Regre S f t

Appendix A

A Compendium of Common Probability Distributions

© Dr. Michael P. McLaughlin

 1993-2001
Third printing

This software and its documentation are distributed free of charge and may neither be sold nor repackaged for sale in whole or in part.

PREFACE

This Appendix contains summaries of the probability distributions found in Regress+.

All distributions are shown in their parameterized, not standard forms. In some cases, the definition of a distribution may vary slightly from a definition given in the literature. This happens either because there is more than one definition or, in the case of parameters, because Regress+ requires a parameter to be constrained, usually to guarantee convergence.

There are a few well-known distributions that are not included here, either because they are seldom used to model empirical data or they lack a convenient analytical form for the CDF. Conversely, many of the distributions that are included are rarely discussed yet are very useful for describing real-world datasets.

Please email any comments to the author:
mpmcl@mitre.org

Michael P. McLaughlin
McLean, VA
September, 1999

Table of Contents

Distributions shown in bold are those which appear in the Regress + menu. Distributions shown in plain text are aliases and/or special cases.

Continuous Distributions

Name	Page	Page	
Antilognormal	77	HalfNormal(A,B)	51
Bell curve	85	HyperbolicSecant(A,B)	59
Beta(A,B,C,D)	9	Inverse Gaussian	61
Bilateral exponential	63	InverseNormal(A,B)	61
Bradford(A,B,C)	15	Laplace(A,B)	63
Burr(A,B,C,D)	17	Logistic(A,B)	75
Cauchy(A,B)	19	LogLogistic	37
Chi(A,B,C)	21	LogNormal(A,B)	77
Chi-square	41	LogWeibull	49
Cobb-Douglas	77	Lorentz	19
Cosine(A,B)	23	Maxwell	21
Double-exponential	63	Negative exponential	29
DoubleGamma(A,B,C)	25	Nakagami(A,B,C)	79
DoubleWeibull(A,B,C)	27	Non-central Chi	39
Erlang	41	Normal(A,B)	85
Error function	85	Pareto(A,B)	99
Exponential(A,B)	29	Power-function	9
Extreme-value	19	Rayleigh	21
ExtremeLB(A,B,C)	35	Reciprocal(A,B)	105
Fisher-Tippett	49	Rectangular	113
Fisk(A,B,C)	37	Sech-squared	75
FoldedNormal(A,B)	39	Semicircular(A,B)	107
Frechet	119	StudentsT(A,B,C)	109
Gamma(A,B,C)	41	Triangular(A,B,C)	111
Gaussian	85	Uniform(A,B)	113
GenLogistic(A,B,C)	43	Wald	61
Gompertz	49	Weibull(A,B,C)	119
Gumbel(A,B)	49		

Continuous Mixtures

Name Page
Double double-exponential 65
$\operatorname{Expo}(\mathbf{A}, \mathbf{B}) \& \operatorname{Expo}(\mathbf{A}, \mathbf{C})$ 31
$\operatorname{Expo}(\mathbf{A}, \mathrm{B}) \&$ Uniform (\mathbf{A}, C) 33
HNormal(A,B)\&Expo(A,C) 53
HNormal(A,B)\&HNormal(A,C) 55
HNormal(A,B)\&Uniform(A,C) 57
Laplace (A,B)\&Laplace(C,D) 65
Laplace (A,B)\&Laplace(A,C) 67
Laplace(A,B)\&Uniform(C,D) 69
Laplace(A,B)\&Uniform(A,C) 71
Normal(A,B)\&Laplace(C,D) 87
$\operatorname{Normal}(A, B) \& \operatorname{Laplace}(A, C)$ 89
Normal(A,B)\&Normal(C,D) 91
Normal(A,B)\&Normal(A,C) 93
Normal(A,B)\&Uniform(C,D) 95
Normal(A,B)\&Uniform(A,C) 97
Uniform(A,B)\&Uniform(C,D) 115
Uniform(A,B)\&Uniform(A,C) 117
Schuhl 31
Discrete Distributions
Name Page
Binomial(A,B) 11
Furry 45
Geometric(A) 45
Logarithmic(A) 73
NegativeBinomial(A,B) 81
Pascal 81
Poisson(A) 101
Polya 81
Discrete Mixtures
Name Page
Binomial(A,C)\&Binomial(B,C) 13
Geometric(A)\&Geometric(B) 47
NegBinomial(A,C)\&NegBinomial(B,C) 83
Poisson(A)\&Poisson(B) 103

Description of Included Items

Each of the distributions is described in a two-page summary. The summary header includes the distribution name and the parameter list, along with the numerical range for which variates and parameters (if constrained) are defined.

Each distribution is illustrated with at least one example. In this figure, the parameters used are shown in parentheses, in the order listed in the header. Expressions are then given for the PDF and CDF. Remaining subsections, as appropriate, are as follows:

Parameters

This is an interpretation of the meaning of each parameter, with the usual literature symbol (if any) given in parentheses.

Unless otherwise indicated, parameter A is a location parameter, positioning the overall distribution along the abscissa. Parameter B is a scale parameter, describing the extent of the distribution. Parameters C and, possibly, D are shape parameters which affect skewness, kurtosis, etc. In the case of binary mitures, there is also a weight, p , for the first component.

Moments, etc.

Provided that there are closed forms, the mean, variance, skewness, kurtosis, mode, median, first quartile (Q1), and third quartile (Q3) are described along with the quantiles for the mean (qMean) and mode (qMode). If random variates are computable with a closed-form expression, the latter is also given.

Note that the mean and variance have their usual units while the skewness and kurtosis are dimensionless. Furthermore, the kurtosis is referenced to that of a standard Normal distribution (kurtosis $=3$).

Notes

These include any relevant constraints, cautions, etc.

Aliases and Special Cases

These alternate names are also listed as well in the Table of Contents.

Characterizations

This list is far from exhaustive. It is intended simply to convey a few of the more important situations in which the distribution is particularly relevant.

Obviously, so brief a account cannot begin to do justice to the wealth of information available. For fuller accounts, the aforementioned references, [KOT82], [JOH92], and [JOH94] are excellent starting points.

Legend

Shown below are definitions for some of the less common functions and abbreviations used in this Appendix.

$\operatorname{int}(\mathrm{y})$	integer or floor function
$\Phi(\mathrm{z})$	standard cumulative Normal distribution
$\operatorname{erf}(\mathrm{z})$	error function
$\Gamma(\mathrm{z})$	complete Gamma function
$\Gamma(\mathbf{w}, \mathbf{x})$	incomplete Gamma function
$\psi(\mathrm{z}), \psi^{\prime}(\mathrm{z})$, etc.	diamma function and its derivatives
$\mathbf{I}(\mathbf{x}, \mathbf{y}, \mathbf{z})$	(regularized, normalized) incomplete Beta function
H(n)	$\mathrm{n}^{\text {th }}$ harmonic number
$\zeta(s)$	Riemann zeta function
$\binom{\mathbf{N}}{\mathbf{k}}$	number of combinations of N things taken k at a time
e	base of the natural logarithms $=2.71828 \ldots$
γ	EulerGamma $=0.57721566 \ldots$
u	a Uniform(0,1) random variate
i.i.d.	independent and identically distributed
iff	if and only if
N!	N factorial $=\mathrm{N}(\mathrm{N}-1)(\mathrm{N}-2) \ldots$.. 1)
\sim	(is) distributed as

Parameters -- A: Location, B: Scale (upper bound), C, D (p, q): Shape Moments, etc.

$$
\begin{gathered}
\text { Mean }=\frac{\mathrm{AD}+\mathrm{B} C}{\mathrm{C}+\mathrm{D}} \\
\text { Variance }=\frac{\mathrm{CD}(\mathrm{~B}-\mathrm{A})^{2}}{(\mathrm{C}+\mathrm{D}+1)(\mathrm{C}+\mathrm{D})^{2}} \\
\text { Skewness }=\frac{2 \mathrm{CD}(\mathrm{D}-\mathrm{C})}{(\mathrm{C}+\mathrm{D})^{3}(\mathrm{C}+\mathrm{D}+1)(\mathrm{C}+\mathrm{D}+2)\left[\frac{\mathrm{CD}}{(\mathrm{C}+\mathrm{D})^{2}(\mathrm{C}+\mathrm{D}+1)}\right]^{\frac{3}{2}}}
\end{gathered}
$$

$$
\text { Kurtosis }=3\left[\frac{\left(C^{2}(D+2)+2 D^{2}+C D(D-2)\right)(C+D+1)}{C D(C+D+2)(C+D+3)}-1\right]
$$

$$
\text { Mode }=\frac{\mathrm{A}(\mathrm{D}-1)+\mathrm{B}(\mathrm{C}-1)}{\mathrm{C}+\mathrm{D}-2}, \text { unless } \mathrm{C}=\mathrm{D}=1
$$

Median, Q1, Q3, qMean, qMode: no simple closed form

Notes

1. Although C and D have no upper bound, in fact, they seldom exceed 10. If optimum values are much greater than this, the response will often be nearly flat.
2. If both C and D are large, the distribution is roughly symmetrical and some other model is indicated.
3. The beta distribution is often used to mimic other distributions. When suitably transformed and normalized, a vector of random variables can almost always be modeled as Beta.

