ECON 504: Advanced Economic Statistics

August 23, 2011

- Elementary Economic Statistics, a Review
 - Elementary Business and Economic Statistics, Alva M. Tuttle. New York: McGraw-Hill Book Company, 1957
 - Review: James B. Hassler, (Untitled),
 Journal of Farm Economics, Vol. 39, No. 4 (Nov., 1957), pp. 1034-1036

RICE UNIVERSITY Elementary Econ Stats

- Statistics to include two parts: descriptive and analytic
- Tabular and graphic presentation of data comprises one-third of the book. It is well done
- Statistical inference
 - discussion of frequency distributions
 - A "cook-book" consideration of estimation and testing hypotheses about one or two population means follows.

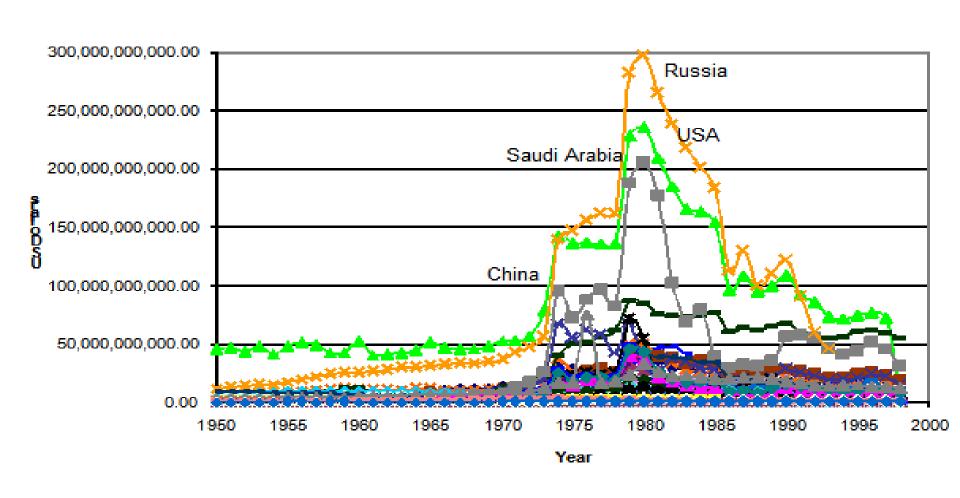
RICE UNIVERSITY Elementary Econ Stats

- Tuttle's chapter on index numbers is probably the best in the book.
- Most authors give a confusing presentation of the analytic areas of estimation, hypothesis testing, and correlation or regression theory.
- Mechanical consideration of time series is given exaggerated significance. Fleeting remarks alluding to more complex, analytic methods are not sufficient.

RICE UNIVERSITY Elementary Econ Stats

 The utility of tables on logarithms, squares, roots, reciprocals, and random digits is not clear.

Other Courses/Books


- Elementary Economic Statistics and Econometrics," S. K. Lin and C. Li, in A Series of Popular Economics Books for Institutional Transition in China Vol. 13, Shanghai People's Publishing House and Hong Kong's Intelligent Book Ltd, 1993 (in Chinese).
- Boston College: EC 15102 Elementary Economic Statistics. Text: Brase/ & Brase, Understanding Basic Statistics, 4th Ed.

Other Courses/Books

- Brace & Brace TOC
 - 2. Organizing Data
 - 3. Averages and Variation
 - 4. Correlation and Regression
 - 5. Elementary Probability Theory
 - 6. The Binomial Probability Distribution and Related Topics
 - 7. Normal Curves and Sampling Distributions
 - 8.1 Estimating μ When σ is Known
 - 8.2 Estimating μ When σ is Unknown
 - 8.3 Estimating p in the Binomial Distribution
 - 9.2 Testing the Mean of μ
 - 9.3 Testing a Proportion p
 - 10. Inferences About Differences
 - 11.1 Chi-Square: Tests of Independence
 - 11.2 Chi-Square: Goodness of Fit
 - 11.3 Testing a Single Variance or Standard Deviation
 - Part II: Inferences Relating to Linear Regression
 - 11.4 Inferences for Correlation and Regression
- Supposed to know <u>Basic notation and definitions</u>

Econometrics

Resource Valuation in real US dollars

Econometrics

- Econometric Analysis, 6th Edition (Greene)
 - Chapter 2. The Classical Multiple Linear Regression Model
 - Chapter 3. Least Squares
 - Chapter 5. Inference and Prediction
 - Chapter 6. Functional Form and Structural Change
 - Chapter 8. The Generalized Regression Model
 - Chapter 9. Models for Panel Data
 - Chapter 11. Nonlinear Regressions and Nonlinear Least Squares
 - Chapter 15. Minimum Distance Estimation and The Generalized Method of Moments
 - Chapter 16. Maximum Likelihood Estimation
 - Chapter 17. Simulation Based Estimation and Inference
 - Chapter 18. Bayesian Estimation and Inference
 - Chapter 19. Serial Correlation
 - Chapter 21. Time-Series Models
 - Chapter 22. Non-stationary Data
 - Chapter 24. Truncation, Censoring and Sample Selection
 - Chapter 25. Models for Counts and Duration
 - Appendix D. Large Sample Distribution Theory

