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1 Exercise 1.9

Under the model the expected proportion of green plants is 3/4 Of course,
the book recommends using the Pearson χ2 test. Here is the R session:

> pearsonstat = (854-.75*1103)^2/(.75*1103) + (249-.25*1103)^2/(.25*1103)

> pearsonstat

[1] 3.459958

> # df=1

> 1-pchisq(pearsonstat,1)

[1] 0.06287192

So, we can reject at any level α bigger than this p-value. Obviously we cannot
reject H0 : π = .75 at the α = 0.05 level of significance, but we could reject
at the 0.10 level.

The student will get full credit for doing the calculation above. Recall
that this Pearson χ2 test is the score test for this setup. Let’s explore some
alternatives, like the Wald test. We use the z-statistic form, which is the test
most often taught in elementar statistics courses. Computing the observed
proportion using R:

> phat = 854/1103

> phat

[1] 0.774252

The commonly used z-statistic and associated p-value are
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> z = (phat-.75)/sqrt(phat*(1-phat)/1103)

> z

[1] 1.926562

> # p-value for 2 sided test:

> pvalue = 2*(1-pnorm(z))

> pvalue

[1] 0.05403427

The square of the z statistic would have a χ2
1 distribution of course, but the

z statistic also allows us to do one sided tests (like H0 : π ≤ .75) and then
we would use a one tailed rejection region.

Now let’s try the LRT and see what we get. The kernel of the likelihood
is πy(1− π)n−y, so the LRT test statistic is

λ = 2 (y log π̂ + (n− y) log(1− π̂)− y log .75− (n− y) log .25) .

The R-session:

> lrt = 2*(854*log(phat) + 249*log(1-phat) - 854*log(.75) - 249*log(.25))

> lrt

[1] 3.539017

> 1-pchisq(lrt,1)

[1] 0.05994099

Hmm, still different. Well, as discussed in class, the χ2 distribution is only
an approximation.

Just to assess which of these approximate tests is most accurate, let’s try
the corrected and exact tests:

> # try the z-test with Yates correction (the default; see help file)

> stuff = prop.test(854,1103,p=.75)

> stuff$p.value

[1] 0.06795155

> # now Fisher’s exact test (to be discussed in class later)

> binom.test(854,1103,p=.75)

Exact binomial test

data: 854 and 1103

number of successes = 854, number of trials = 1103, p-value = 0.06531

alternative hypothesis: true probability of success is not equal to 0.75
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Both the corrected z-test and the exact test give p-values greater than any
of the asymptotic (approximate) tests, suggesting that there may be some
problems, but they are all around .06, so they’re not too far apart. The score
test seems to be closest to the more exact values. There are rumors that the
LRT is generally better, but for discrete data the score tests are better. The
results here suggest the latter rumor is probably correct, at least in this case.

2 Exercise 1.10

We have to estimate the mean (parameter) for the Poisson, then compute
the Pearson χ2 test statistic, and finally convert to a p-value. Here is the
R-session:

> y = c(109,65,22,3,1)

> ybar = sum(y*(0:4))/sum(y)

> ybar

[1] 0.61

> sum(y)

[1] 200

> yhat = 200*dpois(0:4,ybar)

> yhat[5] = 200*(1-ppois(3,ybar)) # last class is all values >= 4

> sum(yhat) # a check

[1] 200

> pearsonstat = sum((y-yhat)^2/yhat)

> pearsonstat

[1] 0.599929

> # not going to be significant

> # for Chi-squared dist., df = no. classes (5) minus no. params. estimated (1)

> 1-pchisq(pearsonstat,4) # p-value;

[1] 0.9630716

> # definitely not significant

3 Exercise 1.12

(a) For a given value t of the test statistic, the p-value transformation is
P [T ≥ t]. (For this problem, all probabilites are computed using the given
null distribution.) Now the largest possible value of T is 2, so the smallest
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possible p-value is P [T ≥ 2] = 0.08, so if we insist on using non-randomized
p-values, we never have a p-value ≤ 0.05, so we never reject H0, so the
P [ type I error ] = 0, since we can never make a Type I error at the 0.05
level of significance.

(b) The smallest mid-p-value is (P [T > 2] + P [T ≥ 2])/2 = (0 + .08)/2
= 0.04, and for this case we would reject at the 0.05 level. Note that the
next smallest p-value is P [T ≥ 1] = 0.62 + 0.08 = 0.70 and is not relevant
at the 0.05 level. So, we can reject with the mid-p-value if T = 2, and
the probability of this under H0 is 0.08, so this is our actual type I error
probability with the nominal level 0.05

(c) For the ordinary p-value, the p-value map is

p(t) =


0.04 if t = 2;
0.70 if t = 1;

1 if t = 0.

Clearly if α = 0.05 we reject only if T = 2, and then the type I error
probability is 0.04. The mid-p-value map is

pm(t) =


0.02 if t = 2;
0.37 if t = 1;
0.85 if t = 0.

