
December 13, 2018

1



STAT 545: Solutions to Homework 4

Dennis D. Cox
Department of Statistics

Rice University

December 13, 2018

1 Exercise 4.5

(a) Note that the R-function glm automatically gives the null deviance (fit-
ting only the intercept), so it is not necessary to fit this separately. According
to the help on the glm function, the deviance is

up to a constant, minus twice the maximized log-likelihood.

Where sensible, the constant is chosen so that a saturated

model has deviance zero.

In this case, with this grouped data, the value of x = 2 has all successes,
so the saturated model deviance is not defined. So, if I understand the help
file, the deviances that are returned are just minus 2 times the maximized
log likelihood, so L0 is −1/2 times the null.deviance returned by R, and
L1 is −1/2 times the deviance. That seems easy enough to compute. Here
is the R session:

> xgrouped = c(0,1,2)

> ygrouped = matrix(c(1,2,4,3,2,0),ncol=2)

> ygrouped

[,1] [,2]

[1,] 1 3

[2,] 2 2

[3,] 4 0

> M1grouped = glm(ygrouped ~ xgrouped,family=binomial)
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> M1grouped$deviance

[1] 0.9843993

> M1grouped$null.deviance

[1] 6.25678

> M1grouped$null.deviance - M1grouped$deviance

[1] 5.27238

OK, let’s check by doing a direct calculation of the log maximized likelihoods:

> L1grouped = sum(dbinom(ygrouped[,1],c(4,4,4),

+ plogis(M1grouped$linear.predictors),log=TRUE))

> L1grouped

[1] -2.336075

(Note that plogis is the CDF of the standard logistic distribution, is the
inverse of the logit link function.) Whoops. That doesn’t agree with the
value of −0.4921997 in the previous calculation. I am sure (other than I may
have made a typing error) that the −2.336075 value is correct, but why the
difference? Maybe they included the “saturated model” terms for the -2 log
likelihood on a term by term basis. Thus, it makes sense for the values of x
except x = 2. This is my best guess. Let’s see if it is correct:

> M1grouped.deviance = 2*(-L1grouped + sum(dbinom(ygrouped[1:2,2],

+ c(4,4),ygrouped[1:2,2]/4,log=TRUE)))

> M1grouped.deviance

[1] 0.9843993

OK, so that agrees with the deviance we found before. We should be able
to do the same with the null deviance. Under the null model of a constant
probability of success, independent of x, the m.l.e. of π is just the total
proportion of successes.

> L0grouped = sum(dbinom(ygrouped[,1],c(4,4,4),

+ sum(ygrouped[,1])/12,log=TRUE))

> L0grouped

[1] -4.972265

> M0grouped.deviance = 2*(-L0grouped + sum(dbinom(ygrouped[1:2,2],

+ c(4,4),ygrouped[1:2,2]/4,log=TRUE)))

> M0grouped.deviance

[1] 6.25678
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This agrees with the value returned by the glm function.
Now we turn to the ungrouped data.

> # Now doing the ungrouped data

> xungrouped = rep(c(0,1,2),c(4,4,4))

> yungrouped = c(1,0,0,0,1,1,0,0,1,1,1,1)

> M1ungrouped = glm(yungrouped ~xungrouped,family=binomial)

> M1ungrouped$deviance

[1] 11.02826

> M1ungrouped$null.deviance

[1] 16.30064

> M1ungrouped$null.deviance - M1ungrouped$deviance

[1] 5.27238

For this ugrouped data, the “saturated” model is not sensible for all values
of x since the (single) y value is either 0 or 1. Therefore, we conjecture that
the deviance is just the −2 times the maximized log likelihood. Checking
this out:

> L1ungrouped = sum(dbinom(yungrouped,rep(1,12),

+ plogis(M1ungrouped$linear.predictors),log=TRUE))

> -2*L1ungrouped

[1] 11.02826

So that’s correct.
So, in a table, here are our results:

grouped ungrouped

L0 -3.12839 -8.150319
L1 -0.4921997 -5.514129

According to the claim in the exercise, we should see the same numbers
in each row of the table. Note that the difference is the same within each
row (5.021929). This is because the binomial coefficients were included in
computing the grouped log likelihood, whereas they are all 1 in the ungrouped
case. I guess the textbook author forgot about them.

(b) The deviances are different because there are different disallowed
terms in the saturated model. For the grouped data, we just leave off the
term corresponding to x = 2, while for the ungrouped data all terms in the
saturated model don’t make sense are hence are left out when computing the
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deviances. Note that the binomial coefficients don’t matter for the deviances
since they are the same for the given and saturated model so they drop out,
basically.

(c) Yes, the difference in deviances is 5.27238 for both ways of entering
the data.

