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1 Some Definitions and Notations

A multi-index m = (m1, . . . ,mk) is a vector of non-negative integers. We
use |m| =

∑
imi to denote the sum of the components (which is also the `1

length of the vector). We define a monomial as an expression

am =
k∏
i=1

ami
i .

where a = (a1, . . . , ak) is a vector of real numbers and m is a multi-index of
the same dimension as a. Since each mi is a positive integer, ami

i is always
defined (which wouldn’t be the case if mi = 1/2 or mi = −1). One special
case we need to stipulate is that

00 = 1.

Thus, the function x 7→ x0 is continuous, but the function x 7→ 0x, for x ≥ 0
is not continuous at x = 0.

Next, we introduce the multinomial coefficient,

(
n
m

)
=


n!∏k

i=1
mi!

if |m| = n;

0 otherwise.
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Here, n is a positive integer and m = (m1, . . . ,mk) is a multi-index. The
usual binomial coefficient is a special case of the multi-nomial with k = 2,
i.e. (

n
(m1,m2)

)
=

(
n
m1

)
,

provided m1 +m2 = n. One might think the notation above is confusing, but
just remember that when the bottom expression in the notation is a vector,
then the multi-nomial notation is in use, and when it is a scalar, then it is
the binomial coefficient notation.

The multinomial coefficients have two important and useful mathemat-
ical properties, one algebraic and one combinatorial. We first consider the
algebraic application.

Theorem 1 (Multinomial Formula)(
k∑
i=1

ai

)n
=
∑
m

(
n
m

)
am,

where the sum is over all multi-indices m of dimension k. (Of course, all
terms that don’t satisfy |m| = n are 0.)

Proof: We proceed by induction on k, the number of terms. We assume
the reader is familiar with the binomial formula, which is the result when
k = 2. Now assume it is true for some k ≥ 2 and show that it follows for
k + 1. Suppose a = (a1, . . . , ak, ak+1). For 1 ≤ j ≤ k, let

bj =

{
aj if j < k,

ak + ak+1 if j = k.

Then, by the induction hypothesis that the formula is true for k terms, we
get  k∑

j=1

bj

n =
∑
m

(
n
m

)
bm

=
∑

m:|m|=n

n!∏k
i=1mi!

k∏
i=1

bmi
i

=
∑

m:|m|=n

n!∏k
i=1mi!

(
k−1∏
i=1

ami
i

)
(ak + ak+1)

mk
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=
∑

m:|m|=n

n!∏k
i=1mi!

(
k−1∏
i=1

ami
i

)
mk∑
i=0

mk!

i!(mk − i)!
aika

mk−i
k+1

=
∑

m:|m|=n

mk∑
`=0

n!∏k
i=1mi!

mk!

`!(mk − `)!

(
k−1∏
i=1

ami
i

)
a`ka

mk−`
k+1 .

(Question: Why did we need to change the notation for the index of summa-
tion in “

∑mk
`=0” to ` from i in the line before that?) The binomial formula was

used in the fourth equation of the last calculation. In the last expression,
replace the multi-index m with α = (m1, . . . ,mk−1, `,mk− `). Note that this
is a general k + 1 dimensional multi-index with |α| = n. Also,

aα =

(
k−1∏
i=1

ami
i

)
a`ka

mk−`
k+1 ,(

n
α

)
=

n!∏k
i=1mi!

mk!

`!(mk − `)!
,

∑
m:|m|=n

mk∑
`=0

=
∑

α:|α|=n
.

Putting these into the previous calculations and using the definition of b we
have  k∑

j=1

bj

n =

k+1∑
j=1

aj

n

=
∑

α:|α|=n

(
n
α

)
aα,

which is the result needed to prove the theorem.
The other property we need is a combinatorial result. If A is a set, then

|A| is the number of elements of A, which is either a nonnegative integer or
∞. Given an integer n > 0 and a multi-index m such that |m| = n, define

C(n,m) = {h : h is a function mapping {1, . . . , n} −→ {1, . . . , k}

such that ∀i ∈ {1, . . . , k},
n∑
j=1

I{i}(h(j)) = mi}.

Note that
∑n
j=1 I{i}(h(j)) is the number of values (h(1), . . . , h(n)) for which

h(j) = i. Expressed differently, C(n,m) is all possible ways we can assign n
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things to k classes with m1 things in the first class, m2 things in the second
class, . . ., and mk things in the k-th class.

