
Solutions Homework 6
November 28, 2018

Solution to Exercise 4.1.4: OK, the random observable quantity and the
family of possible distributions are already given, call them X and {Pθ : θ ∈ Θ},
respectively. The kind of action we want to take is estimate a set, so let the action
space consist of A = Bp, the p-dimensional Borel sets, where p is the dimension of
the parameter vector θ. We restrict attention to Borel sets since we know they are
Lebesgue measurable, and our next step is to define the loss function L(θ, A) = m(A),
where m is Lebesgue measure on IRp. We require that the coverage probability of the
confidence set is at least 1− α, so we define the space of allowable decision rules

D = {δ : Ξ −→ A : Pθ[θ ∈ δ(X)]} ≥ 1− α}, ∀θ ∈ Θ.

That seems to be about the sum of this problem.

Solution to Exercise 4.2.5: Exercise 2.3.10 was assigned in Stat 532 last
semester, so we will just go through the solution there and pick out what we need for
this exercise. There is very little additional work to do. We will use the notations from
the solution that was given last semester.

For the Poisson family, the sufficient statistic is T (x) = x, and the family is full
rank, so this is minimal sufficient.

For the Binomial family, again, T (x) = x, and the family is full rank, so again it is
minimal sufficient.

For the Beta family, the sufficient statistic is T (x) = (log x, log(1 − x)). Again, it
is full rank, so minimal sufficient.

For the negative binomial, T (x) = x is again minimal sufficient for the same reasons
as the previous examples.

Solution to Exercise 4.2.16: Letting X and Y denote the two independent
random vectors corresponding to the two populations, it is clear that we have an
exponential family here under all circumstances. So, we can apply the Proposition
4.2.5 to deliver the results on minimal sufficiency.

For the first model where all parameters are unrestricted,
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Note that the space of values of the natural parameter vector is (−∞, 0)× (−∞,∞)×
(−∞, 0)× (−∞,∞), which is a nonempty open set, so has nonempty interior. (It was
mentioned in lecture that the Cartesian product of sets with nonempty interior has
nonempty interior. Let’s verify that. To say a set A has nonempty interior means it has
a nonempty open subset, i.e. that there is x ∈ A such that there is an ε > 0 such that for
all x1 such that ‖x1−x‖ < ε, we have x1 ∈ A. The set N (x, ε) = {x1 : ‖x1−x‖ < ε} is
an ε-neighborhood of x, or just a neighborhood. So, A having nonempty interior means
there is some element with a neighborhood contained in A. Now if two sets A and B
each have nonempty interior, then clearly their Cartesian product will have nonempty
interior provided the product of two neighborhoods again contains a neighborhood.
Hopefully it is clear that the Cartesian product of two subsets is again a subset (of
the product set, of course). Also, if we have that ‖(x1, y1) − (x, y)‖ < ε, then clearly
‖x1 − x‖ < ε and ‖y1 − y‖ < ε, so N ((x, y), ε) ⊂ N (x, ε)×N (y, ε).)

Note that we need to verify the identifiability condition, which also implies that T
does not satisfy any linear constraints. We know that two normal densities are not the
same unless they have the same parameters, and they will be equal at most two points
if they have different parameters (set them equal, take logarithms, simplify and the
points where they are equal satisfy a polynomial root equation of degree at most 2).
Hence, they give different measures, and this follows for products of marginal normal
distributions.

In conclusion, for model (i), a minimal sufficient statistic is
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Turning to model (ii), assume σ2

X = σ2
Y = σ2. Then the expontial family represen-

tation takes the form
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The sufficient statistic and natural parameter vectors are given by
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The space for the natural parameter values is (−∞, 0)× (−∞,∞)× (−∞,∞), which
has nonempty interior, so T is minimal sufficient here. One can verify that this model
is identifiable similarly to the previous case. (This means T does not satisfy any linear
constraints, so the family is full rank, and it follows T is complete, as well.)
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For model (iii), the exponential family has the form
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The space of values of η is contained in (−∞, 0) × (−∞,∞) × (−∞, 0) × (−∞,∞),
but of course we cannot expect that the map η(µ, σ2

X , σ
2
Y ) can fill out all of this 4-

dimensional set. (It is mathematically possible to map a 3-dimensional set onto a
4-dimensional set with nonempty interior, but you can’t write the function as a simple
formula.) In particular, we see that

η2 = −2µη1, η4 = −2µη3,

so points in η(Θ) must satisfy the (nonlinear) constraint

η1η4 = η2η3.

