RICE UNIVERSITY George R. Brown School of Engineering - STATISTICS

ECON 307/STAT 310 Probability and Statistics

P or D

Introduction to Mathematical Statistics

Fall 2017

RICE UNIVERSITY Everyone's Favorite Subject

[■]RICE UNIVERSITY

Big Math

January 23, 2006

RICE UNIVERSITY Elementary Statistics

RICE UNIVERSITY Logistics and Expectations

Fast Paced

- Not an abbreviated exercise
- Concise as possible
- Required base knowledge for most of stat courses to come
- What to expect
 - Get and read the book(s)!
 - Lectures
 - Class participation
 - Homework
 - Exams

- Dr. Dobelman's website:
 - How to find
 - http://dobelman.rice.edu
- <u>Course Syllabus</u>
- <u>Canvas</u>
- Pace yourself

Understanding

RICE UNIVERSITY Mathematical Statistics

$$E(X) = \int X dF(x) = \begin{cases} \int x f(x) dx & x \text{ is continuous} \\ \Sigma x_i p_i & x \text{ is discrete} \end{cases}$$

7

- What is "Statistics"
 - vs. what "are" statistics
 - [sample] average
 - [sample] proportion
- What is N?
- Why *talk* about probability and statistics?

Statistics

- Branch of mathematics (BOM) which studies methods for the calculation of probabilities
- BOM collection and interpretation of quantitative data and the use of probability theory to estimate population parameters
- OED
 - The branch of political science concerned with the collection, classification, and discussion of (esp. numerical) facts bearing on the condition of a state or community.

- The branch of science or mathematics concerned with the analysis and interpretation of **numerical data** and appropriate ways of gathering such data.
- Also, the systematic collection and arrangement of numerical facts or data of any kind

RICE UNIVERSITY Don't Like Statistics

- Why don't people like statistics?
 - Some people "hate" statistics
 - Too hard to understand or learn
 - Doesn't make sense/not intuitive
 - Too many formulas
 - Do not understand the applicability
 - Easy to misuse or "lie"

RICE UNIVERSITY ECON 307/STAT 310

- Population versus samples
- Descriptive Statistics
 - Summarizing, describing, data reduction
- Probability (populations)
 - How the population behaves
 - Probabilities of obtaining outcomes
- Statistics and Inference (samples)
 - Data used to make statements or decisions about the universe from which the data are obtained

RICE UNIVERSITY Population v. Sample

Descriptive

- Stem and Leaf
- Histogram
- Univariate summary statistics

114,023 EarthquakeMag.				
Mean	1.98			
Median	1.90			
Mode	1.90			
Standard Deviation	0.8803			
Variance	0.7749			
Kurtosis	0.4995			
Skewness	0.4353			
Standard Error	0.0026			
Range	7.3			
Minimum	-0.6			
Maximum	6.7			
97% Conf. Level	0.0057			

2 Days, Japan, 2/10/01

Terms of the binomial distribution for n = 20 and values of p from 0.1 to 0.5 (each term has been multiplied by 10 000)

Number of successes	p = 0.1 q = 0.9	p = 0.2 q = 0.8	p = 0.3 q = 0.7	p = 0.4 q = 0.6	p = 0.5 q = 0.5
0	1216	115	8	_	
1	2702	576	68	5	
2	2852	1369	278	31	2
3	1901	2054	716	123	11
4	898	2182	1304	350	46
5	319	1746	1789	746	148
6	89	1091	1916	1244	370
7	20	545	1643	1659	739
8	4	222	1144	1797	1201
9	1	74	654	1597	1602
10	- 1	20	308	1171	1762
11	· _	5	120	710	1602
12	-	1	39	355	1201
13	- 1	_	10	146	739
14	- 1	-	2	49	370
15	_	_		13	148
16	- 1	-	-	3	46
17	-	-	_	-	11
18	-	-	-		2
19	-				-
20	-	-	-	-	-