The computed p-value for the LRT statistic for testing H0 : β = 0 is
0.02166637, but the accuracy of the χ2

1 approximation is very dubious as
there are only N = 12 observations. Note that the p-value from the Wald
test is 0.0683, and the Wald and LRT are asymptotically equivalent in this
case, so clearly the asymptotic results are not accurate.

2 Exercise 4.18

When all the success probabilities in the binomials are the same, then we
may add them together to get a single Binom(n, π) observation with n =∑

i ni. The MLE for π is just the total number of successes over the total
number of trials as given as mentioned on p. 13 at the beginning of section
1.4.

The N × 2 table is constructed like the grouped data before: put (say)
yi in the first column and ni − yi in the second column. To test the null
hypothesis, we have

µ̂i1 = niπ̂

µ̂i2 = ni(1− π̂).

Thus, Pearson’s chi-squared is given by

Ξ2 =
∑
i

[
(yi − niπ̂)2

niπ̂
+

(ni − yi − ni(1− π̂))2

ni(1− π̂)

]
=

∑
i

(yi − niπ̂)2

niπ̂(1− π̂)
.

If all ni = 1 then this is just

1

π̂(1− π̂)

∑
i

(yi − π̂)2 =
1

π̂(1− π̂)

[∑
i

yi − 2π̂
∑
i

yi + Nπ̂2

]
=

1

π̂(1− π̂)

[
Nπ̂ − Nπ̂2

]
= N.
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Note that y2i = yi in this case since yi is either 0 or 1.

3 Exercise 5.8

I’ll just do parts (a) and (b) in one pass. Here is the R-code:

> x1 = c(12,15,42,52,59,73,82,91,96,105,114,120,121,128,130,139,139,157)

> x0 = c(1,1,2,8,11,18,22,31,37,61,72,81,97,112,118,127,131,140,151,159,177,206)

> x = c(x0,x1)

> length(x0)

[1] 22

> length(x1)

[1] 18

> y = c(rep(0,22),rep(1,18))

> plot(x,y,main="Plot for Exercise 5.8")

> fit1 = glm(y ~ x ,family=binomial)

> summary(fit1)

Call:

glm(formula = y ~ x, family = binomial)

Deviance Residuals:

Min 1Q Median 3Q Max

-1.3126 -1.0907 -0.9482 1.2170 1.4052

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.572693 0.602395 -0.951 0.342

x 0.004296 0.005849 0.734 0.463

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 55.051 on 39 degrees of freedom

Residual deviance: 54.504 on 38 degrees of freedom

AIC: 58.504

Number of Fisher Scoring iterations: 4
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> # slope is not significant

> fit2 = glm(y ~ x + x^2, family = binomial)

> summary(fit2)

Call:

glm(formula = y ~ x + x^2, family = binomial)

Deviance Residuals:

Min 1Q Median 3Q Max

-1.3126 -1.0907 -0.9482 1.2170 1.4052

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.572693 0.602395 -0.951 0.342

x 0.004296 0.005849 0.734 0.463

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 55.051 on 39 degrees of freedom

Residual deviance: 54.504 on 38 degrees of freedom

AIC: 58.504

Number of Fisher Scoring iterations: 4

> x2 = x^2

> fit2 = glm(y ~ x + x2, family = binomial)

> summary(fit2)

Call:

glm(formula = y ~ x + x2, family = binomial)

Deviance Residuals:

Min 1Q Median 3Q Max

-1.482 -1.009 -0.507 1.012 1.788

Coefficients:

Estimate Std. Error z value Pr(>|z|)
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(Intercept) -2.0462547 0.9943478 -2.058 0.0396 *

x 0.0600398 0.0267808 2.242 0.0250 *

x2 -0.0003279 0.0001564 -2.097 0.0360 *

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 55.051 on 39 degrees of freedom

Residual deviance: 48.228 on 37 degrees of freedom

AIC: 54.228

Number of Fisher Scoring iterations: 4

> # both coefficients of x and x^2 are significant

starting httpd help server ... done

> lines(0:206,plogis(-2.0462547 + 0.0600398*(0:206) - 0.0003279*(0:206)^2))

The plot appears somewhere below.
Note that when we just fit the linear model, the coefficient is not signif-

icant. Clearly this is because there are two many zeroes (for y values) on
either end and not enough in the middle. The quadratic model fixes this
nicely, and both coefficients are significant! We see that the risk of kyphosis
is low for both the very young and the older patients and it is the patients
of intermediate age (between about 4 and 12) who are at highest risk.

(Question: what was wrong with the original fit2 statement?)