Note that both sides of this equation are 0 if and only if µ = 0 (since η1 and η3
are nonzero, and if both sides are nonzero, then µ = −η2/(2η1) = −η4/(2η3). Thus,
any points (η1, η2, η3, η4) in (−∞, 0)× (−∞,∞)× (−∞, 0)× (−∞,∞), satisfying the
constraint η1η4 = η2η3 will in fact be the image of some η(µ, σ2

X , σ
2
Y ), namely for µ =

−η2/(2η1), σ2
X = −1/(2η1), and σ2

Y = −1/(2η3). So, we have the space of values of the
natural parameter is

η(Θ) = {(η1, η2, η3, η4) : η1 < 0, η3 < 0, η1η4 = η2η3}.

Now, we just have to see if we can find θ0, . . ., θ4 as in the Proposition 2.5. to show
that T is minimal sufficient. Let’s try the following

θ0 = (0, 1/2, 1/2)

θ1 = (0, 1/4, 1/2)

θ2 = (0, 1/2, 1/4)

θ3 = (1/2, 1/2, 1/2)

θ4 = (1/2, 1/4, 1/2),

which gives 
η(θ0)
η(θ1)
η(θ2)
η(θ3)
η(θ4)

 =


−1 0 −1 0
−2 0 −1 0
−1 0 −2 0
−1 1 −1 1
−2 2 −1 1


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
η(θ1)− η(θ0)
η(θ2)− η(θ0)
η(θ3)− η(θ0)
η(θ4)− η(θ0)

 =


−1 0 0 0
0 0 −1 0
0 1 0 1
−1 2 0 1

 .
By direct calculation, the determinant of this 4× 4 matrix is 1, so we have the desired
linear independence. Also, by the same argument as above, the family is identifiable,
and hence T is minimal sufficient.

Note: T is not complete in this case since

Eθ
[
n−1T2 −m−1T4

]
= µ− µ = 0, ∀θ.

Solution to Exercise 4.3.5: The Lebesgue density is

fα,β(x) = exp
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α
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]
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Before going too far, note that β is a scale parameter, and we are asked to show
independence of a scale invariant statistic with the sufficient statistic for β. Thus, we
will fix α and consider the subfamily

fβ(x) = exp

[
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]
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where of course T =
∑
iXi is complete and sufficient for β by exponential family results.

Now

V =
X

T

is scale invariant so its distribution doesn’t depend on β. More concretely, if Zi =
Xi/β, then the Zi’s are i.i.d. Gamma(α, 1), and clearly V = Z/T (Z). Thus, V is
ancillary and we conclude that V and T are independent by Basu’s theorem.

Solution to Exercise 4.3.7: For part (a), we begin with

Pθ[a < X(1) < X(n) ≤ b] = Pθ[a < Xi ≤ b, 1 ≤ i ≤ n]

=
n∏
i=1

Pθ[a < Xi ≤ b]

=

(
b− a
θ2 − θ1

)n
,

where the last equation holds provided θ1 ≤ a < b ≤ θ2. Letting T = (T1, T2) =
(X(1), X(n)), we claim that T has a Lebesgue p.d.f. given by

fθ(t1, t2) = − ∂2

∂t1∂t2

(
t2 − t1
θ2 − θ1

)n
I(θ1,θ2)×(θ1,θ2)(t1, t2)I{(x,y):x<y}(t1, t2)

= n(n− 1)
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(θ2 − θ1)n
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One can check that the proposed density does give the 2-D cdf when appropriately
integrated. Now, suppose h(T ) is such that

Eθ[h(T )] = 0, ∀θ.

This implies that∫ θ2

θ1

∫ t2

θ1
h(t1, t2)(t2 − t1)n−2 dt1dt2 = 0, ∀a < b (∗∗).

From now on, we will replace θ1 by an a variable (with a possible subscript) and θ2 by
a b variable. Let

C = {(t1, t2) : t1 < t2}.

We want to show that

m2 ({(t1, t2) ∈ C : t1 < t2 &h+(t1, t2) 6= h−(t1, t2)}) = 0. (∗ ∗ ∗)

If this last displayed result is true, then h+ = h− except for a set we don’t “care about”,
and that means h(T1, T2) = 0, Pθ-a.s. for all θ. To do this, define measures

µ+,N(A) =
∫
A∩C∩[−N,N ]

h+(t)(t2 − t1)n−2 dt

µ−,N(A) =
∫
A∩C∩[−N,N ]

h−(t)(t2 − t1)n−2 dt ,

where t = (t1, t2). Our goal is to show that the measures µ+,N = µ−,N for all N > 0.
It then follows from uniqueness in the Radon-Nikodym theorem that (***) holds. We
make the restriction to [−N,N ] in order to keep each of the measures finite (else we
will have a problem with one step in the argument).