- **Probability** $\sup |F_n(x) F(x)| \longrightarrow 0$
 - Mathematical foundation/basis for results in statistics
- Statistics $u^{\alpha}P(X > u) = \beta^{\alpha}$; $f_{\hat{\alpha}}(a) = ?$
 - Branch of scientific method that deals with [numerical] properties of populations that occur in nature (or our imaginations), of natural phenomena
 - Natural phenomena includes all the happenings of the external world, human or not
 - Estimators of parameters

RICE UNIVERSITY Laplacian Determinism

Laplacian Dæmon – 19th century ideal
 – Perfect knowledge of the past and the system → perfect prediction

- Poincare complication (per Mirowski, 1990)
 - Imperfect knowledge of past (minor errors)
 → wildly discrepant future predictions
 - 60 years before Mandelbrot

- Understand variability
- Violin story
- Fundamental theorem of probability

$$\overline{X}_n \xrightarrow{a.s.} \mu$$

$$\sqrt{n} \frac{\overline{X}_n - \mu_X}{\sigma_X} \stackrel{d}{\to} \Phi(z)$$

Fundamental theorem of statistics

$$\sup |F_n(x) - F(x)| \stackrel{a.s.}{\to} 0$$

Keep in mind

Black Magic Stats

- Table of Contents
 - 1. Histograms, time series charts
 - 2. Organizing Data
 - 3. Averages and Variation
 - 4. Correlation and Regression
 - 5. Elementary Probability Theory
 - 6. The Binomial Probability Distribution and Related Topics
 - 7. Normal Curves and Sampling Distributions
 - 8.1 Estimating μ When σ is Known
 - 8.2 Estimating μ When σ is Unknown
 - 8.3 Estimating p in the Binomial Distribution
 - 9.2 Testing the Mean of μ
 - 9.3 Testing a Proportion p
 - 10. Inferences About Differences
 - 11.1 Chi-Square: Tests of Independence
 - 11.2 Chi-Square: Goodness of Fit
 - 11.3 Testing a Single Variance or Standard Deviation
 - Part II: Inferences Relating to Linear Regression
 - 11.4 Inferences for Correlation and Regression
- Supposed to remember Basic notation and definitions

RICE UNIVERSITY How to Handle This?

Resource Valuation in real US dollars

RICE UNIVERSITY MathStat Contents

- 1. Probability and Distributions
- 2. Multivariate Distributions
- 3. Some Special Distributions
- 4. Some Elementary Statistical Inferences
- 5. Consistency and Limiting Distributions
- 6. Maximum Likelihood Methods
- 7. Sufficiency
- 8. Optimal Tests of Hypotheses
- 9. Inferences about Normal Models
- 10. Nonparametric and Robust Statistics
- 11. Bayesian Statistics

```
Appendix A. Mathematical Comments
Appendix B. R-Functions
Appendix C. Tables of Distributions
Appendix D. List of Common Distributions
Appendix E. References
Appendix F. Answers to Selected Exercises
Index
```

1. Probability and Distributions.

 $(\Omega, \mathcal{F}, P) \xrightarrow{X(\omega)} (\mathbb{R}, \mathcal{B}, F)$

$P(X \in A) = ?$

 $E(g(X)) = \int_{\Omega} g(X(\omega)) dP(\omega) = \int_{\mathbb{R}} g(X(\omega)) dF(x)$

22

- Set theory
- The probability set function
- Conditional probability and Independence
- Random variables
 - Discrete random variables
 - Discrete random variables -Transformations

RICE UNIVERSITY 1. Probability and Distributions.