Aliases and Special Cases

1. Beta $(0,1, \mathrm{C}, 1)$ is often called the Power-function distribution.

Characterizations

1. If $\mathrm{X}_{\mathrm{j}}^{2}, \mathrm{j}=1,2 \sim$ standard Chi-square with v_{j} degrees of freedom, respectively, then $Z=\frac{X_{1}^{2}}{X_{1}^{2}+X_{2}^{2}} \sim \operatorname{Beta}\left(0,1, v_{1} / 2, v_{2} / 2\right)$.
2. More generally, $\mathrm{Z}=\frac{\mathrm{W}_{1}}{\mathrm{~W}_{1}+\mathrm{W}_{2}} \sim \operatorname{Beta}\left(0,1, \mathrm{p}_{1}, \mathrm{p}_{2}\right)$ if $\mathrm{W}_{\mathrm{j}} \sim \operatorname{Gamma}\left(0, \sigma, \mathrm{p}_{\mathrm{j}}\right)$, for any scale (σ).
3. If $\mathrm{Z}_{1}, \mathrm{Z}_{2}, \ldots, \mathrm{Z}_{\mathrm{N}} \sim \operatorname{Uniform}(0,1)$ are sorted to give the corresponding order statistics $\mathrm{Z}_{1}^{\prime} \leq \mathrm{Z}_{2}^{\prime} \leq \ldots \leq \mathrm{Z}_{\mathrm{N}}^{\prime}$, then the $\mathrm{s}^{\text {th }}$-order statistic $\mathrm{Z}_{\mathrm{s}}^{\prime} \sim \operatorname{Beta}(0,1, \mathrm{~s}, \mathrm{~N}-\mathrm{s}+1)$.

Binomial(A,B)

$$
y=0,1,2, \ldots, \quad 0<A<1, \quad y, 2 \leq B
$$

Parameters -- A (p): Prob(success), B (N): Number of Bernoulli trials (constant) Moments, etc.

$$
\begin{gathered}
\text { Mean }=\mathrm{A} \mathrm{~B} \\
\text { Variance }=\mathrm{A}(1-\mathrm{A}) \mathrm{B} \\
\text { Mode }=\operatorname{int}(\mathrm{A}(\mathrm{~B}+1))
\end{gathered}
$$

Notes

1. In the literature, B may be any positive integer.
2. If $A(B+1)$ is an integer, Mode also equals $A(B+1)-1$.
3. Regress+ requires B to be Constant.

Aliases and Special Cases

1. Although disallowed here because of incompatibility with several Regress + features, Binomial(A,1) is called the Bernoulli distribution.

Characterizations

1. The probability of exactly y successes, each having Prob(success) $=A$, in a series of B independent trials is $\sim \operatorname{Binomial}(A, B)$.

Binomial(A,C)\&Binomial(B,C)

$\mathrm{y}=0,1,2, \ldots, \quad 0<\mathrm{B}<\mathrm{A}<1, \quad \mathrm{y}, 3 \leq \mathrm{C}, \quad 0<\mathrm{p}<1$

Parameters -- A, B $\left(\pi_{1}, \pi_{2}\right): \operatorname{Prob}($ success $), \mathrm{C}(\mathrm{N}):$ Number of Bernoulli trials (constant), p : Weight of Component \#1

Moments, etc.

$$
\begin{gathered}
\text { Mean }=\mathrm{C}[\mathrm{p} \mathrm{~A}+(1-\mathrm{p}) \mathrm{B}] \\
\text { Variance }=\mathrm{C}\left[\mathrm{p} \mathrm{~A}(1-\mathrm{A})+(1-\mathrm{p})\left(\mathrm{p} \mathrm{C}(\mathrm{~A}-\mathrm{B})^{2}+\mathrm{B}(1-\mathrm{B})\right)\right]
\end{gathered}
$$

Mode: no simple closed form

Notes

1. Here, parameter A is stipulated to be the Component with the larger Prob(success).
2. Parameter C must be at least 3 in order for this distribution to be identifiable, i.e., well-defined.
3. Regress+ requires C to be Constant.
4. Binary mixtures may require hundreds of data points for adequate optimization and, even then, often have unusually wide confidence intervals. In fact, the criterion response is sometimes flat over a broad range, esp. with respect to parameter p .
5. Warning! Mixtures usually have several local optima.

Aliases and Special Cases

Characterizations

1. The usual interpretation of a binary mixture is that it represents an undifferentiated composite of two populations having parameters and weights as described above.

Bradford(A,B,C)
$\mathrm{A}<\mathrm{y}<\mathrm{B}, \quad \mathrm{C}>0$

Parameters -- A: Location, B: Scale (upper bound), C: Shape
Moments, etc. $[k \equiv \log (\mathrm{C}+1)]$

$$
\begin{aligned}
& \text { Mean }=\frac{C(B-A)+k[A(C+1)-B]}{C k} \\
& \text { Variance }=\frac{(B-A)^{2}[C(k-2)+2 k]}{2 \mathrm{Ck}^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Skewness }=\frac{\sqrt{2}\left[12 \mathrm{C}^{2}-9 \mathrm{k} \mathrm{C}(\mathrm{C}+2)+2 \mathrm{k}^{2}(\mathrm{C}(\mathrm{C}+3)+3)\right]}{\sqrt{\mathrm{C}[\mathrm{C}(\mathrm{k}-2)+2 \mathrm{k}]}[3 \mathrm{C}(\mathrm{k}-2)+6 \mathrm{k}]} \\
& \text { Kurtosis }=\frac{\mathrm{C}^{3}(\mathrm{k}-3)[\mathrm{k}(3 \mathrm{k}-16)+24]+12 \mathrm{k} \mathrm{C}^{2}(\mathrm{k}-4)(\mathrm{k}-3)+6 \mathrm{Ck}^{2}(3 \mathrm{k}-14)+12 \mathrm{k}^{3}}{3 \mathrm{C}[\mathrm{C}(\mathrm{k}-2)+2 \mathrm{k}]^{2}} \\
& \text { Mode }=\mathrm{A} \\
& \text { Median }=\frac{1}{\mathrm{C}}[\mathrm{~A}(\mathrm{C}+1)-\mathrm{B}+(\mathrm{B}-\mathrm{A}) \sqrt{\mathrm{C}+1}] \\
& \mathrm{Q} 1=\frac{1}{\mathrm{C}}[\mathrm{~A}(\mathrm{C}+1)-\mathrm{B}+(\mathrm{B}-\mathrm{A}) \sqrt[4]{\mathrm{C}+1}] \quad \mathrm{Q} 3=\frac{1}{\mathrm{C}}\left[\mathrm{~A}(\mathrm{C}+1)-\mathrm{B}+(\mathrm{B}-\mathrm{A}) \sqrt[4]{(\mathrm{C}+1)^{3}}\right] \\
& \text { qMean }=\frac{\log \left(\frac{\mathrm{C}}{\log (\mathrm{C}+1)}\right)}{\log (\mathrm{C}+1)} \quad \text { qMode }=0 \\
& \text { RandVar }=\frac{1}{C}\left[A(C+1)-B+(B-A)(C+1)^{u}\right]
\end{aligned}
$$

Notes

1. With the log-likelihood criterion, parameter C is often flat.

Aliases and Special Cases

Characterizations

1. The Bradford distribution has been used to model the distribution of references among several sources.

Burr(A,B,C,D) $y>A, \quad B>0, \quad 0<C, D \leq 100$

Parameters -- A: Location, B: Scale, C, D: Shape
Moments, etc. $\left[\mathrm{k} \equiv \Gamma(\mathrm{D}) \Gamma\left(1-\frac{2}{\mathrm{C}}\right) \Gamma\left(\frac{2}{\mathrm{C}}+\mathrm{D}\right)-\Gamma^{2}\left(1-\frac{1}{\mathrm{C}}\right) \Gamma^{2}\left(\frac{1}{\mathrm{C}}+\mathrm{D}\right)\right]$

$$
\text { Mean }=\mathrm{A}+\frac{\mathrm{B} \Gamma\left(1-\frac{1}{\mathrm{C}}\right) \Gamma\left(\frac{1}{\mathrm{C}}+\mathrm{D}\right)}{\Gamma(\mathrm{D})}
$$

$$
\text { Variance }=\frac{\mathrm{k} \mathrm{~B}^{2}}{\Gamma^{2}(\mathrm{D})}
$$

Skewness $=\frac{\Gamma^{3}(\mathrm{D})}{\sqrt{\mathrm{k}^{3}}}\left[\frac{2 \Gamma^{3}\left(1-\frac{1}{\mathrm{C}}\right) \Gamma^{3}\left(\frac{1}{\mathrm{C}}+\mathrm{D}\right)}{\Gamma^{3}(\mathrm{D})}-\frac{3 \Gamma\left(1-\frac{2}{\mathrm{C}}\right) \Gamma\left(1-\frac{1}{\mathrm{C}}\right) \Gamma\left(\frac{1}{\mathrm{C}}+\mathrm{D}\right) \Gamma\left(\frac{2}{\mathrm{C}}+\mathrm{D}\right)}{\Gamma^{2}(\mathrm{D})}+\frac{\Gamma\left(1-\frac{3}{\mathrm{C}}\right) \Gamma\left(\frac{3}{\mathrm{C}}+\mathrm{D}\right)}{\Gamma(\mathrm{D})}\right]$
Kurtosis $=$

$$
\begin{aligned}
& -3+\frac{\Gamma^{4}(\mathrm{D})}{\mathrm{k}^{2}}\left[\frac{-3 \Gamma^{4}\left(1-\frac{1}{\mathrm{C}}\right) \Gamma^{4}\left(\frac{1}{\mathrm{C}}+\mathrm{D}\right)}{\Gamma^{4}(\mathrm{D})}+\frac{6 \Gamma\left(1-\frac{2}{\mathrm{C}}\right) \Gamma^{2}\left(1-\frac{1}{\mathrm{C}}\right) \Gamma^{2}\left(\frac{1}{\mathrm{C}}+\mathrm{D}\right) \Gamma\left(\frac{2}{\mathrm{C}}+\mathrm{D}\right)}{\Gamma^{3}(\mathrm{D})}\right]- \\
& \frac{\Gamma^{4}(\mathrm{D})}{\mathrm{k}^{2}}\left[\frac{4 \Gamma\left(1-\frac{3}{\mathrm{C}}\right) \Gamma\left(1-\frac{1}{\mathrm{C}}\right) \Gamma\left(\frac{1}{\mathrm{C}}+\mathrm{D}\right) \Gamma\left(\frac{3}{\mathrm{C}}+\mathrm{D}\right)}{\Gamma^{2}(\mathrm{D})}-\frac{\Gamma\left(1-\frac{4}{\mathrm{C}}\right) \Gamma\left(\frac{4}{\mathrm{C}}+\mathrm{D}\right)}{\Gamma(\mathrm{D})}\right]
\end{aligned}
$$