From equation (**), we conclude that (***) holds for all A of the form (a, b)× (a, b)
with a ≤ b. We will show

Claim 1. We can extend this result to show that µ+,N(A) = µ−,N(A) holds for all A
of the form (a1, b1)× (a2, b2) with ai ≤ bi.

Claim 2. The last result extends from A being Cartesian products of intervals to all
2-D Borel sets.

For Claim 1, we need to consider all possible orderings of a1, b1, a2, b2. Of course,
we want ai < bi, so out of the 4! = 24 permutations of 4 things, half violate a1 < b1
and another independent half violate a2 < b2, so we end up with 24 × (1/2) × (1/2)
= 6 cases. Considering each case in turn:

Case 1: a2 < b2 ≤ a1 < b1 Since the intersection of (a1, b1)× (a2, b2) is empty in this
case, both µ+,N and µ−,N give such a set measure 0.
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Case 2: a2 ≤ a1 < b2 ≤ b1 See the upper left panel in the Figure 1. Note that

µ+,N ((a1, b1)× (a2, b2)) = µ+,N ((a1, b2)× (a1, b2)) ,

and the same holds for µ−,N . Here, the rectangle (a1, b2)× (a1, b2) is indicated in
the figure by the dotted line. Since we know that that µ+,N(A) = µ−,N(A) holds
for all A of the form (a, b)× (a, b), we conclude µ+,N(A) = µ−,N(A) holds in this
case.

Case 3: a1 ≤ a2 ≤ b2 ≤ b1 In this case we have

µ+,N ((a1, b1)× (a2, b2)) = µ+,N ((a1, b2)× (a1, b2)) − µ+,N ((a1, a2)× (a1, a2)) .

To see this, look at the upper left subplot in Figure 1. Note that the triangle
closed off by the dotted line in the lower left part of the plot is (a1, a2)×(a1, a2)∩C,
and the larger triangle consisting of this and the shaded area is (a1, b2)×(a1, b2)∩
C. Of course, the same equality holds for µ−,N , and since µ+,N and µ−,N agree for
the two sets on the r.h.s. (since these are of the form (a, b)× (a, b)), we conclude
they agree in this case.

Case 4: a2 ≤ a1 ≤ b1 ≤ b2 This is similar to the previous case, except that

µ+,N ((a1, b1)× (a2, b2)) = µ+,N ((a2, b1)× (a2, b1)) − µ+,N ((b1, b2)× (b1, b2)) .

Case 5: a1 ≤ a2 ≤ b1 ≤ b2 Here we have

µ+,N ((a1, b1)× (a2, b2))

= µ+,N ((a2, b1)× (a2, b1)) − µ+,N ((a1, a2)× (a1, a2))

−µ+,N ((b1, b2)× (b1, b2)) .

Case 6: a1 < b1 ≤ a2 < b2 In this case

µ+,N ((a1, b1)× (a2, b2))

= µ+,N ((a2, b1)× (a2, b1)) − µ+,N ((a1, a2)× (a1, a2))

−µ+,N ((b1, b2)× (b1, b2)) + µ+,N ((b1, a2)× (b1, a2)) .

Note that the last term added back in is the small triangle below and to the left
of the shaded rectangle in the fourth subplot of Figure 1.

In each of the above cases, we have expressed µ+,N(A) and µ−,N(A) for A = (a1, b1)×
(a2, b2) in terms of sets where µ+,N and µ−,N agree. This completes the proof of Claim
1.

Turning to Claim 2, we further claim that if two finite measures ν1 and ν2 on (Ω,F)
satisfy ν1(Ω) = ν2(Ω), then

G = {A ∈ F : ν1(A) = ν2(A)}
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Case 2: a2 <= a1 <= b2 <= b1

t1

t2

( )
a1 b1

a2

b2

Case 3: a1 <= a2 <= b2 <= b1

t1

t2

( )
a1 b1

a2

b2

Case 5: a1 <= a2 <= b1 <= b2

t1

t2

( )
a1 b1

a2

b2

Case 6: a1 <= b1 <= a2 <= b2

t1

t2

( )
a1 b1

a2

b2

Figure 1: Four of the six cases in verifying Claim 1 of the solution to Exercise 4.3.7.
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is a σ-field. Clearly ∅ and Ω are in G. To show G is closed under taking complements,
let A ∈ G, then ν1(A

c) = ν1(Ω)−ν1(A) = ν2(Ω)−ν2(A) = ν2(A) (here is where we need
that the νi are finite measures, else we could end up with an ∞−∞ form). Finally,
to show that G is closed under countable unions, it suffices to assume the unions are
disjoint, and then apply the countable addivity property.