- Continuous random variables
- Continuous random variables -Transformations
- Expectation of a random variable
- Some special expectations
- Important Inequalities

RICE UNIVERSITY 2. Multivariate Distributions.

$$(\Omega, \mathcal{F}, P) \xrightarrow{\begin{pmatrix} X(\omega) \\ Y(\omega) \end{pmatrix}} (\mathbb{R}^2, \mathcal{B}_2, F_{X,Y})$$
$$f_{X,Y} = ?$$

$$\Sigma = \mathrm{E}(X - \mathrm{E}(X))(Y - \mathrm{E}(Y)) = \iint_{\mathbb{R}^2} (X - \mathrm{E}(X))(Y - \mathrm{E}(Y))dF_{XY}$$

$$(U,V) = g(X,Y)$$

$$u = g_1(x, y)$$
$$v = g_2(x, y)$$

$$f_{U,V} = ?$$

RICE UNIVERSITY 2. Multivariate Distributions

- Distribution of two random variables
- Distribution of two random variables -Expectation
- Transformations Bivariate random variables
- Conditional distributions and expectations
- The Correlation Coefficient

RICE UNIVERSITY 2. Multivariate Distributions

- Independent random variables
- Extension to several random variables
- Covariance matrices
- Transformations for several random variables
- Linear combinations of random variables

RICE UNIVERSITY 3. Some Special Distributions

 $P(X = x) = f_X(x) = p_x$

Values of Y

P(a < X < b) = area of shaded region

RICE UNIVERSITY 3. Some Special Distributions

- Binomial and related distributions
- The Poisson distribution
- The gamma, chi squared and beta distributions
- The Normal distribution

RICE UNIVERSITY 3. Some Special Distributions

Plot #004

Data: Atlantic cod

- The multivariate normal distribution
- The t-distribution
- The F-distribution
- Student's theorem
- Mixture distributions

Components: Gamma

 $X_1, ..., X_n$

$$X_i$$
 iid $F_X(x)$ with $f_X(x \mid \theta)$

$$W(X) = W(X_1, \ldots, X_n) \equiv \overline{X} = \hat{\theta}$$

$$P(L(X) \le \theta \le U(X)) = 1 - \alpha = 95\%$$

$$H_0: \mu = 100$$

 $H_1: \mu \neq 100$

- Sampling and statistics
- Histogram estimates of pdmf's
- Confidence intervals
- Confidence intervals for differences in means
- Confidence intervals for differences in proportions
- Confidence intervals for parameters of discrete distributions

- Order statistics
- Quantiles and confidence intervals for quantiles
- Introduction to hypothesis testing
- Additional comments about statistical tests
- Chi-Squared tests
- Monte Carlo

- Bootstrap procedures
- Percentile bootstrap confidence intervals
- Bootstrap testing procedures

RICE UNIVERSITY 5. Consistency/Limiting Distributions

$$X_{n} \xrightarrow{a.s.} X$$

$$X_{n} \xrightarrow{L^{p}} X$$

$$X_{n} \xrightarrow{c} X$$

$$X_{n} \xrightarrow{c} X$$

$$\frac{\sqrt{n}\left(\overline{X}_n-\mu\right)}{\sigma_X} \overset{d}{\to} \phi$$

RICE UNIVERSITY 5. Consistency/Limiting Distributions

- Convergence in probability
- Convergence in distribution
- Convergence in distribution Bounded in probability
- Convergence in distribution Delta method
- Convergence in distribution MGF technique
- Central limit theorem
- Multivariate extensions

For a sequence of random variables X_n with measures α_n , cumulative distribution functions F_n , and characterstic functions ϕ_n , we have the following notions of convergence :

6. Maximum Likelihood Methods

 $\hat{\theta} = W(X_1, \dots, X_n)$

 $L(\theta \mid x) = f_{X}(x \mid \theta)$

Likelihood Function Surface

 $\operatorname{Var}(W) \ge \frac{\operatorname{E}(\dot{g}(\theta))^2}{I_{-}(\theta)}$

RICE UNIVERSITY 6. Maximum Likelihood Methods

- Maximum Likelihood estimation
- Cramer-Rao lower bound and efficiency
- Maximum likelihood tests
- Multi parameter case: Estimates
- Multi parameter case: Testing
- the EM algorithm

7. Sufficiency

Sum of Xi = 213

 $\lambda = ?$

7. Sufficiency

- Measures of quality of estimators
- A sufficient statistic for a parameter
- Properties of a sufficient statistic
- Completeness and uniqueness
- The Exponential class of distributions

$$f_X(x \mid \theta) = e^{w'(\theta)T(x) + H(x) + C(\theta)}$$

- Functions of a parameter
- The case of several parameters
- Minimal sufficiency and auxiliary statistics
- Sufficiency, completeness and independence