$$
\text { Mode }=\mathrm{A}+\mathrm{B} \sqrt[\mathrm{c}]{\frac{\mathrm{CD}-1}{\mathrm{C}+1}}, \text { iff } \mathrm{C} \text { D }>1, \text { else Mode }=\mathrm{A}(\text { and qMode }=0)
$$

$$
\text { Median }=A+B(\sqrt[D]{2}-1)^{-\frac{1}{C}}
$$

$$
\mathrm{Q} 1=\mathrm{A}+\mathrm{B}(\sqrt[\mathrm{D}]{4}-1)^{-\frac{1}{\mathrm{C}}} \quad \mathrm{Q} 3=\mathrm{A}+\mathrm{B}\left(\sqrt[\mathrm{D}]{\frac{4}{3}}-1\right)^{-\frac{1}{\mathrm{C}}}
$$

$$
\text { qMean }=\left[1+\Gamma^{\mathrm{C}}(\mathrm{D}) \Gamma^{-\mathrm{C}}\left(1-\frac{1}{\mathrm{C}}\right) \Gamma^{-\mathrm{C}}\left(\frac{1}{\mathrm{C}}+\mathrm{D}\right)\right]^{-\mathrm{D}} \quad \mathrm{qMode}=\left(1+\frac{\mathrm{C}+1}{\mathrm{CD}-1}\right)^{-\mathrm{D}}
$$

$$
\text { RandVar }=A+B\left(\frac{1}{\sqrt{\sqrt{u}}}-1\right)^{-\frac{1}{\mathrm{c}}}
$$

Notes

1. With the log-likelihood criterion, parameter C is often flat.

Aliases and Special Cases

1. The Burr distribution, with $\mathrm{D}=1$, is often called the Fisk or LogLogistic distribution.

Characterizations

1. The Burr distribution is a generalization of the Fisk distribution.

Cauchy(A,B)

Parameters -- A (θ): Location, B (λ): Scale
Moments, etc.
This distribution has no finite moments because the corresponding integrals do not converge.

$$
\begin{gathered}
\text { Median }=\text { Mode }=\mathrm{A} \\
\mathrm{Q} 1=\mathrm{A}-\mathrm{B} \quad \mathrm{Q} 3=\mathrm{A}+\mathrm{B} \\
\text { qMode }=0.5
\end{gathered}
$$

$$
\text { RandVar }=\mathrm{A}+\mathrm{B} \tan \left[\pi\left(\mathrm{u}-\frac{1}{2}\right)\right]
$$

Notes

1. Since there are no finite moments, the location parameter (ostensibly the mean) does not have its usual interpretation for a symmetrical distribution.

Aliases and Special Cases

1. The Cauchy distribution is sometimes called the Lorentz distribution.

Characterizations

1. If U and V are $\sim \operatorname{Normal}(0,1)$, the ratio $U / V \sim \operatorname{Cauchy}(0,1)$.
2. If $\mathrm{Z} \sim$ Cauchy, then $\mathrm{W}=(\mathrm{a}+\mathrm{b} * \mathrm{Z})^{-1} \sim$ Cauchy.
3. If particles emanate from a fixed point, their points of impact on a straight line \sim Cauchy.

Chi(A,B,C)

$$
y>A, \quad B>0, \quad 0<C \leq 100
$$

Parameters -- A: Location, B: Scale, C (v): Shape (also, degrees of freedom) Moments, etc.

$$
\begin{gathered}
\text { Mean }=\mathrm{A}+\frac{\sqrt{2} \mathrm{~B} \Gamma\left(\frac{\mathrm{C}+1}{2}\right)}{\Gamma\left(\frac{\mathrm{C}}{2}\right)} \\
\text { Variance }=\mathrm{B}^{2}\left[\mathrm{C}-\frac{2 \Gamma^{2}\left(\frac{\mathrm{C}+1}{2}\right)}{\Gamma^{2}\left(\frac{\mathrm{C}}{2}\right)}\right]
\end{gathered}
$$

$$
\begin{gathered}
\text { Skewness }=\frac{\sqrt{2}\left[4 \Gamma^{3}\left(\frac{\mathrm{C}+1}{2}\right)+\Gamma^{2}\left(\frac{\mathrm{C}}{2}\right)\left(2 \Gamma\left(\frac{\mathrm{C}+3}{2}\right)-3 \mathrm{C} \Gamma\left(\frac{\mathrm{C}+1}{2}\right)\right)\right]}{\Gamma^{3}\left(\frac{\mathrm{C}}{2}\right)\left[\mathrm{C}-\frac{2 \Gamma^{2}\left(\frac{\mathrm{C}+1}{2}\right)}{\Gamma^{2}\left(\frac{\mathrm{C}}{2}\right)}\right]^{\frac{3}{2}}} \\
\text { Kurtosis }=\frac{2 \mathrm{C}(1-\mathrm{C}) \Gamma^{4}\left(\frac{\mathrm{C}}{2}\right)-24 \Gamma^{4}\left(\frac{\mathrm{C}+1}{2}\right)+8(2 \mathrm{C}-1) \Gamma^{2}\left(\frac{\mathrm{C}}{2}\right) \Gamma^{2}\left(\frac{\mathrm{C}+1}{2}\right)}{\left[\mathrm{C} \Gamma^{2}\left(\frac{\mathrm{C}}{2}\right)-2 \Gamma^{2}\left(\frac{\mathrm{C}+1}{2}\right)\right]^{2}} \\
\operatorname{Mode}=\mathrm{A}+\mathrm{B} \sqrt{\mathrm{C}-1}
\end{gathered}
$$

Median, Q1, Q3, qMean, qMode: no simple closed form

Notes

1. In the literature, $\mathrm{C}>0$. The restrictions shown above are required for convergence when the data are left-skewed and to ensure the existence of a Mode.

Aliases and Special Cases

1. $\operatorname{Chi}(\mathrm{A}, \mathrm{B}, 1)$ is the HalfNormal distribution.
2. $\operatorname{Chi}(0, \mathrm{~B}, 2)$ is the Rayleigh distribution.
3. $\operatorname{Chi}(0, \mathrm{~B}, 3)$ is the Maxwell distribution.

Characterizations

1. If $\mathrm{Z} \sim$ Chi-square, its positive square root is \sim Chi.
2. If $\mathrm{X}, \mathrm{Y} \sim \operatorname{Normal}(0, \mathrm{~B})$, the distance from the origin to the point (X, Y) is $\sim \operatorname{Rayleigh}(\mathrm{B})$.
3. If a spatial pattern is generated by a Poisson process, the distance between any pattern element and its nearest neighbor is \sim Rayleigh.
4. The speed of a random molecule, at any temperature, is \sim Maxwell.

Cosine(A,B)

$$
\mathrm{A}-\pi \mathrm{B} \leq \mathrm{y} \leq \mathrm{A}+\pi \mathrm{B}, \quad \mathrm{~B}>0
$$

Parameters -- A: Location, B: Scale
Moments, etc.

$$
\begin{gathered}
\text { Mean }=\text { Median }=\text { Mode }=\mathrm{A} \\
\text { Variance }=\left(\frac{\pi^{2}}{3}-2\right) \mathrm{B}^{2} \\
\text { Skewness }=0 \\
\text { Kurtosis }=\frac{-6\left(\pi^{4}-90\right)}{5\left(\pi^{2}-6\right)^{2}} \approx-0.5938 \\
\text { Q1 } \approx \mathrm{A}-0.8317 \mathrm{~B} \quad \mathrm{Q} 3 \approx \mathrm{~A}+0.8317 \mathrm{~B} \\
\mathrm{~A}-23
\end{gathered}
$$

$$
\mathrm{qMean}=\mathrm{qMode}=0.5
$$

Notes

Aliases and Special Cases

Characterizations

1. The Cosine distribution is sometimes used as a simple, and more computationally tractable, approximation to the Normal distribution.

DoubleGamma(A,B,C)

B, $\mathrm{C}>0$

Parameters -- A: Location, B: Scale, C: Shape
Moments, etc.

$$
\begin{gathered}
\text { Mean }=\text { Median }=A \\
\text { Variance }=C(C+1) B^{2}
\end{gathered}
$$

$$
\text { Skewness }=0
$$

Kurtosis, Mode: not applicable (bimodal)

Q1, Q3: no simple closed form
qMean $=0.5$
RandVar $=$ RandGamma, with a random sign

Notes

Aliases and Special Cases

Characterizations

1. The DoubleGamma distribution is the signed version of the Gamma distribution.

DoubleWeibull(A,B,C)

B, C > 0

Parameters -- A: Location, B: Scale, C: Shape
Moments, etc.

$$
\begin{gathered}
\text { Mean }=\text { Median }=A \\
\text { Variance }=\Gamma\left(\frac{C+2}{C}\right) B^{2} \\
\text { Skewness }=0
\end{gathered}
$$

Kurtosis, Mode: not applicable (bimodal)

Q1, Q3: no simple closed form
qMean $=0.5$
RandVar $=$ RandWeibull, with a random sign

Notes

Aliases and Special Cases

Characterizations

1. The DoubleWeibull distribution is the signed version of the Weibull distribution.

Exponential(A,B)

$$
\mathrm{y} \geq \mathrm{A}, \quad \mathrm{~B}>0
$$

Parameters -- A (θ): Location, B (λ): Scale
Moments, etc.

$$
\begin{gathered}
\text { Mean }=A+B \\
\text { Variance }=B^{2} \\
\text { Skewness }=2 \\
\text { Kurtosis }=6 \\
\text { Mode }=A
\end{gathered}
$$

Median $=\mathrm{A}+\mathrm{B} \log (2)$

$$
\begin{gathered}
\mathrm{Q} 1=\mathrm{A}+\mathrm{B} \log \left(\frac{4}{3}\right) \quad \mathrm{Q} 3=\mathrm{A}+\mathrm{B} \log (4) \\
\mathrm{qMean}=\frac{\mathrm{e}-1}{\mathrm{e}} \approx 0.6321 \quad \mathrm{qMode}=0 \\
\text { RandVar }=\mathrm{A}-\mathrm{B} \log (\mathrm{u})
\end{gathered}
$$

Notes

1. The one-parameter version of this distribution, Exponential($0, \mathrm{~B}$), is far more common than the more general formulation shown here.