Thus, we have shown that finite measures µ+,N and µ−,N agree on sets of the form
(a1, b1) × (a2, b2), and they agree on IR2 (take a1 = a2 < −N and b1 = b2 > N), so
they agree on the σ-field generated by all such rectangles, which is easily shown to be
the σ-field of 2-D Borel sets. This completes the proof of Claim 2.

Turning now to part (b) of the exercise, it is easy to check that T = (X(1), X(n)) is
sufficient (as well as complete): using the factorization theorem,

fθ1,θ2(x1, x2, . . . , xn) =
n∏
i=1

(θ2 − θ1)−1I(θ1,θ2)(xi)

= (θ2 − θ1)−nI(θ1,∞)(min
i
xi)I(−∞,θ2)(max

i
xi).

Thus, if we show that
V = (X −X(1))/(X(n) −X(1))

is ancillary, then it follows that V and T are independent by Basu’s theorem. Now V is
clearly location and scale invariant, and our family is a location-scale family (generated
by the Unif(0, 1) density), so V is ancillary. But let’s give a more detailed proof of
this.

I know that the proofs of ancillarity tend to be short but subtle. Here is one:

we can write X
D
= (θ2 − θ1)U + θ1 where U is a vector of U1, U2, . . ., Un which are

i.i.d. Unif(0, 1), and
D
= means “equal in distribution.” Note that the transformation

is monotone increasing in each coordinate, so T
D
= (θ2 − θ1)(U(1), U(n)) + θ1. Hence

V
D
=

[
(θ2 − θ1)U + θ1 − ((θ2 − θ1)U(1) + θ1)

]
/
[
(θ2 − θ1)U(n) + θ1 − ((θ2 − θ1)U(1) + θ1)

]
= (U − U(1))/(U(n) − U(1)),

and the distribution of the last expression does not depend on θ, thus establishing
ancillarity of V .

Solution to Exercise 4.3.8: We want to find a function h : IR2 → IR such
that

∀θ ∈ IR Eθ
[
h
(
X(n), X(1)

)]
= 0,

but yet
∃θ ∈ IR Pθ

[
h
(
X(n), X(1)

)
6= 0

]
> 0.

In fact, we can construct h such that

∀θ ∈ IR Pθ
[
h
(
X(n), X(1)

)
6= 0

]
= 1.

Note that this is a location family generated by Unif(−1/2, 1/2). By switching to the
parameter θ − 1/2, we can take the generating distribution to be Unif(0, 1), which is
slightly easier to work with (then it becomes the Unif(θ, θ + 1) family).
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Now the sample range R = X(n) − X(1) is a location invariant statistic, so its
distribution doesn’t depend on the location parameter (i.e., it is ancillary). It is easy
to show

Eθ
[
X(n)

]
= θ + 1− 1/(n+ 1),

Eθ
[
X(1)

]
= θ + 1/(n+ 1),

and so

∀θ ∈ IR Eθ

[
R− (1− 2

n+ 1
)
]

= 0.

Thus our function h is

h(x, y) = y − x− 1 +
2

n+ 1
.

Assume for now the reasonable statement that the bivariate r.v. (X(1), X(n)) has a
Lebesgue density (in 2 dimensions, of course). Then the event that (X(1), X(n)) satisfies
the linear constraint X(n) −X(1) = 1− 2

n+1
has probability 0, irrespective of the value

of θ. To show that (X(1), X(n)) has a bivariate Lebesgue density, we compute the c.d.f.
It suffices to assume the Unif(0, 1) distribution since the final result regarding R is
invariant to the value of θ. Then the joint c.d.f. is

F (x, y) = P [X(1) ≤ x&X(n) ≤ y].

To compute the density we need only consider the values 0 ≤ x ≤ y ≤ 1. In this region
the c.d.f above is equal to

P [X(n) ≤ y]− P [x < X(1) < X(n) ≤ y]

= P [ all Xi ≤ y]− P [ all Xi ∈ (x, y)]

= yn − (y − x)n.

Applying ∂2/∂x∂y gives the bivariate density by the fundamental theorem of calculus.
That theorem tells us integrating this second order partial will give us the c.d.f. we
just derived. We don’t actually need to compute the density to conclude this.
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