Clearly, we only reject using the mid-p-value if we observe T = 2, and the
type I error probability is still 0.04.

Thus, the mid-p-value approach is liberal in the setting of parts (a) and
(b), i.e., the type I error probability is too large, and conservative in the
setting of this part.

(d) The randomized p-value is

pr(t) = (1− U) ∗ P [T > t] + U ∗ P [T ≥ t] = P [T > t] + U ∗ P [T = t],

where U is uniform random variable on (0, 1) independent of the data. If we
reject when T = 2 and U ≤ 5/8, the type I error probability is

P [T = 2 &U ≤ 5/8] = P [T = 2]P [U ≤ 5/8] = 0.08 ∗ (5/8) = 0.05.

One can argue if this is a sensible test or not. The most sensible approach is
to report the conservative p-value P [T ≥ t], which most users would report,
and maybe also the liberal p-value P [T > t], and then the user who wishes
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can randomize between them. This is in the spirit of why p-values are used
in the first place - they make it easy to decide whether or not to reject H0

depending on one’s own level of significance, and reporting a range (liberal,
conservative) leaves it up to the reader whether he or she wishes to randomize
the p-value or not.

4 Exercise 1.29

(a) The log likelihood kernel is

logL(θ) = n1 log θ2 + n2 log[2θ(1− θ)] + n3 log(1− θ)2

= C + (2n1 + n2) log θ + (n2 + 2n3) log(1− θ).

Here, C is a quantity that doesn’t depend on θ. Taking derivative and setting
equal to 0:

2n1 + n2

θ
− n2 + 2n3

1− θ
= 0

(2n1 + n2)(1− θ) = (n2 + 2n3)θ

(2n1 + n2) = 2(n1 + n2 + n3)θ

θ̂ =
2n1 + n2

2(n1 + n2 + n3)

This of course is a stationary point. In fact the second derivative of the log
likelihood is

−2n1 + n2

θ2
− n2 + 2n3

(1− θ)2
< 0,

which shows that the log likelihood is strictly concave, and so any maximizer
is necessarily the unique stationary point.

(b) We derived the second derivative above, and it agrees with the for-
mula in the book. Evaluating the expected value of the negative of this:

Eθ

[
2N1 +N2

θ2
+
N2 + 2N3

(1− θ)2

]

=
2nθ2 + 2nθ(1− θ)

θ2
+

2nθ(1− θ) + 2n(1− θ)2

(1− θ)2

=
2n

θ(1− θ)
,
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where the last expression is obtained by some offline algebraic simplification.
The asymptotic standard error is then 2n/[θ̂(1− θ̂)].
(c) To perform a Pearson’s χ2 test, we would compute θ̂ using the above

formula, then the so-called expected counts:

n̂1 = nθ̂2

n̂2 = 2nθ̂(1− θ̂)
n̂2 = n(1− θ̂)2.

Then, the Pearson χ2 test statistic is

T =
3∑
i=1

(ni − n̂i)2

n̂i
.

There are 2 degrees of freedom if the so-called expected counts were given,
but since they are based on estimating one parameter, we lose a d.f., so the
d.f. for the χ2 distribution is 1.

Now the student will have satisfied the requirements of the problem with
and answer as in the previous paragraph, but it is worthwhile to consider
the alternative tests. The LRT is fairly straightforward: the MLE under H0

is given above, and the MLE under the alternative (the general multinomial
model) is the sample proportions. One can plug these into the likelihood and
compute the test statistic. Coming up with a Wald test would be a challenge
here. We have to figure out an estimand. Considering the full multinomial
model with parameter vector π = (π1, π2, π3), where we have to drop one of
the components because of the constraint

∑
i πi = 1, and we will drop π3.

Under the null model,

π1 = θ2,

π2 = 2θ(1− θ)2

= 2
√
π1 − 2π1,

so if we set
b(π1, π2) = π1 − 2

√
π1 − 2π1,

then the null hypothesis is equivalent to H0 : b(π1, π2) = 0. One can then
derive an asymptotic normal distribution for the estimand and construct a
z-statistic for the test. Of course, other estimands could be considered, which
is one of the criticisms of Wald tests: they are not unique.
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5 Exercise 1.32

(a) Let Σ be the p× p matrix (p = c− 1) given by

Σkj =

{
−πkπj if k 6= j,

πj(1− πj) if k = j.

We want to show that its inverse, say A, has entries

Aik =

{
1/πc if i 6= k,

1/πc + 1/πi if i = k.

Recall that πc = 1 − ∑p
i=1 πi. Letting B = AΣ, we want to show B is

an identity. The seemingly straightforward approach is to slog through the
algebra. If i 6= j, then

Bij =
p∑

k=1

AikΣkj

=

( p∑
k=1

(−πkπj)/πc
)
− πiπj/πi + πj/πc

=

(
−πj
πc

p∑
k=1

πk

)
+ πj

(
1

πc
− 1

)
= −πj

πc
(1− πc) +

πj
πc

(1− πc)

= 0.