Aliases and Special Cases

1. The Exponential distribution is sometimes called the Negative exponential distribution.
2. The discrete version of the Exponential distribution is the Geometric distribution.

Characterizations

1. If the future lifetime of a system at any time, t, has the same distribution for all t, then this distribution is the Exponential distribution. This is known as the memoryless property.

$\operatorname{Expo}(\mathbf{A}, \mathbf{B}) \& \operatorname{Expo}(\mathbf{A}, \mathbf{C})$

$y \geq A, \quad B, C>0, \quad 0<p<1$

Parameters -- A (θ) : Location, B, C ($\left.\lambda_{1}, \lambda_{2}\right)$: Scale, p: Weight of Component \#1 Moments, etc.

$$
\begin{gathered}
\text { Mean }=A+p B+(1-p) C \\
\text { Variance }=C^{2}+2 B(B-C) p-(B-C)^{2} p^{2} \\
\text { Mode }=A
\end{gathered}
$$

Quantiles, etc.: no simple closed form

$$
\text { RandVar: determined by } \mathrm{p}
$$

Notes

1. Binary mixtures may require hundreds of data points for adequate optimization and, even then, often have unusually wide confidence intervals. In fact, the criterion response is sometimes flat over a broad range, esp. with respect to parameter p .
2. Warning! Mixtures usually have several local optima.

Aliases and Special Cases

1. This mixture, when applied to traffic analysis, is often called the Schuhl distribution.

Characterizations

1. The usual interpretation of a binary mixture is that it represents an undifferentiated composite of two populations having parameters and weights as described above.

Expo(A,B)\&Uniform(A,C)

$$
\mathrm{A} \leq \mathrm{y}<\mathrm{C}, \quad \mathrm{~B}>0, \quad 0<\mathrm{p}<1
$$

Parameters -- A (θ) : Location, $B(\lambda), C$: Scale $(C=$ upper bound of Uniform $(A, C))$, p: Weight of Component \#1

Moments, etc.

$$
\text { Mean }=\frac{\mathrm{A}+\mathrm{C}+\mathrm{p}(\mathrm{~A}+2 \mathrm{~B}-\mathrm{C})}{2}
$$

$$
\begin{gathered}
\text { Variance }=p\left[B^{2}+(A+B)^{2}\right]-\frac{(p-1)\left(A^{2}+A C+C^{2}\right)}{3}-\frac{[A+C+p(A+2 B-C)]^{2}}{4} \\
M o d e=A
\end{gathered}
$$

Quantiles, etc.: no simple closed form
RandVar: determined by p

Notes

1. Binary mixtures may require hundreds of data points for adequate optimization and, even then, often have unusually wide confidence intervals. In fact, the criterion response is sometimes flat over a broad range, esp. with respect to parameter p .
2. Warning! Mixtures usually have several local optima.

Aliases and Special Cases

Characterizations

1. The usual interpretation of a binary mixture is that it represents an undifferentiated composite of two populations having parameters and weights as described above.

ExtremeLB(A,B,C)

$$
y>A, \quad B>0, \quad 0<C \leq 100
$$

Parameters -- A (ξ) : Location, B (θ): Scale, C (k): Shape
Moments, etc. (see Note \#3.)

$$
\begin{gathered}
\text { Mean }=\mathrm{A}+\mathrm{B} \Gamma\left(\frac{\mathrm{C}-1}{\mathrm{C}}\right) \\
\text { Variance }=\mathrm{B}^{2}\left[\Gamma\left(\frac{\mathrm{C}-2}{\mathrm{C}}\right)-\Gamma^{2}\left(\frac{\mathrm{C}-1}{\mathrm{C}}\right)\right] \\
\text { Skewness }=\frac{\Gamma\left(\frac{\mathrm{C}-3}{\mathrm{C}}\right)-3 \Gamma\left(\frac{\mathrm{C}-2}{\mathrm{C}}\right) \Gamma\left(\frac{\mathrm{C}-1}{\mathrm{C}}\right)+2 \Gamma^{3}\left(\frac{\mathrm{C}-1}{\mathrm{C}}\right)}{\sqrt{\left[\Gamma\left(\frac{\mathrm{C}-2}{\mathrm{C}}\right)-\Gamma^{2}\left(\frac{\mathrm{C}-1}{\mathrm{C}}\right)\right]^{3}}}
\end{gathered}
$$

$$
\begin{gathered}
\text { Kurtosis }=-6+\frac{\Gamma\left(\frac{\mathrm{C}-4}{\mathrm{C}}\right)-4 \Gamma\left(\frac{\mathrm{C}-3}{\mathrm{C}}\right) \Gamma\left(\frac{\mathrm{C}-1}{\mathrm{C}}\right)+3 \Gamma^{2}\left(\frac{\mathrm{C}-2}{\mathrm{C}}\right)}{\left[\Gamma\left(\frac{\mathrm{C}-2}{\mathrm{C}}\right)-\Gamma^{2}\left(\frac{\mathrm{C}-1}{\mathrm{C}}\right)\right]^{2}} \\
\text { Mode }=\mathrm{A}+\mathrm{B} \sqrt[\mathrm{c}]{\frac{\mathrm{C}}{1+\mathrm{C}}} \\
\text { Median }=\mathrm{A}+\frac{\mathrm{B}}{\sqrt[\mathrm{C}]{\log (2)}} \\
\mathrm{Q} 1=\mathrm{A}+\frac{\mathrm{B}}{\sqrt[\mathrm{C}]{\log (4)}} \quad \mathrm{Q} 3=\mathrm{A}+\frac{\mathrm{B}}{\mathrm{c}} \sqrt{\log \left(\frac{4}{3}\right)} \\
\mathrm{qMean}=\exp \left(-\Gamma^{-\mathrm{C}}\left(\frac{\mathrm{C}-1}{\mathrm{C}}\right)\right) \quad \mathrm{qMode}=\exp \left(-\frac{\mathrm{C}+1}{\mathrm{C}}\right) \\
\operatorname{RandVar}=\mathrm{A}+\mathrm{B}(-\log (\mathrm{u}))^{-\frac{1}{\mathrm{C}}}
\end{gathered}
$$

Notes

1. The name ExtremeLB does not appear in the literature. It was chosen here simply to indicate one type of extreme-value distribution with a lower bound.
2. In the literature, $\mathrm{C}>0$. The restriction shown above is required for convergence when the data are left-skewed.
3. Moment k exists if $\mathrm{C}>\mathrm{k}$.

Aliases and Special Cases

1. The corresponding distribution with an upper bound is Weibull(-y).

Characterizations

1. Extreme-value distributions are the limiting distributions, as N --> infinity, of the greatest value among N i.i.d. variates selected from a continuous distribution. By replacing y with -y , the smallest values may be modeled.

Fisk(A,B,C)

$$
\mathrm{y}>\mathrm{A}, \quad \mathrm{~B}>0, \quad 0<\mathrm{C} \leq 100
$$

Parameters -- A: Location, B: Scale, C: Shape
Moments, etc. (see Note \#3.)

$$
\begin{gathered}
\text { Mean }=\mathrm{A}+\mathrm{B}\left[\frac{\pi}{\mathrm{C}} \csc \left(\frac{\pi}{\mathrm{C}}\right)\right] \\
\text { Variance }=\mathrm{B}^{2}\left[\frac{2 \pi}{\mathrm{C}} \csc \left(\frac{2 \pi}{\mathrm{C}}\right)-\left[\frac{\pi}{\mathrm{C}} \csc \left(\frac{\pi}{\mathrm{C}}\right)\right]^{2}\right]
\end{gathered}
$$

$$
\text { Skewness }=\frac{2 \pi^{2} \csc ^{3}\left(\frac{\pi}{\mathrm{C}}\right)-6 \mathrm{C} \pi \csc \left(\frac{\pi}{\mathrm{C}}\right) \csc \left(\frac{2 \pi}{\mathrm{C}}\right)+3 \mathrm{C}^{2} \csc \left(\frac{3 \pi}{\mathrm{C}}\right)}{\sqrt{\pi}\left[2 \mathrm{C} \csc \left(\frac{2 \pi}{\mathrm{C}}\right)-\pi \csc ^{2}\left(\frac{\pi}{\mathrm{C}}\right)\right]^{\frac{3}{2}}}
$$

$$
\begin{aligned}
& \text { Kurtosis }= \\
& \frac{-3 \pi^{3} \csc ^{4}\left(\frac{\pi}{\mathrm{C}}\right)-12 \mathrm{C}^{2} \pi \csc \left(\frac{\pi}{\mathrm{C}}\right) \csc \left(\frac{3 \pi}{\mathrm{C}}\right)+4 \mathrm{C}^{3} \csc \left(\frac{4 \pi}{\mathrm{C}}\right)+6 \mathrm{C} \pi^{2} \csc ^{3}\left(\frac{\pi}{\mathrm{C}}\right) \sec \left(\frac{\pi}{\mathrm{C}}\right)}{\pi\left[\pi \csc ^{2}\left(\frac{\pi}{\mathrm{C}}\right)-2 \mathrm{Ccsc}\left(\frac{2 \pi}{\mathrm{C}}\right)\right]^{2}}-3 \\
& \text { Mode }=\mathrm{A}+\mathrm{B} \sqrt[\mathrm{C}]{\frac{\mathrm{C}-1}{\mathrm{C}+1}} \\
& \text { Median }=\mathrm{A}+\mathrm{B} \\
& \mathrm{Q} 1=\mathrm{A}+\frac{\mathrm{B}}{\sqrt[C]{3}} \quad \mathrm{Q} 3=\mathrm{A}+\mathrm{B} \sqrt[\mathrm{C}]{3} \\
& \text { qMean }=\frac{1}{1+\left[\frac{\pi}{\mathrm{C}} \csc \left(\frac{\pi}{\mathrm{C}}\right)\right]^{-\mathrm{C}}} \quad \text { qMode }=\frac{\mathrm{C}-1}{2 \mathrm{C}} \\
& \text { RandVar }=A+B \sqrt[c]{\frac{u}{1-u}}
\end{aligned}
$$

Notes

1. The Fisk distribution is right-skewed.
2. To model a left-skewed distribution, try modeling $\mathrm{w}=-\mathrm{y}$.
3. Moment k exists if $\mathrm{C}>\mathrm{k}$.