4 Exercise 5.11

This question is rather confusing. So, I’m assuming the outcome variable
y is 1 if the person uses oral contraception and 0 if the person doesn’t.
Looking at the “Education” variable, there is a positive coefficient meaning
that higher education (≥ 1 year of college) implies higher odds of using oral
contraception. I think when it says “conditional odds ratio” it means the
ratio of the odds of using oral contraception conditional on education at the
the higher level of education over the odds at the lower level of education,
conditional on everything else (Age, Race, and Marital Status). Let the
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predictor variable indicators be labeled A, R, M , and E (first letters) with
values 1 is indicated in the table. Let α denote the intercept. Then the fitted
model is

log
P [Y = 1|A,R,M,E]

P [Y = 0|A,R,M,E]
= α − 1.320A + 0.622R − 0.460M + 0.501E.

I think the (estimated) conditional odds ratio asked for is

P [Y = 1|A,R,M,E = 1]/P [Y = 0|A,R,M,E = 1]

P [Y = 1|A,R,M,E = 0]/P [Y = 0|A,R,M,E = 0]

= exp [(α − 1.320A + 0.622R − 0.460M + 0.501) −
(α − 1.320A + 0.622R − 0.460M)]

= exp [0.501] .

Thus, we can get the approximate confidence interval for the coefficient from
the data in the table and exponentiate to get the confidence interval for the
desired odds ratio. It doesn’t say what level of confidence to use, so I will
choos 95%.

0.501 ± 1.96 ∗ 0.077 = (0.652, 0.350).

e.652 = 1.92

e.350 = 1.42.

So our confidence interval is 1.42 ≤ Odds Ratio ≤ 1.92 with (approximately)
95% confidence.
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5 Exercise 5.30

(a) The derivation is

log
P [Y = 1|X = x]

P [Y = 0|X = x]

= log
f(x|Y = 1)P [Y = 1]/{f(x|Y = 1)P [Y = 1] + f(x|Y = 0)P [Y = 0]}
f(x|Y = 0)P [Y = 0]/{f(x|Y = 1)P [Y = 1] + f(x|Y = 0)P [Y = 0]}

= log
f(x|Y = 1)P [Y = 1]

f(x|Y = 0)P [Y = 0]

= log
P [Y = 1]

P [Y = 0]
+ log

(2πσ2)−1/2 exp[−(x− µ1)
2/(2σ2)]

(2πσ2)−1/2 exp[−(x− µ0)2/(2σ2)]

= log
P [Y = 1]

P [Y = 0]
+ x

(
µ1 − µ0

σ2

)
− µ2

1 − µ2
0

2σ2

= α + βx,

α = log
P [Y = 1]

P [Y = 0]
− µ2

1 − µ2
0

2σ2

β =
µ1 − µ0

σ2
.

The first equation follows from Bayes formula (used in both the numerator
and denominator). The second is a formula already discussed in class (pos-
terior odds equals prior odds times the likelihood ratio, which is f(x|Y =
1)/f(x|Y = 0)). In the third equation we plugged in the normal densities.
The rest is just algebra.

(b) We can use the calculation above and just plug in the different normal
densities at the third equation.

log
P [Y = 1|X = x]

P [Y = 0|X = x]

= log
P [Y = 1]

P [Y = 0]
+ log

(2πσ2
1)−1/2 exp[−(x− µ1)

2/(2σ2
1)]

(2πσ2
0)−1/2 exp[−(x− µ0)2/(2σ2

0)]

= log
P [Y = 1]

P [Y = 0]
− log

σ1
σ0
− x2

(
1

2σ2
1

− 1

2σ2
0

)
+ x

(
µ1

σ2
1

− µ0

σ2
0

)
−
(
µ2
1

sσ2
1

− µ2
0

sσ2
0

)
= α + β1x + β2x

2,

The reader can easily see the expressions for the coefficients in this quadratic
functions.
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(c) Similarly to (b), we now plug in the densities from the exponential
family as given

log
P [Y = 1|X = x]

P [Y = 0|X = x]

= log
P [Y = 1]

P [Y = 0]
+ log

α(θ1)b(x) exp[xQ(θ1)]

α(θ0)b(x) exp[xQ(θ0)]

= α + βx,

α = log
P [Y = 1]

P [Y = 0]
+ log

α(θ1)

α(θ0)

β = Q(θ1)−Q(θ0).

(d) This one is a slightly more complicated because we need to deal
with the multivariate normal density. Let p denote the dimension of X. |Σ|
denotes the determinant of the covariance matrix.

log
P [Y = 1|X = x]

P [Y = 0|X = x]

= log
P [Y = 1]

P [Y = 0]
+ log

(2π)−p/2|Σ|−1/2 exp[−(x− µ1)
TΣ−1(x− µ1)]

(2π)−p/2|Σ|−1/2 exp[−(x− µ0)TΣ−1(x− µ0)]

= α + βTx,

α =
P [Y = 1]

P [Y = 0]
− 1

2
(µ1 − µ0)

TΣ−1(µ1 − µ0)

β = Σ−1(µ1 − µ0).

11



0 50 100 150 200

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Plot for Exercise 5.8

x

y

Figure 1: Plot of data and quadratic logit fit.
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