Theorem 2

|C(n,m)| =

(
n
m

)
.

Proof: We prove this by induction on k. The case k = 2 is the com-
binatorial property of the binomial coefficient. Note that a mapping h :
{1, . . . , n} −→ {1, 2} can be regarded as assigning “success” (i.e., h(x) = 1)
or “failure” (h(x) = 2) to each of the integers 1, . . . , n, and the number of
ways this can be done such that the number of successes is

∑n
i=1 I{1}(h(i)) =

m1 and the number of failures is
∑n
i=1 I{2}(h(i)) = m2 is(

n
m1

)
=

(
n

(m1, n−m1)

)
.

We assume this combinatorial property of the binomial coefficient is already
known.

So assume the result is true for some k ≥ 2 and we will show it is true
for k + 1. For any map h : {1, . . . , n} −→ {1, . . . , k + 1} in C(n,m), define
h′ : {1, . . . , n} −→ {1, . . . , k} by

h′(i) = min{h(i), k}.

Thus, h′ agrees with h except when h(i) = k + 1 and then h′(i) = k. Note
that h′ is in C(n,m′) where m′ is a k-dimensional multi-index with m′j = mj

for j < k and m′k = mk +mk+1. By the induction hypothesis, the number of
such h′ maps is (

n
m′

)
.

Now, for each such h′ map, there are(
m′k
mk

)

h maps in C(n,m) that give rise to the same h′ map. Thus, the total number
of h maps in C(n,m) is(

n
m′

)(
m′k
mk

)
=

n!(∏k−1
i=1 mi!

)
m′k!

m′k!

mk!mk+1!
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=
n!(∏k−1

i=1 mi!
)
mk!mk+1!

=

(
n
m

)
,

which completes the proof.
One can use this theorem to prove the multinomial formula of the first

theorem by observing that when we expand out all the terms in the n-fold
product of the summation, the number of terms equal to any particular
monomial is given by the multinomial coefficient.

2 Derivation of the Multinomial Distribution

Suppose Ỹ , Ỹ1, Ỹ2, . . ., Ỹn are i.i.d. random variables taking values in
{1, 2, . . . , c} where c > 1 is a positive integer. We think of the Y ’s as categor-
ical random variables with the numerical value being a code for the particular
categories. For instance, if the categories are one of the political affiliations
“republican”, “democrat”, or “independent”, then we may code them as
1,2,3, repectively. Denote the probability of observing a particular class j by

πj = P [Ỹ = j].

Of course, the vector π = (π1, . . . , πc) has nonnegative entries that sum to 1.
We will refer to such a vector as a probability vector.

Define the general indicator function

IA(y) =

{
1 if y ∈ A,
0 otherwise,

where A is a set of possible y values. Now consider the random c-dimensional
vectors

Y i =
(
I{1}(Ỹi), I{2}(Ỹi), . . . , I{c}(Ỹi)

)
.

This is a vector of 0’s and 1’s with a single 1. Note that Y i and the Ỹi are
basically equivalent. We can write down the probability mass function for
the random data matrix as

P [Y 1 = y
1
, . . . , Y n = y

n
] =

n∏
i=1

P [Y i = y
i
]
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=
n∏
i=1

c∏
j=1

π
y
ij

j

=
c∏
j=1

π

∑
i
y
ij

j

If we think of this as a likelihood function for the parameter vector π, then
it depends on the observed data y

1
, . . ., y

n
only through their sum. Hence,

the sum

T =
n∑
i=1

Y i

is a sufficient statistic. (Note: we will begin writing vectors without the
under lines. It should be clear from context which quantities are vectors and
which are not.) Note that the j’th component of T is the number of Yi where
the category j occurred. Clearly we can reconstruct the data set from T ,
except for the particular order that the categories occurred, and since we are
assuming i.i.d. observations, there is no information about π in the ordering.

Now we claim that the probability mass function (p.m.f.) of the multi-
nomial is given by

P [T = t] =

(
n
t

)
πt.