Aliases and Special Cases

1. The Fisk distribution is also known as the LogLogistic distribution.

Characterizations

1. The Fisk distribution is often used in income and lifetime analysis.

FoldedNormal(A,B)

$$
\mathrm{y} \geq 0, \quad \mathrm{~A} \geq 0, \quad \mathrm{~B}>0
$$

Parameters -- A (μ) : Location, B (σ): Scale, both for the corresponding unfolded Normal Moments, etc.

$$
\begin{gathered}
\text { Mean }=\mathrm{B} \sqrt{\frac{2}{\pi}} \exp \left(-\frac{1}{2}\left(\frac{\mathrm{~A}}{\mathrm{~B}}\right)^{2}\right)-\mathrm{A}\left[1-2 \Phi\left(\frac{\mathrm{~A}}{\mathrm{~B}}\right)\right] \\
\text { Variance }=\mathrm{A}^{2}+\mathrm{B}^{2}-\left[\mathrm{B} \sqrt{\frac{2}{\pi}} \exp \left(-\frac{\mathrm{A}^{2}}{2 \mathrm{~B}^{2}}\right)+\mathrm{A} \operatorname{erf}\left(\frac{\mathrm{~A}}{\sqrt{2} \mathrm{~B}}\right)\right]^{2}
\end{gathered}
$$

$$
\begin{aligned}
& \text { Skewness }=\frac{B \sqrt{\frac{2}{\pi}} \exp \left(-\frac{3 A^{2}}{2 \mathrm{~B}^{2}}\right)\left(4 \mathrm{~B}^{2}-\pi \exp \left(\frac{A^{2}}{\mathrm{~B}^{2}}\right)\left(2 \mathrm{~A}^{2}+\mathrm{B}^{2}\right)\right)}{\pi \sqrt{\mathrm{Var}^{3}}}+ \\
& \frac{2 \mathrm{~A} \operatorname{erf}\left(\frac{A}{\sqrt{2} \mathrm{~B}}\right)\left[6 \mathrm{~B}^{2} \exp \left(-\frac{\mathrm{A}^{2}}{\mathrm{~B}^{2}}\right)+3 \sqrt{2 \pi} \mathrm{AB} \exp \left(-\frac{\mathrm{A}^{2}}{2 \mathrm{~B}^{2}}\right) \operatorname{erf}\left(\frac{A}{\sqrt{2} \mathrm{~B}}\right)+\pi \mathrm{A}^{2}\left(\operatorname{erf}^{2}\left(\frac{A}{\sqrt{2} \mathrm{~B}}\right)-1\right)\right]}{\pi \sqrt{\mathrm{Var}^{3}}}
\end{aligned}
$$

Kurtosis $=-3+$

$$
\begin{aligned}
& \frac{A^{4}+6 A^{2} B^{2}+3 B^{4}+6\left(A^{2}+B^{2}\right)\left[B \sqrt{\frac{2}{\pi}} \exp \left(-\frac{A^{2}}{2 B^{2}}\right)+A \operatorname{erf}\left(\frac{A}{\sqrt{2} B}\right)\right]^{2}}{\operatorname{Var}^{2}}- \\
& \frac{3}{\operatorname{Var}^{2}}\left[B \sqrt{\frac{2}{\pi}} \exp \left(-\frac{A^{2}}{2 B^{2}}\right)+A \operatorname{erf}\left(\frac{A}{\sqrt{2} B}\right)\right]^{4}- \\
& 4 \exp \left(-\frac{A^{2}}{B^{2}}\right)\left[B \sqrt{\frac{2}{\pi}}+A \exp \left(\frac{A^{2}}{2 B^{2}}\right) \operatorname{erf}\left(\frac{A}{\sqrt{2} B}\right)\right]\left[B \sqrt{\frac{2}{\pi}}\left(A^{2}+2 B^{2}\right)+A\left(A^{2}+3 B^{2}\right) \exp \left(\frac{A^{2}}{2 B^{2}}\right) \operatorname{erf}\left(\frac{A}{\sqrt{2} B}\right)\right] \\
& \operatorname{Var}^{2}
\end{aligned}
$$

Mode, Median, Q1, Q3, qMean, qMode: no simple closed form

Notes

1. This distribution is indifferent to the sign of A . Therefore, to avoid ambiguity, A is here restricted to be positive.
2. Mode >0 when $\mathrm{A}>\mathrm{B}$.

Aliases and Special Cases

1. If $\mathrm{A}=0$, the FoldedNormal distribution becomes the HalfNormal distribution.
2. The FoldedNormal distribution is identical to the distribution of χ^{\prime} (Non-central chi) with one degree of freedom and non-centrality parameter $(\mathrm{A} / \mathrm{B})^{2}$.

Characterizations

1. If $\mathrm{Z} \sim \operatorname{Normal}(\mathrm{A}, \mathrm{B}),|\mathrm{Z}| \sim \operatorname{FoldedNormal(A,B).}$

Gamma(A,B,C)
$\mathrm{y}>\mathrm{A}, \quad \mathrm{B}>0, \quad 0<\mathrm{C} \leq 100$

Parameters -- A (γ) : Location, B (β) : Scale, C (α) : Shape
Moments, etc.

$$
\begin{aligned}
& \text { Mean }=A+B C \\
& \text { Variance }=B^{2} C \\
& \text { Skewness }=\frac{2}{\sqrt{C}} \\
& \text { Kurtosis }=\frac{6}{C}
\end{aligned}
$$

$$
\text { Mode }=\mathrm{A}+\mathrm{B}(\mathrm{C}-1)
$$

Median, Q1, Q3: no simple closed form

$$
\mathrm{qMean}=\Gamma(\mathrm{C}, \mathrm{C}) \quad \mathrm{qMode}=\Gamma(\mathrm{C}, \mathrm{C}-1)
$$

Notes

1. The Gamma distribution is right-skewed.
2. To model a left-skewed distribution, try modeling $w=-y$.
3. The Gamma distribution approaches a Normal distribution in the limit as C goes to infinity.
4. In the literature, $\mathrm{C}>0$. The restriction shown above is required primarily to recognize when the PDF is not right-skewed.

Aliases and Special Cases

1. Gamma(A, B, C), where C is an integer, is the Erlang distribution.
2. $\operatorname{Gamma}(\mathrm{A}, \mathrm{B}, 1)$ is the Exponential distribution.
3. $\operatorname{Gamma}(0,2, v / 2)$ is the Chi-square distribution with v degrees of freedom.

Characterizations

1. If $\mathrm{Z}_{1} \sim \operatorname{Gamma}\left(\mathrm{~A}, \mathrm{~B}, \mathrm{C}_{1}\right)$ and $\mathrm{Z}_{2} \sim \operatorname{Gamma}\left(\mathrm{~A}, \mathrm{~B}, \mathrm{C}_{2}\right)$, then $\left(\mathrm{Z}_{1}+\mathrm{Z}_{2}\right)$ $\sim \operatorname{Gamma}\left(\mathrm{A}, \mathrm{B}, \mathrm{C}_{1}+\mathrm{C}_{2}\right)$.
2. If $Z_{1}, Z_{2}, \ldots, Z_{v} \sim \operatorname{Normal}(0,1)$, then $W=\sum_{k=1}^{v} Z_{k}^{2} \sim \operatorname{Gamma}(0,2, v / 2)$.
3. If $\mathrm{Z}_{1}, \mathrm{Z}_{2}, \ldots, \mathrm{Zn} \sim \operatorname{Exponential}(\mathrm{A}, \mathrm{B})$, then $\mathrm{W}=\sum_{\mathrm{k}=1}^{\mathrm{n}} \mathrm{Z}_{\mathrm{k}} \sim \operatorname{Erlang}(\mathrm{A}, \mathrm{B}, \mathrm{n})$.

GenLogistic(A,B,C)

B, $\mathrm{C}>0$

$$
\begin{gathered}
\mathrm{PDF}=\frac{\mathrm{C}}{\mathrm{~B}} \frac{\exp \left(\frac{\mathrm{~A}-\mathrm{y}}{\mathrm{~B}}\right)}{\left[1+\exp \left(\frac{\mathrm{A}-\mathrm{y}}{\mathrm{~B}}\right)\right]^{\mathrm{C}+1}} \\
\mathrm{CDF}
\end{gathered}
$$

Parameters -- A: Location, B: Scale, C: Shape
Moments, etc.

$$
\begin{gathered}
\text { Mean }=A+(\gamma+\psi(C)) B \\
\text { Variance }=\left[\frac{\pi^{2}}{6}+\psi^{\prime}(C)\right] B^{2} \\
\text { Skewness }=\frac{\psi^{\prime \prime}(C)+2 \zeta(3)}{\left[\frac{\pi^{2}}{6}+\psi^{\prime}(C)\right]^{\frac{3}{2}}} \\
A-43
\end{gathered}
$$

$$
\begin{gathered}
\text { Kurtosis }=\frac{12\left[\pi^{4}+15 \psi^{\prime \prime \prime}(\mathrm{C})\right]}{5\left[\pi^{2}+6 \psi^{\prime}(\mathrm{C})\right]^{2}} \\
\text { Mode }=\mathrm{A}+\mathrm{B} \log (\mathrm{C}) \\
\text { Median }=\mathrm{A}-\mathrm{B} \log (\sqrt[\mathrm{C}]{2}-1) \\
\text { Q1 }=\mathrm{A}-\mathrm{B} \log (\sqrt[c]{4}-1) \quad \mathrm{Q} 3=\mathrm{A}-\mathrm{B} \log \left(\sqrt[c]{\frac{4}{3}}-1\right) \\
\text { qMean }=[1+\exp (-\mathrm{H}(\mathrm{C}-1))]^{-\mathrm{C}} \quad \mathrm{qMode}=\left(\frac{\mathrm{C}}{\mathrm{C}+1}\right)^{\mathrm{C}} \\
\operatorname{RandVar}=\mathrm{A}-\mathrm{B} \log \left(\frac{1}{\sqrt[c]{\mathrm{u}}}-1\right)
\end{gathered}
$$

Notes

1. The Generalized Logistic distribution is a generalization of the Logistic distribution.
2. The Generalized Logistic distribution is left-skewed when $\mathrm{C}<1$ and right-skewed for C>1.
3. There are additional generalizations of the Logistic distribution.