7. Sufficiency

RICE UNIVERSITY 8. Hypothesis Testing

- Hypothesis $\begin{array}{ll} H_0: \theta = \theta_0 & H_0: \theta = \theta_0 \\ H_1: \theta = \theta_1 & H_1: \theta \neq \theta_0 \end{array} \\ H_0: f = f_0 \\ H_1: f \neq f_0 \end{array}$
- Test statistic $T=T(X_1, X_2, ..., X_n)$
- Critical region (to reject H0)

 $R = \{x : \text{Reject } H_0\}$

Significance level (α)

• Power of the test (β)

8. Optimal Tests of Hypotheses

$$\beta(\theta) = \operatorname{P}(\operatorname{reject} H_0) \forall \theta$$

$$\beta(\theta') \ge \beta(\theta) \forall \theta' \in \Theta_1 \text{ vs.} \theta \in \Theta_0$$

$$\Lambda(x) = \frac{\sup_{\theta \in \Theta_0} L(x)}{\sup_{\theta \in \Theta} L(x)}$$

$$R = \left\{ x : \operatorname{Reject} H_0 \text{ if } \lambda \leq c \right\}$$

RICE UNIVERSITY 8. Optimal Tests of Hypotheses

Plot of Power for Different Normality Tests: Gamma (4, 5) (sk = 1.00, ku = 4.50)

Sample size, n

RICE UNIVERSITY 8. Optimal Tests of Hypotheses

- Most powerful tests
- Uniformly most powerful tests
- Likelihood ratio tests
- Sequential probability ratio test
- Minimax procedure
- Classification procedure

RICE UNIVERSITY 9. Inferences about Normal Models

$$f_{X}(x) = \frac{1}{(2\pi)^{p/2} |\Sigma|^{1/2}} e^{\frac{-1}{2} (X-\mu)^{T} \Sigma^{-1} (X-\mu)}$$

 $X^T \Sigma^{-1} X$

$$(X-\mu)^T \Sigma^{-1} (X-\mu)$$

$$Y = X\beta + \varepsilon$$

$$\hat{\beta} = \left(X^T X \right)^{-1} X^T Y$$

RICE UNIVERSITY 9. Inferences about Normal Models

- Quadratic forms
- One-way ANOVA
- Noncentral chi square and Fdistributions
- Multiple comparisons
- The analysis of variance
- A regression problem
- A test of independence

RICE UNIVERSITY 9. Inferences about Normal Models

- The distribution of certain quadratic forms
- The independence of certain quadratic forms

- Location models
- Sample median and the sign test
 - ARE
 - estimating equations base on the sign test
 - CI for median
- Signed-rank Wilcoxon
 - ARE
 - estimating equations based on Signedrank Wilcoxon
 - CI for median

- Mann-Whitney-Wilcoxon procedure
 - ARE
 - estimating equations based on Mann-Whitney-Wilcoxon
 - CI for shift parameter Δ
- General rank scores
 - Efficacy
 - estimating equations based on general scores
 - optimization: best estimates

- Adaptive procedures
- Simple linear model
- Measures of association
 - Kendall's tau τ
 - Spearman's rho ρ
- Robust concepts
 - location model
 - linear model

11. Bayesian Statistics

54

RICE UNIVERSITY 11. Bayesian Statistics

- Subjective probability
- Bayesian procedures:
 - Prior and posterior distributions
 - Bayesian point estimates
 - Bayesian interval estimation
 - Bayesian testing procedures
 - Bayesian sequential procedures
- More Bayesian terminology and ideas
- Gibbs sampler
- Modern empirical Bayes

- Mathematical comments
 - Regularity conditions
 - Sequences
- R-Functions
- Tables of Distributions
- List of Common Distributions
- References
- Answers to Selected Exercises

Appendices