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1 Exercise 2.15

The first thing to do is to get the data into R. I checked the website for the
book and the data are not posted there, so I guess I have to do it by hand. I
found it easiest to put it in a spreadsheet and save is as a .csv file and then
read it into R. Also, for convenience, I wrote a function to compute the odds
ratio from a 2x2 table given as a 4 dimensional vector (n11, n21, n12, n22),
where the middle two components may be switched (doesn’t matter for the
computation). Here is the function:

OddsRatio = function(nvec){

# function to compute estimated odds ratio from a 4-vector (n11,n21,n12,n22)

theta = nvec[1]*nvec[4]/(nvec[2]*nvec[3])

return(theta)

}

Here is the R session:

> raw = read.csv("data.csv", header=F)

> raw

V1 V2 V3 V4

1 512 313 89 19

2 353 207 17 8

3 120 205 202 391

4 138 279 131 244
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5 53 138 94 299

6 22 351 24 317

> apply(raw,2,sum)

V1 V2 V3 V4

1198 1493 557 1278

> # checks with column totals in the book

> dimnames(raw) = list(rownames=c("A","B","C","D","E","F"),colnames=c("MY","MN","FY","FN"))

> source("OddsRatio.R")

> apply(raw,1,OddsRatio)

A B C D E F

0.3492120 0.8025007 1.1330596 0.9212838 1.2216312 0.8278727

> 512*19/(313*89)

[1] 0.349212

> # just checking

> OddsRatio(apply(raw,2,sum))

MY

1.84108

So, just looking at the (estimated) marginal odds ratio θ̂AG = 1.84108, we
might conclude that males have almost twice the odds of acceptance than
female applicants. However, the conditional odds ratios, conditioning on a
department D, ranges between 0.349 and 1.22, with 4 out of 6 departments
having a higher odds for accepting female applicants, and none having an
odds ratio as high as the marginal odds ratio. This illustrates some of the
concepts described at length in the book, pp. 50-52. It is of interest to look
at the proportion of males within departments, the proportion of successful
applicants, and the relative size of the departments:

> rowsums = apply(raw,1,sum)

> rowprops = rowsums/sum(rowsums)

> rowprops = round(rowprops,digits=3)

> maleprops = (raw[,1]+raw[,2])/rowsums

> maleprops = round(maleprops,digits=3)

> acceptprops = (raw[,1]+raw[,3])/rowsums

> acceptprops = round(acceptprops,digits=3)

> condoddsratio = apply(raw,1,OddsRatio)

> condoddsratio = round(condoddsratio,digits=3)

> cbind(rowprops,maleprops,acceptprops,condoddsratio)

rowprops maleprops acceptprops condoddsratio
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A 0.206 0.884 0.644 0.349

B 0.129 0.957 0.632 0.803

C 0.203 0.354 0.351 1.133

D 0.175 0.527 0.340 0.921

E 0.129 0.327 0.252 1.222

F 0.158 0.522 0.064 0.828

Departments A and B have relatively few female applicants, and they have
the lowest two conditional odds ratio, so their small proportions of female
applicants means they contribute relatively little to the marginal odds of
acceptance of female applicants. Departments A and B also have the highest
acceptance rates. Departments C and E have lower proportions of male
applicants, and the two highest values in the odds ratio. They also have
lower overall acceptance rates than A and B. The ranges in the proportions
over all applicants for each department vary from .129 to .206, which isn’t
that much, so no single department is dominating the marginal result. Thus,
it seems the higher acceptance rates in the departments dominated by males
(A and B) and the lower acceptance rates in departments with clear majority
of female applicants (C and E) is driving the marginal result.

2 Exercise 2.24

I put the data in a spreadsheet again. I had a little bit of a problem because
reading it in with the read.csv function creates a data frame, and the cumsum
function wasn’t operating correctly. Anyway, here’s the R code to plot the
cdf’s coding the levels of job satisfaction as 1,2,3,4 in the order they appear.