Aliases and Special Cases

1. The Generalized Logistic distribution becomes the Logistic distribution when $\mathrm{C}=1$.

Characterizations

1. The Generalized Logistic has been used in the analysis of extreme values.

Geometric(A)

$$
\mathrm{y}=1,2,3, \ldots, \quad 0<\mathrm{A}<1
$$

Parameters -- A (p): Prob(success)
Moments, etc.

$$
\begin{aligned}
\text { Mean } & =\frac{1}{\mathrm{~A}} \\
\text { Variance } & =\frac{1-\mathrm{A}}{\mathrm{~A}^{2}} \\
\text { Mode } & =1
\end{aligned}
$$

Notes

Aliases and Special Cases

1. The Geometric distribution is the discrete version of the Exponential distribution.
2. The Geometric distribution is sometimes called the Furry distribution.

Characterizations

1. In a series of Bernoulli trials, with $\operatorname{Prob}($ success $)=A$, the number of trials required to realize the first success is \sim Geometric (A).
2. For the $\mathrm{B}^{\text {th }}$ success, see the NegativeBinomial distribution.

Geometric(A)\&Geometric(B) $\quad y=1,2,3, \ldots, \quad 0<B<A<1, \quad 0<p<1$

Parameters -- A, B ($\left.\pi_{1}, \pi_{2}\right): \operatorname{Prob}($ success $), \mathrm{p}$: Weight of Component \#1 Moments, etc.

$$
\begin{gathered}
\text { Mean }=\frac{p}{A}+\frac{1-p}{B} \\
\text { Variance }=\frac{A^{2}(1-B)+p B(A-B)(A-2)-p^{2}(A-B)^{2}}{A^{2} B^{2}} \\
\text { Mode }=1
\end{gathered}
$$

Notes

1. Here, parameter A is stipulated to be the Component with the larger Prob(success).
2. Binary mixtures may require hundreds of data points for adequate optimization and, even then, often have unusually wide confidence intervals. In fact, the criterion response is sometimes flat over a broad range, esp. with respect to parameter p .
3. Warning! Mixtures usually have several local optima.

Aliases and Special Cases

Characterizations

1. The usual interpretation of a binary mixture is that it represents an undifferentiated composite of two populations having parameters and weights as described above.

Gumbel(A,B)

Parameters -- A (ξ) : Location, B (θ): Scale
Moments, etc.

$$
\begin{gathered}
\text { Mean }=A+\gamma B \\
\text { Variance }=\frac{1}{6}(\pi B)^{2}
\end{gathered}
$$

$$
\text { Skewness }=\frac{12 \sqrt{6} \zeta(3)}{\pi^{3}} \approx 1.1395
$$

$$
\text { Kurtosis }=\frac{12}{5}
$$

Mode = A

$$
\begin{gathered}
\text { Median }=\mathrm{A}-\mathrm{B} \log (\log (2)) \\
\mathrm{Q} 1=\mathrm{A}-\mathrm{B} \log (\log (4)) \quad \mathrm{Q} 3=\mathrm{A}-\mathrm{B} \log \left(\log \left(\frac{4}{3}\right)\right) \\
\text { qMean }=\exp (-\exp (-\gamma)) \approx 0.5704 \quad \text { qMode }=\frac{1}{\mathrm{e}} \approx 0.3679 \\
\operatorname{RandVar}=\mathrm{A}-\mathrm{B} \log (-\log (\mathrm{u}))
\end{gathered}
$$

Notes

1. The Gumbel distribution is one of the class of extreme-value distributions.
2. The Gumbel distribution is right-skewed.
3. To model a left-skewed distribution, try modeling $\mathrm{w}=-\mathrm{y}$.

Aliases and Special Cases

1. The Gumbel distribution is sometimes called the LogWeibull distribution.
2. It is also known as the Gompertz distribution.
3. It is also known as the Fisher-Tippett distribution.

Characterizations

1. Extreme-value distributions are the limiting distributions, as N --> infinity, of the greatest value among N i.i.d. variates selected from a continuous distribution. By replacing y with -y , the smallest values may be modeled.
2. The Gumbel distribution is often used to model maxima when the random variable is unbounded.

HalfNormal(A,B)
 $$
y \geq A, \quad B>0
$$

Parameters -- A (θ): Location, B (λ): Scale
Moments, etc.

$$
\begin{gathered}
\text { Mean }=A+B \sqrt{\frac{2}{\pi}} \\
\text { Variance }=B^{2}\left(1-\frac{2}{\pi}\right) \\
\text { Skewness }=\frac{\sqrt{2}(4-\pi)}{\sqrt{(\pi-2)^{3}}} \approx 0.9953 \\
\text { Kurtosis }=\frac{8(\pi-3)}{(\pi-2)^{2}} \approx 0.8692
\end{gathered}
$$

A-51

$$
\begin{gathered}
\text { Mode }=\mathrm{A} \\
\text { Median } \approx \mathrm{A}+0.6745 \mathrm{~B} \\
\mathrm{Q} 1 \approx \mathrm{~A}+0.3186 \mathrm{~B} \quad \mathrm{Q} 3 \approx \mathrm{~A}+1.150 \mathrm{~B} \\
\text { qMean } \approx 0.5751 \quad \text { qMode }=0
\end{gathered}
$$

Notes

Aliases and Special Cases

1. The HalfNormal distribution is a special case of both the Chi and the FoldedNormal distributions.

Characterizations

1. If $\mathrm{X} \sim \operatorname{Normal}(\mathrm{A}, \mathrm{B})$ is folded (to the right) about its mean, A , the resulting distribution is HalfNormal(A, B).

HNormal(A,B)\&Expo(A,C)

Parameters -- A (θ) : Location, B, C ($\left.\lambda_{1}, \lambda_{2}\right)$: Scale, p: Weight of Component \#1 Moments, etc.

$$
\begin{gathered}
\text { Mean }=A+p B \sqrt{\frac{2}{\pi}}+(1-p) C \\
\text { Variance }=\frac{1}{\pi}\left[p(\pi-2 p) B^{2}+2 p(p-1) B C \sqrt{2 \pi}-\left(p^{2}-1\right) \pi C^{2}\right] \\
\text { Mode }=A
\end{gathered}
$$

Quantiles, etc.: no simple closed form RandVar: determined by p

Notes

1. Binary mixtures may require hundreds of data points for adequate optimization and, even then, often have unusually wide confidence intervals. In fact, the criterion response is sometimes flat over a broad range, esp. with respect to parameter p .
2. Warning! Mixtures usually have several local optima.
3. The alternate, $\operatorname{Expo}(\mathbf{A}, \mathbf{B}) \& \mathbf{H N o r m a l}(\mathbf{A}, \mathbf{C})$ distribution may be obtained by switching identities in the parameter dialog. In this case, the parameters shown above in the Moments section must be reversed (cf. E\&E and H\&H).

Aliases and Special Cases

Characterizations

1. The usual interpretation of a binary mixture is that it represents an undifferentiated composite of two populations having parameters and weights as described above.

HNormal(A,B)\&HNormal(A,C)

$$
\mathrm{y} \geq \mathrm{A}, \quad \mathrm{~B}, \mathrm{C}>0, \quad 0<\mathrm{p}<1
$$

Parameters -- A (θ) : Location, B, C $\left(\lambda_{1}, \lambda_{2}\right)$: Scale, p: Weight of Component \#1 Moments, etc.

$$
\begin{gathered}
\text { Mean }=A+\sqrt{\frac{2}{\pi}}[p B+(1-p) C] \\
\text { Variance }=p B^{2}+(1-p) C^{2}-\frac{2}{\pi}[p B+(1-p) C]^{2} \\
\text { Mode }=A
\end{gathered}
$$

Quantiles, etc.: no simple closed form

$$
\text { RandVar: determined by } \mathrm{p}
$$

Notes

1. Binary mixtures may require hundreds of data points for adequate optimization and, even then, often have unusually wide confidence intervals. In fact, the criterion response is sometimes flat over a broad range, esp. with respect to parameter p .
2. Warning! Mixtures usually have several local optima.

Aliases and Special Cases

Characterizations

1. The usual interpretation of a binary mixture is that it represents an undifferentiated composite of two populations having parameters and weights as described above.

HNormal(A,B)\&Uniform(A,C)

$$
\mathrm{A} \leq \mathrm{y}<\mathrm{C}, \quad \mathrm{~B}>0, \quad 0<\mathrm{p}<1
$$

Parameters -- A (θ) : Location, B $(\lambda), C$: Scale ($C=$ upper bound of Uniform (A, C)), p: Weight of Component \#1

Moments, etc.

$$
\begin{gathered}
\text { Mean }=\frac{1}{2}\left[A+C+p\left(A-C+2 B \sqrt{\frac{2}{\pi}}\right)\right] \\
\text { Variance }=\frac{12 p^{2}(\pi-2 p)+12 p B(A-C)(1-p) \sqrt{2 \pi}+\pi(A-C)^{2}(1-p)(1+3 p)}{12 \pi} \\
\text { Mode }=A \\
A-57
\end{gathered}
$$

Quantiles, etc.: no simple closed form
RandVar: determined by p

Notes

1. Binary mixtures may require hundreds of data points for adequate optimization and, even then, often have unusually wide confidence intervals. In fact, the criterion response is sometimes flat over a broad range, esp. with respect to parameter p .
2. Warning! Mixtures usually have several local optima.