If i = j, then

Bii =
p∑

k=1

AikΣki

=

( p∑
k=1

(−πkπi)/πc
)
− π2

i

1

πi
+ πi

(
1

πc
+

1

πi

)

=

(
−πi
πc

p∑
k=1

πk

)
− πi +

πi
πc

+ 1

= −πi
πc

(1− πc) − πi +
πi
πc

+ 1

= 1.
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Thus, B = I as we needed to show.
There should be a more elegant way to do this. Let’s note that we can

write our matrices as

Σ = D − θθT

A = D−1 +
1

πc
U,

where θ = (π1, . . . , πp) (recall p = c − 1), D = diag(θ), and U = 11T is a
matrix with all entries equal to 1, and 1 is a p-vector with all entries equal
to 1. Then

AΣ =
(
D−1 +

1

πc
11T

) (
D − θθT

)
= I − D−1θθT +

1

πc
11TD − 1

πc
11T θθT

Now

D−1θ =



1/π1 0 · · · 0
0 1/π2 · · · 0
...

... 0
0 · · · 1/πp−1 0
0 · · · 0 1/πp





π1
π2
...

πp−1

πp


= 1,

1TD = θT

1T θ = 1− πc.

Substituting these into the previous calculation gives

AΣ = I − 1θT +
1

πc
1θT − 1

πc
1(1− πc)θT

= I.

I see that it’s just about the same amount of typing as the previous solution,
but it seems more elegant. It would be less typing if I didn’t expand out
D−1.

(b) Let’s try it with the slogging through, then the more elegant way. I
will use π now to mean θ in the previous notation, thus to match the book’s
notation. I will also use δij to denote Kronecker’s δ, which are the entries of
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the identity matrix (δij = 0 if i 6= j and δii = 1). Note also that nπ̂i = ni
and nπi = µi. Also, πc = 1−∑c−1

i=1 πi and nc = n−∑c−1
i=1 ni.

n(π̂ − π0)TΣ−1
0 (π̂ − π0) = n

c−1∑
i=1

c−1∑
j=1

(π̂i − πi)
(

1

πc
+ δij

1

πi

)
(π̂j − πj)

=
1

µc

∑
i

∑
j

(ni − µi)(nj − µj) +
∑
i

(ni − µi)2

µi

=
1

µc

(∑
i

(ni − µi)
)2

+
c−1∑
i=1

(ni − µi)2

µi

=
1

µc

(
n− nc −

c−1∑
i=1

µi

)2

+
c−1∑
i=1

(ni − µi)2

µi

=
1

µc

(
−nc + n(1−

c−1∑
i=1

πi

)2

+
c−1∑
i=1

(ni − µi)2

µi

= X2.

Here, X2 is the Pearson statistic from equation (1.16), p. 18.
Now let’s try doing it the more elegant way.

n(π̂ − π0)TΣ−1
0 (π̂ − π0) = n(π̂ − π0)T

(
D−1 +

1

πc
11T

)
(π̂ − π0)

= n(π̂ − π0)TD−1(π̂ − π0) +
n

πc
(π̂ − π0)T11T (π̂ − π0)

= n
c−1∑
i=1

(π̂i − πi)2

πi
+

n

πc

[
1T (π̂ − π0)

]2

=
c−1∑
i=1

n2(π̂i − πi)2

n2πi
+

n

πc

[
c−1∑
i=1

(π̂i − πi)
]2

= X2.

This seems to be just about the same as the previous calculation.
(c) When c = 2, then in equation (1.11), p. 13, π = π1 and

Z2
s =

 π̂1 − π1√
π1(1− π1)/n

2

= n
(π̂1 − π1)2

π1(1− π1)
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speq n
n2 (π̂1 − π1)2

n2π1(1− π1)

= n
(nπ̂1 − nπ1)2

µ1(n− µ1)

= n
(n1 − µ1)

2

µ1(n− µ1)
.

Boy, that doesn’t look like the formula for X2, but let’s work with the defi-
nition of X2 and simplify it.

X2 =
(n1 − µ1)

2

µ1

+
(n2 − µ2)

2

µ2

=
(n1 − µ1)

2

µ1

+
(n− n1 − n+ µ1)

2

n− µ1

=
(n1 − µ1)

2

µ1

+
(n1 − µ1)

2

n− µ1

= n
(n1 − µ1)

2

µ1(n− µ1)
.

Now we have solved the problem.
This problem suggests that in many cases, a Wald statistic can be made

into a score statististic by simply substituting the constrained MLE into the
formula for the standard error rather than the full MLE. Of course, that
can’t be true in general since the Wald test is not unique - it depends on the
estimand that is constrained to give the null hypothesis.
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