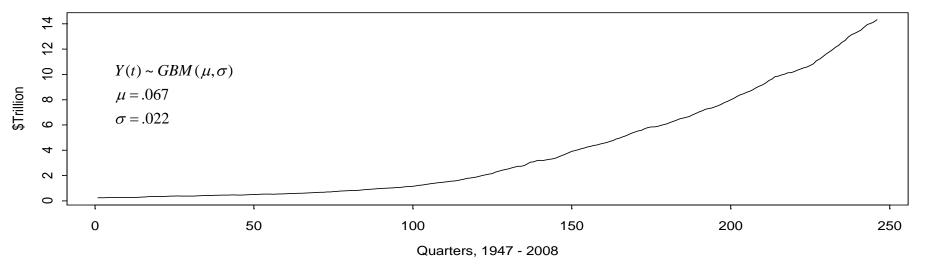
RICE UNIVERSITY Advanced Statistics

 Option Bounds, Victor H. De La Peña, Rustam Ibragimov and Steve Jordan, Journal of Applied Probability, Vol. 41, Stochastic Methods and Their Applications (2004), pp. 145-156

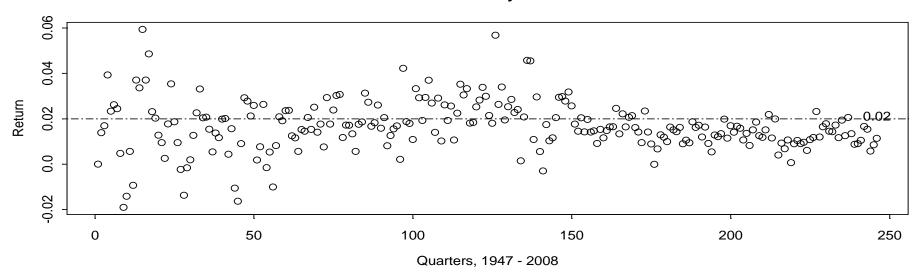
2. Sharp bounds on the expected payoffs and prices of European call options

Let $\mathcal{F}_0 \subseteq \mathcal{F}_1 \subseteq \cdots \subseteq \mathcal{F}_t$ be a sequence of σ -algebras on a probability space $(\Omega, \mathcal{F}_t, P_t)$. Throughout the paper, we deal with a complete and arbitrage-free securities market consisting of two assets. One asset is the risky asset with price $S_t \geq 0$ for $t \geq 0$. The sequence (S_t) is adapted to the sequence of information sets (\mathcal{F}_t) and the nonnegativity constraint reflects the limited-liability condition inherent in a contingent claim. The second asset is a money-market account with a risk-free rate of return r. In what follows, $E_t[\cdot] = E_t[\cdot \mid \mathcal{F}_t]$ denotes the day-t conditional expectation and $P_t = P_t(\cdot \mid \mathcal{F}_t)$ denotes the day-t conditional probability.

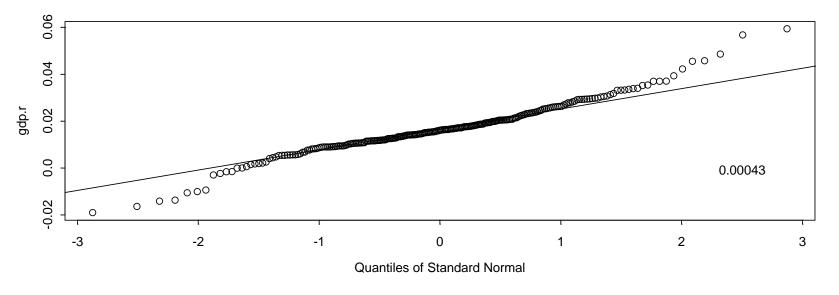
Let us begin by recalling the results on an option's expected payoff and current price obtained by Lo (1987) and Grundy (1991). Consider a European call option on the risky asset with strike price K and expiring at time T. The day-t expected payoff of the option is $E_t \max(S_T - K, 0)$ and its day-t risk-neutral price is $e^{-r(T-t)}E_t^* \max(S_T - K, 0)$, where E_t^* denotes the expectation with respect to the unique equivalent probability measure. Lo (1987) showed that the day-t expectation $E_t \max(S_T - K, 0)$ satisfies the following sharp inequalities:


$$E_{t} \max(S_{T} - K, 0) \leq \begin{cases} \mu_{t} - K \frac{\mu_{t}^{2}}{\sigma_{t}^{2} + \mu_{t}^{2}} & \text{if } K \leq \frac{\sigma_{t}^{2} + \mu_{t}^{2}}{2\mu_{t}}, \\ \frac{1}{2} [\mu_{t} - K + \sqrt{(K - \mu_{t})^{2} + \sigma_{t}^{2}}] & \text{otherwise,} \end{cases}$$
(1)

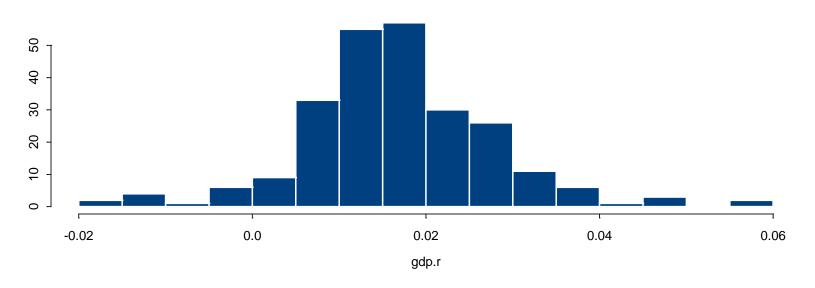
where


$$\mu_t = E_t S_T$$
 and $\sigma_t^2 = E_t S_T^2 - \mu_t^2$.

Back to Elementary



GDP Quarterly Returns



GDP Example

QQ-Plot, GDP Returns 1947-2008

GDP Quarterly Returns

GDP Example


$$Y = C + I + G + X$$

What is the DGP?

How to Model?

- Introduction to probability theory description and analysis of probability models
- Mathematic statistics and concepts.
 Learning about the features of probability model based on data.

- What to Expect
 - More of this! Worse than this!
 - Remember the violin story

