton of the Cramer-Wold device (Theorem 3.3.7). Assume the random
vectors are k dimensional and fix any u € IR*. Then by the continuous
mapping principle, 7 X,, 2 «TX. We are assuming X,, — Y, = 0, so by
continuous mapping principle again, u” (X, — Y,) = u’X, — «*Y, 3 0,
and hence the univariate random variabls u? X,, and u’Y,, are convergence
equivalent. Thus, we conclude from the univariate version of the theorem

that u’Y,, B uTX. Since u was arbitrary, we conclude from Cramer-Wold
that Y,, B X , as desired.

Solution to Exercise 3.3.6 (a) This is an easy application of Cramer-



Wold. Let v be a fixed d-vector. Note that

EW'X,] = Jpu
Varp’X,] = 0'Vo.

An application of the univariate CLT gives
Vi (v X, —v'p) = o' [VaX, - p)] B NOu'V).

Note that if Z ~ N(0,V) then v'Z ~ N(0,v'Vv). Thus, we have shown
that for all v we have v’ {\/E(Xn — H)} Bt Z where Z ~ N(0,V) and so it

follows that /n(X, — 1) = N(0, V).

(b) Let A be a symmetric matrix such that A?> = V. Basically, if V
= UAU" where U is orthogonal and A = diag(\i, ..., \q) is diagonal, then
A = UAY2U' where A2 is the diagonal matrix diag(A;’%,...,\Y?). Put
Y, = AWn(X,,—p). If Z ~ N(0,V) then since v/n(X,, — ) B Z we have
by the continuous mapping principle that Y, 2 A~1Z ~ N(0, A 'V A1) =
N(0,I). Let Y ~ N(0,I). Applying the continuous mapping principle again,
we get n (X, — ) VX, —p) = VLY, B Y'Y = 5L, V2 ~ xF since V3,
..., Yy are i.i.d. N(0,1).

Solution to Exercise 3.3.7 It is somewhat easier to do part (b) first,
then part (a). So, to that end, assume X, are random k-vectors, X, B x ,

and A, are random m x k matrices, A, Bz , where A is a fixed m x k
matrix. As pointed out in class, for any matrix B and vector x,

[1B]| < [|B][]]]l

provided the multiplication makes sense (where ||B|* = 3,3, By;). Now,
A, B A means A, = A+ op(1), by Proposition 3.3.4(b).Hence,

< |[(An = A1 X
= op(1)[|X,]]

op(1)Op(1) (tightness)
OP(l).



Thus, A, X, and AX,, are convergence equivalent. Now AX,, 2 oax by the
continuous mapping principle (applied to h(x) = Az). The desired result
follows.

To do part (a), we need only show that 4, 2 A where A is nonsingular
implies A-1 B A-!. To this end, it suffices to argue that h(B) = B!
is a continuous mapping on the space of nonsingular matrices, then apply
continuous mapping principle. One can “handwave” this argument as follows.
Using the formula for B! in terms of determinants of cofactors, one sees that
B~ can be expressed in terms of sums of products of entries of B (which are
“clearly” continuous maps) divided by det B, which is also a continuous map
(same argument), so h(B) = B! is continuous provided det B is nonzero.

Solution to Exercise 3.4.1: By the Continuous Mapping Principle

(CMP) for convergence in distribution, we have that h(y/n[X, — p]) = h(Z)
= 72, where Z ~ N(0,0?). Of course Z? ~ o?x?.

The limiting distribution of h(X,) = X? is degenerate at p?. Since
Vn[X, — p] converges in distribution, we have by the Tightness Lemma
that \/n[X, — u] = Op(1), and hence X,, = u + Op(n~'/2) which implies
X, B 1 and so by CMP, X2 3 12, a degenerate random variable.

Finally, for the last part, we apply the d-method. Dh(u) = 2u, so

Valh(X,) —h(p)] 2 2uZ where Z ~ N(0,02), and thus 2uZ ~ N(0, 4p202).

Solution to Exercise 3.4.2: (a) Since Var[X;] = 2, we have by the
CLT

Vi (Xn—p) 3 N, 12).
(b) We apply the é-method with

h(u) = exp[—xzo/u], u > 0.
Now

W(u) = (zo/u?) exp[—zo/ul,

v/ (expl—zo/Xy] — exp[—zo/p])
= \/ﬁ (h(Xn - :u)
BN (0,1 (w)]*p?)



2
= N <0,z2exp[—2xo/u]u2>
22
= N <0,Mgexp[—2xg/u]>

Note that the variance expression is dimensionless (e.g., assume X; are in
meters), as it should be since the first expression is basically a (dimensionless)
probability.

Solution to Exercise 3.4.3 Following the hint in part (a),

n—1
ns?jo? ~ 2, 2 > Y;, where the Y; are iid. x7.
i=1

Defining
1 n—1

n—1iH

then by the CLT,
V=1 (Y, —1) B N(0,2). (1)

(Note, we used the facts that E[Y;] = 1 and Var[Y;] = 2.) So let’s relate Y,
to S2.

n—1
ns?/o? £ YV = (n—1)Y,_,

=1

SO .
52 2 n 0'2}7”_1,
n
and
-1 ._
vn (SZ — 02) 2 vn <n %Y, ;| — 02)
n
_ no o Y, L,
= |50 V=1 (Y1 —1) - N Yo
Now




so by Slutsky (equation (3.28) of the text) and (1) above,

oV =1 (Vo1 —1) B 0N (0,2) 2 N(0,20"). (2)

Also,

o*vn ) — 0%, B N(0,20Y),

which of course gives the asymptotic distribution for 1/n[S? — ¢?].
For S,, we apply the d-method with h(x) = /z, h'(z) = (2/x)7"

VilS, — o] B N (0,(2V0?)%20") 2 N(0,0%/2).

(Exercise: check that units are correct.)

Solution to Exercise 3.4.6 We first consider the univariate case. We
assume without loss of generality that = 0, 02 = 1. Let C,, = maxi<i<n .
Verifying the Lindeberg condition:

1

ﬁZcmE lYQ 2 Y? >eZcm}

i=1"ni j=1

1 27 2
< 2?102 Z mE[Y I[C.Y; >eZcm]

ni =1 =1
— E [Yf[[Yf > eZcii/Cn]]
=1

— 0.

as n — oo for all € > 0 since the quantity in the indicator in the last expres-
sion tends to oo, so the indicator tends to 0. We are using the dominated
convergence theorem with dominating function Y;?. Note how easy the veri-
fication of the Lindeberg condition is. Also, taking all ¢,; = 1 gives the i.i.d.
CLT.



Turning to the vector valued case. Note that this is not a simple appli-
cation of the Cramer-Wold device. We assume the mean is 0 and that the
covariance matrix V' is nonsingular. Let A and A be the largest and smallest
eigenvalues, respectively. Then for any vector ¢ we have

Mel* < ¢'Ve < Alle|f?,

and all quantities are positive if ¢ is nonzero. We have the events

[(eniY0)* > € cniVens] C [llenil*1Yill* > €A llewil”]

i=1 =1

Hence,

=1 =1
1
< ﬁzncmu B [nmn TR > X3 el max el
S ol 2
1
- Lp [rmu HIVIE > 3" e/ s e J]
=1
— 0,

as n — oo for all € > 0 by the same argument as before. This verifies the
Lindeberg condition.