Aliases and Special Cases

Characterizations

1. The usual interpretation of a binary mixture is that it represents an undifferentiated composite of two populations having parameters and weights as described above.

HyperbolicSecant(A,B)

Parameters -- A: Location, B: Scale

Moments, etc.

$$
\begin{gathered}
\text { Mean }=\text { Median }=\text { Mode }=\mathrm{A} \\
\text { Variance }=\frac{1}{4}(\pi \mathrm{~B})^{2} \\
\text { Skewness }=0 \\
\text { Kurtosis }=2 \\
\text { Q1 }=\mathrm{A}-\mathrm{B} \log (1+\sqrt{2}) \quad \mathrm{Q} 3=\mathrm{A}+\mathrm{B} \log (1+\sqrt{2}) \\
\text { qMean }=\mathrm{qMode}=0.5 \\
\mathrm{~A}-59
\end{gathered}
$$

$$
\operatorname{RandVar}=\mathrm{A}+\mathrm{B} \log \left[\tan \left(\frac{\pi \mathrm{u}}{2}\right)\right]
$$

Notes

1. The Hyperbolic Secant is related to the Logistic distribution.

Aliases and Special Cases

Characterizations

1. If $Z \sim$ Hyperbolic Secant, then $W=\exp (Z) \sim$ Half Cauchy.
2. The Hyperbolic Secant distribution is used in lifetime analysis.

InverseNormal(A,B)

 $y>0, \quad A, B>0$

Parameters -- A (μ) : Location, B (λ) : Scale

Moments, etc.

$$
\begin{gathered}
\text { Mean }=\mathrm{A} \\
\text { Variance }=\frac{\mathrm{A}^{3}}{\mathrm{~B}} \\
\text { Skewness }=3 \sqrt{\frac{\mathrm{~A}}{\mathrm{~B}}} \\
\text { Kurtosis }=\frac{15 \mathrm{~A}}{\mathrm{~B}} \\
\text { Mode }=\frac{\mathrm{A}}{2 \mathrm{~B}}\left(\sqrt{9 \mathrm{~A}^{2}+4 \mathrm{~B}^{2}}-3 \mathrm{~A}\right)
\end{gathered}
$$

Median, Q1, Q3, qMean, qMode: no simple closed form

Notes

1. There are several alternate forms for the PDF, some of which have more than two parameters.

Aliases and Special Cases

1. The InverseNormal distribution is often called the Inverse Gaussian distribution.
2. It is also known as the Wald distribution.

Characterizations

1. If a particle, moving in one-dimension with constant speed, exhibits linear Brownian motion, the time required to cover a given distance, d , is \sim InverseNormal.

Parameters -- A (θ): Location, B (λ): Scale
Moments, etc.

$$
\begin{gathered}
\text { Mean }=\text { Median }=\text { Mode }=\mathrm{A} \\
\text { Variance }=2 \mathrm{~B}^{2} \\
\text { Skewness }=0 \\
\text { Kurtosis }=3 \\
\text { Q1 }=\mathrm{A}-\mathrm{B} \log (2) \quad \mathrm{Q} 3=\mathrm{A}+\mathrm{B} \log (2) \\
\mathrm{A}-63
\end{gathered}
$$

$$
\begin{gathered}
\text { qMean }=\text { qMode }=0.5 \\
\text { RandVar }=\text { A }- \text { B } \log (\mathrm{u}) \text {, with a random sign }
\end{gathered}
$$

Notes

Aliases and Special Cases

1. The Laplace distribution is often called the double-exponential distribution.
2. It is also known as the bilateral exponential distribution.

Characterizations

1. The Laplace distribution is the signed analogue of the Exponential distribution.
2. Errors of real-valued observations are often \sim Laplace or \sim Normal.

Laplace(A,B)\&Laplace(C,D)

 B, D $>0, \quad 0<p<1$

Parameters -- A, C $\left(\mu_{1}, \mu_{2}\right)$: Location, B, D $\left(\lambda_{1}, \lambda_{2}\right)$: Scale, p: Weight of Component \#1 Moments, etc.

$$
\begin{gathered}
\text { Mean }=p \mathrm{~A}+(1-\mathrm{p}) \mathrm{C} \\
\text { Variance }=\mathrm{p}\left[2 \mathrm{~B}^{2}-(\mathrm{p}-1)(A-C)^{2}\right]-2(\mathrm{p}-1) D^{2}
\end{gathered}
$$

Quantiles, etc.: no simple closed form
RandVar: determined by p

Notes

1. Binary mixtures may require hundreds of data points for adequate optimization and, even then, often have unusually wide confidence intervals. In fact, the criterion response is sometimes flat over a broad range, esp. with respect to parameter p .
2. Warning! Mixtures usually have several local optima.

Aliases and Special Cases

1. This binary mixture is very often referred to as the Double double-exponential distribution.

Characterizations

1. The usual interpretation of a binary mixture is that it represents an undifferentiated composite of two populations having parameters and weights as described above.

Laplace (A,B)\&Laplace(A,C)

B, C $>0, \quad 0<p<1$

Parameters -- A (μ) : Location, B, C $\left(\lambda_{1}, \lambda_{2}\right)$: Scale, p: Weight of Component \#1 Moments, etc.

$$
\begin{gathered}
\text { Mean }=\text { Median }=\text { Mode }=A \\
\text { Variance }=2\left[p B^{2}+(1-p) C^{2}\right] \\
\text { Skewness }=0 \\
\text { Kurtosis }=\frac{6\left(p B^{4}+(1-p) C^{4}\right)}{\left(p B^{2}+(1-p) C^{2}\right)^{2}}-3
\end{gathered}
$$

Q1, Q3: no simple closed form

$$
\mathrm{qMean}=\mathrm{qMode}=0.5
$$

RandVar: determined by p

Notes

1. Binary mixtures may require hundreds of data points for adequate optimization and, even then, often have unusually wide confidence intervals. In fact, the criterion response is sometimes flat over a broad range, esp. with respect to parameter p .
2. Warning! Mixtures usually have several local optima.

Aliases and Special Cases

1. This is a special case of the Laplace($\mathbf{A}, \mathbf{B}) \&$ Laplace($\mathbf{C}, \mathbf{D})$ distribution.

Characterizations

1. The usual interpretation of a binary mixture is that it represents an undifferentiated composite of two populations having parameters and weights as described above.

Laplace(A,B)\&Uniform(C,D)

$\mathrm{B}>0, \quad \mathrm{C}<\mathrm{D}, \quad 0<\mathrm{p}<1$

Parameters -- A (μ), C: Location, B $(\lambda), D: S c a l e(D=$ upper bound of Uniform(C,D) $)$, p: Weight of Component \#1

Moments, etc.

$$
\text { Mean }=\mathrm{p} \mathrm{~A}+\frac{(1-\mathrm{p})(\mathrm{C}+\mathrm{D})}{2}
$$

Variance $=p\left(A^{2}+2 B^{2}\right)-\left[p A+\frac{(1-p)(C+D)}{2}\right]^{2}+\frac{1}{3}(1-p)\left(C^{2}+C D+D^{2}\right)$

Quantiles, etc.: no simple closed form
RandVar: determined by p

Notes

1. Binary mixtures may require hundreds of data points for adequate optimization and, even then, often have unusually wide confidence intervals. In fact, the criterion response is sometimes flat over a broad range, esp. with respect to parameter p .
2. Warning! Mixtures usually have several local optima.

Aliases and Special Cases

Characterizations

1. The usual interpretation of a binary mixture is that it represents an undifferentiated composite of two populations having parameters and weights as described above.

Laplace(A,B)\&Uniform(A,C)

B, C > 0, $0<\mathrm{p}<1$

Parameters -- A (μ) : Location, B (λ), C : Scale (C = half-width of Uniform(A,C)), p: Weight of Component \#1

Moments, etc.

$$
\begin{gathered}
\text { Mean }=\text { Median }=\text { Mode }=A \\
\text { Variance }=\frac{1}{3}\left[6 \text { p B }^{2}+(1-\mathrm{p}) \mathrm{C}^{2}\right]
\end{gathered}
$$

$$
\begin{gathered}
\text { Skewness }=0 \\
\text { Kurtosis }=\frac{9\left(120 \mathrm{p} \mathrm{~B}^{4}+(1-\mathrm{p}) \mathrm{C}^{4}\right)}{5\left(6 \mathrm{p} \mathrm{~B}^{2}+(1-\mathrm{p}) \mathrm{C}^{2}\right)^{2}}-3 \\
\text { Q1, Q3: no simple closed form } \\
\text { qMean }=\text { qMode }=0.5 \\
\text { RandVar: determined by } \mathrm{p}
\end{gathered}
$$

Notes

1. Binary mixtures may require hundreds of data points for adequate optimization and, even then, often have unusually wide confidence intervals. In fact, the criterion response is sometimes flat over a broad range, esp. with respect to parameter p.
2. Warning! Mixtures usually have several local optima.
3. Note that the parameters for the Uniform component are different from those in the Uniform(A,B) distribution. Here, A is the Mean and C is the half-width.

Aliases and Special Cases

1. This is a special case of the Laplace (A,B)\&Uniform(C,D) distribution.

Characterizations

1. The usual interpretation of a binary mixture is that it represents an undifferentiated composite of two populations having parameters and weights as described above.