> jobsat = read.csv("data2.24.csv",header=F)

> jobsat = as.matrix(jobsat)

> cdf = cumsum(jobsat[1,])/sum(jobsat[1,])

> cdf = rbind(cdf,cumsum(jobsat[2,])/sum(jobsat[2,]))

> matplot(t(cdf),xlab="Job Satisfaction",ylab="CDF",type="l")

> title(main="Cumulative Proportions of Job Satisfaction",

+ sub="Black line for Black workers; Red line for white workers")

The plot of the two c.d.f.’s is given below, on the last page. One can see that
the c.d.f. for the white workers is below the one for the black workers, so the
job satisfaction is stochastically ordered with white having more than black.
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Figure 1: Plot of empirical c.d.f.’s of job satisfaction for black and white
workers. The red dashed line (white workers) is below the solid black line
(black workers), thus showing a stochastic ordering.

The estimated probability (proportion) that job satisfaction is higher for
black workers than white workers is computed next:
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> pWHB = 19*sum(jobsat[2,2:4])+13*(215+430)+42*430

> pWHB = pWHB/(sum(jobsat[1,])*sum(jobsat[2,]))

> pWHB

[1] 0.4053166

> pBHW = 47*sum(jobsat[1,2:4])+40*(42+59)+215*59

> pBHW = pBHW/(sum(jobsat[1,])*sum(jobsat[2,]))

> pBHW

[1] 0.2268273

> pBHW - pWHB

[1] -0.1784893

The proportion of pairs of a black worker and a white worker where the
white has higher satisfaction than the black is 0.4053, approximately. The
requested difference of probabilities is -.178, approximately. We knew it
would be negative because of the stochastic ordering. I don’t know how
informative the difference is.

3 Exercise 2.25

(a) This has been stated in class - it’s just Bayes rule. We give the derivation
in detail. Let Dis ∈ {T, F} and Test ∈ {+,−} denote the disease (true or
false) and test result (positive or negative).

P [Dis = T |Test = +]

=
P [Dis = T&Test = +]

P [Test = +]

=
P [Test = +|Dis = T ]P [Dis = T ]

P [Test = +|Dis = T ]P [Dis = T ] + P [Test = +|Dis = F ]P [Dis = F ]

=
π1ρ

π1ρ+ π2(1− ρ)
.

(b) Plugging in the numbers and recalling that π2 is one minus specificity,

P [Dis = T |Test = +] =
0.95 ∗ 0.005

0.95 ∗ 0.05 + 0.05 ∗ 0.995
= 0.08715596.

Thus, even though the test is very accurate (with high sensitivity and speci-
ficity), a positive test result doesn’t mean a high probability of actually
having disease.
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(c) I don’t really like this part of the exercise - the result above is not
surprising since the prevalence ρ is small. In terms of odds, we have the
simple formula

(posterior odds) = (likelihood ratio) × (prior odds).

In this setting, that means

Odds[Dis = T |Test = +] =
P [Test = +|Dis = T ]

P [Test = +|Dis = F ]
× ρ

1− ρ
. =

π1
π2
× ρ

1− ρ
.

The prior odds of disease, 0.005/0.995 = 1/199 are quite small, and the
likelihood ratio is only .95/(1− .95) = 19. In order to get the posterior odds
near 1 (which is 0.5 probability) we would need the likelihood ratio near 199.

I guess the grader can just give credit if you did something reasonable
with this. I don’t know that the tree or joint distribution provides more
insight than what I have presented here.

(d) I think I answered it in part (d). Plugging in the new prevalence, we
get

Odds[Dis = T |Test = +] = 19 ∗ (0.10/0.90) = 19/9 = 2.1111.

So the positive predictive value is

P [Dis = T |Test = +] = 19/(19 + 9) = 0.6785714.

4 Exercise 2.30

I guess what we need to show is∣∣∣∣π1π2 − 1
∣∣∣∣ ≤

∣∣∣∣∣π1/(1− π1)π2/(1− π2
− 1

∣∣∣∣∣ .
Of course, the right hand side of the equation may be written as∣∣∣∣∣π1(1− π2)π2(1− π1)

− 1

∣∣∣∣∣ .
Now if π1 ≥ π2 then (1− π1) ≤ (1− π2) and

1 ≤ π1
π2
≤ π1

π2
∗ 1− π2

1− π1
,

7



and then the desired inequality holds. If π2 ≥ π1, then the corresponding
inequalities hold with the two π’s switched, and when we take reciprocals it
reverses all inequalities, so in this case we get

1 ≥ π1
π2
≥ π1

π2
∗ 1− π2

1− π1
,

and the desired inequality holds in this case as well.
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