Let p(t) denote the r.h.s. of this equation. We first show it defines a valid
p.m.f., i.e., that it is nonnegative and sums to 1. Since the components of
π are nonnegative and the multinomial coefficient is nonnegative, it follows
that p(t) ≥ 0. To show it sums to 1, we use the fact that the components of
π sum to 1 and apply the multinomial formula:

1 =

 c∑
j=1

πj

n

=
∑
t

(
n
t

)
πt,

where the last summation is over all c-dimensional multi-indices t. We call
the probability distribution with the p.m.f. p(t) above the Mult(n, π) distri-
bution. It assigns positive probability only to the c-dimensional multi-indices
t such that |t| = n.
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Now, the moment generating function (m.g.f.) for the Mult(n, π) distri-
bution is

ψ(u) =
∑
t

eu
T tp(t)

=
∑
t

(
n
t

)
c∏
i=1

euitiπtii

=

(
c∑
i=1

euiπi

)n
,

where the last line follows from the multinomial formula. Now, it is easy to
check that for n = 1 categorical observation, the Mult(1, π) is the correct
distribution. Recall that the m.g.f. of a sum of independent random vectors
is the product of the corresponding m.g.f.’s of the summands, so we see that
the Mult(n, π) is the distribution for the sum of n i.i.d. Mult(1, π) random
vectors, which is how we defined T above. This verifies that we have the
right p.m.f.

It is clear that each component Tj of a Mult(n, π) random vector has
binomial Bin(n, πj) distribution. This follows by considering an observation
in class j as “success” and in any other class not equal to j as “failure.” Thus,
from the (presumably) known facts about the binomial, the component mean
and variance is

E[Tj] = nπj, Var[Tj] = nπj(1− πj).

We are also interested in the covariance between components of a Mult(n, π)
vector. This can be computed using the m.g.f. Assume j 6= k, then

E[TjTk] =
∂2

∂uj∂uk
ψ(u)

∣∣∣∣∣
u=0

=
∂2

∂uj∂uk

(
c∑
i=1

euiπi

)n∣∣∣∣∣
u=0

=
∂

∂uj
neukπk

(
c∑
i=1

euiπi

)n−1∣∣∣∣∣∣
u=0

= n(n− 1)eujeukπjπk

(
c∑
i=1

euiπi

)n−2∣∣∣∣∣∣
u=0

= n(n− 1)πjπk.
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Note that j 6= k was used to obtain the fourth equality from the third in the
previous calculation. Thus, we have for j 6= k that

Cov(Tj, Tk) = E[TjTk]−E[Tj]E[Tk] = n(n−1)πjπk−(nπj)(nπk) = −nπjπk.

The fact that the covariance is negative should not come as a surprise. If Tj
happens to be larger than its mean, then we would expect other component
of T to be smaller since the constraint

∑
k Tk = n must hold.

3 A Connection Between the Multinomial and

Poisson Distributions

Now we look at an important property of the multinomial when we ran-
domize the sample size n according to a Poisson distribution. The Pois(µ)
distribution (with parameter µ ≥ 0) is defined on the nonnegative integers
and has p.m.f.

p(x) = e−µµx/x!, x = 0, 1, 2, . . . .

We assume the reader is familiar with this distribution. Now consider a two-
stage random experiment: generate N according to a Pois(µ) distribution
with µ > 0, and given a value of N = n, generate a random k-dimensional
multi-index T according to

T ∼
{

Mult(n, π) if n > 0,
δ0 if n = 0.

Here, δ0 is a unit point mass (degenerate probability) distribution that puts
probability 1 at the point 0. Also, π is a given k-dimensional probability
vector. If n = 0, then of course always T (the vector of numbers of observa-
tions in each category value) is also 0, and the factorials and powers in the
formula for the multinomial p.m.f. will all be 1 at t = 0 and 0 if t 6= 0. Now,
we compute the unconditional distribution of T . Given a multi-index t, if we
observe T = t, then there is only one value of N that could occur, namely
N = |t|. So

P [T = t] =
∞∑
n=0

P [T = t|N = n]P [N = n]

=
∞∑
n=0

(
n
t

)
πte−µµn/n!
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=
|t|!∏k
i=1 ti!

(
c∏
i=1

πtii

)
e−µµ|t|/|t|!

=
c∏
i=1

e−πiµ(πiµ)ti/ti!.

But this is precisely the p.m.f. for independent Pois(πiµ). Of course, our
sample size n is typically not random, much less Poisson distributed, but
if we imagine it is, then we can use this last result. In particular, it pro-
vides a new likelihood for the multinomial data, although it introduces an
additional parameter, namely µ, which would be a nuisance parameter for
making inference about the multinomial parameter π.
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