Logarithmic(A)

$$
\mathrm{y}=1,2,3, \ldots, \quad 0<\mathrm{A}<1
$$

Parameters -- A (θ): Shape
Moments, etc.

$$
\begin{gathered}
\text { Mean }=\frac{-\mathrm{A}}{(1-\mathrm{A}) \log (1-\mathrm{A})} \\
\text { Variance }=\frac{-\mathrm{A}[\mathrm{~A}+\log (1-\mathrm{A})]}{(1-\mathrm{A})^{2} \log ^{2}(1-\mathrm{A})} \\
\text { Mode }=1
\end{gathered}
$$

Notes

Aliases and Special Cases

Characterizations

1. The Logarithmic distribution has been used to model the numbers of items of a product purchased by a buyer in a given period of time.

Logistic(A,B)

Parameters -- A (α): Location, B (β): Scale
Moments, etc.

$$
\begin{gathered}
\text { Mean }=\text { Median }=\text { Mode }=\mathrm{A} \\
\text { Variance }=\frac{1}{3}(\pi \mathrm{~B})^{2}
\end{gathered}
$$

$$
\text { Skewness }=0
$$

$$
\text { Kurtosis }=\frac{6}{5}
$$

$$
\begin{gathered}
\mathrm{Q} 1=\mathrm{A}-\mathrm{B} \log (3) \quad \mathrm{Q} 3=\mathrm{A}+\mathrm{B} \log (3) \\
\text { qMean }=\mathrm{qMode}=0.5 \\
\text { RandVar }=\mathrm{A}+\mathrm{B} \log \left(\frac{\mathrm{u}}{1-\mathrm{u}}\right)
\end{gathered}
$$

Notes

1. The logistic distribution is often used as an approximation to other symmetrical distributions due to the mathematical tractability of its CDF.

Aliases and Special Cases

1. The logistic distribution is sometimes called the Sech-squared distribution.

Characterizations

1. The logistic law of growth is described by the following differential equation:

$$
\frac{d \mathrm{P}}{d \mathrm{t}}=\alpha \mathrm{P}-\beta \mathrm{P}^{2}
$$

whence

$$
\mathrm{P}(\mathrm{t})=\frac{\mathrm{P}_{0} \mathrm{P}_{\infty}}{\mathrm{P}_{0}+\left(\mathrm{P}_{\infty}-\mathrm{P}_{0}\right) \exp (-\alpha \mathrm{t})}
$$

where P_{0} is the initial and $P_{\infty}=\frac{\alpha}{\beta}$ the final population size. This sigmoidal function, $\mathrm{P}(\mathrm{t})$, reduces to exponential growth when $\alpha \gg \beta$. After appropriate normalization, it becomes the CDF given above.
2. If lo and hi are the minima and maxima of a random sample $($ size $=\mathrm{N})$ then, as N --> infinity, the asymptotic distribution of the midrange $=(\mathrm{hi}-\mathrm{lo}) / 2$ is \sim Logistic.

LogNormal(A,B)

$$
y>0, \quad B>0
$$

Parameters -- A (ζ): Location, B (σ): Scale, both measured in log space Moments, etc.

$$
\text { Mean }=\exp \left(A+\frac{B^{2}}{2}\right)
$$

$$
\text { Variance }=\exp \left(2 A+B^{2}\right)\left(\exp \left(B^{2}\right)-1\right)
$$

$$
\text { Skewness }=(\mathrm{e}+2) \sqrt{\mathrm{e}-1} \approx 6.1849, \text { for } \mathrm{A}=0 \text { and } \mathrm{B}=1
$$

$$
\text { Kurtosis }=\mathrm{e}^{4}+2 \mathrm{e}^{3}+3 \mathrm{e}^{2}-6 \approx 110.94, \text { for } \mathrm{A}=0 \text { and } \mathrm{B}=1
$$

$$
\text { Mode }=\exp \left(\mathrm{A}-\mathrm{B}^{2}\right)
$$

$$
\begin{gathered}
\text { Median }=\exp (\mathrm{A}) \\
\mathrm{Q} 1 \approx \exp (\mathrm{~A}-0.6745 \mathrm{~B}) \quad \mathrm{Q} 3 \approx \exp (\mathrm{~A}+0.6745 \mathrm{~B})
\end{gathered}
$$

qMean, qMode: no simple closed form

Notes

1. The LogNormal distribution is always right-skewed.
2. There are several alternate forms for the PDF, some of which have more than two parameters.
3. Parameters A and B are the mean and standard deviation of y in (natural) log space. Therefore, their units are similarly transformed.

Aliases and Special Cases

1. The LogNormal distribution is sometimes called the Cobb-Douglas distribution, especially when applied to econometric data.
2. It is also known as the antilognormal distribution.

Characterizations

1. As the PDF suggests, the LogNormal distribution is the distribution of a random variable which, in log space, is \sim Normal.

Nakagami(A,B,C)

$$
y>A, \quad B>0, \quad 0<C \leq 100
$$

Parameters -- A: Location, B: Scale, C (v): Shape (also, degrees of freedom) Moments, etc.

$$
\begin{aligned}
\text { Mean } & =\mathrm{A}+\mathrm{B} \frac{\Gamma\left(\mathrm{C}+\frac{1}{2}\right)}{\sqrt{\mathrm{C}} \Gamma(\mathrm{C})} \\
\text { Variance } & =\left[1-\frac{\Gamma^{2}\left(\mathrm{C}+\frac{1}{2}\right)}{\mathrm{C} \Gamma^{2}(\mathrm{C})}\right] \mathrm{B}^{2}
\end{aligned}
$$

$$
\begin{gathered}
\text { Skewness }=\frac{2 \Gamma^{3}\left(\mathrm{C}+\frac{1}{2}\right)+\Gamma^{2}(\mathrm{C})\left[\Gamma\left(\mathrm{C}+\frac{3}{2}\right)-3 \mathrm{C} \Gamma\left(\mathrm{C}+\frac{1}{2}\right)\right]}{\Gamma^{3}(\mathrm{C})\left[\mathrm{C}\left(1-\frac{\mathrm{C} \Gamma^{2}\left(\mathrm{C}+\frac{1}{2}\right)}{\Gamma^{2}(\mathrm{C}+1)}\right)\right]^{\frac{3}{2}}} \\
\text { Kurtosis }=\frac{-6 \Gamma^{4}\left(\mathrm{C}+\frac{1}{2}\right)-3 \mathrm{C}^{2} \Gamma^{4}(\mathrm{C})+\Gamma^{3}(\mathrm{C}) \Gamma(\mathrm{C}+2)+2^{3-4 \mathrm{C}}(4 \mathrm{C}-1) \pi \Gamma^{2}(2 \mathrm{C})}{\left[\Gamma^{2}\left(\mathrm{C}+\frac{1}{2}\right)-\mathrm{C} \Gamma^{2}(\mathrm{C})\right]^{2}} \\
\text { Mode }=\mathrm{A}+\mathrm{B} \sqrt{\frac{2 \mathrm{C}-1}{2 \mathrm{C}}}
\end{gathered}
$$

Quantiles, etc.: no simple closed form

Notes

1. In the literature, $\mathrm{C}>0$. The restrictions shown above are required for convergence when the data are left-skewed and to ensure the existence of a Mode.

Aliases and Special Cases

1. cf. Chi distribution.

Characterizations

1. The Nakagami distribution is a generalization of the Chi distribution.

NegativeBinomial(A,B)

$$
\mathrm{y}=1,2,3, \ldots, \quad 0<\mathrm{A}<1, \quad 1 \leq \mathrm{B} \leq \mathrm{y}
$$

Parameters -- A (p): Prob(success), B (k): a constant, target number of successes Moments, etc.

$$
\begin{gathered}
\text { Mean }=\frac{B}{A} \\
\text { Variance }=\frac{B(1-A)}{A^{2}} \\
\text { Mode }=\operatorname{int}\left(\frac{A+B-1}{A}\right)
\end{gathered}
$$

Notes

1. Although not supported here, the NegativeBinomial distribution may be generalized to include non-integer values of B.
2. If $(B-1) / A$ is an integer, Mode also equals $(B-1) / A$.
3. Regress+ requires B to be Constant.

Aliases and Special Cases

1. The NegativeBinomial is also known as the Pascal distribution. The latter name is restricted to the case (as here) in which B is an integer.
2. It is also known as the Polya distribution.
3. If $B=1$, the NegativeBinomial distribution becomes the Geometric distribution.

Characterizations

1. If Prob(success) $=\mathrm{A}$, the number of Bernoulli trials required to realize the $\mathrm{B}^{\text {th }}$ success is \sim NegativeBinomial(A, B).

NegBinomial(A,C)\&NegBinomial(B,C)

Parameters -- A, B (π_{1}, π_{2}): Prob(success), C (k): a constant, target number of successes, p : Weight of Component \#1

Moments, etc.

$$
\begin{array}{r}
\text { Mean }=C\left[\frac{p}{A}+\frac{(1-p)}{B}\right] \\
\text { Variance }=\frac{C\left[p B^{2}(1+C(1-p))-A^{2}(1-p)(B-p C-1)-p \text { A B }(B+2 C(1-p))\right]}{A^{2} B^{2}}
\end{array}
$$

Mode: no simple closed form

Notes

1. Here, parameter A is stipulated to be the Component with the larger Prob(success).
2. Binary mixtures may require hundreds of data points for adequate optimization and, even then, often have unusually wide confidence intervals. In fact, the criterion response is sometimes flat over a broad range, esp. with respect to parameter p .
3. Warning! Mixtures usually have several local optima.

Aliases and Special Cases

Characterizations

1. The usual interpretation of a binary mixture is that it represents an undifferentiated composite of two populations having parameters and weights as described above.

Normal(A,B)

Parameters -- A (μ) : Location, B (σ) : Scale
Moments, etc.

$$
\begin{gathered}
\text { Mean }=\text { Median }=\text { Mode }=\mathrm{A} \\
\text { Variance }=\mathrm{B}^{2} \\
\text { Skewness }=\text { Kurtosis }=0 \\
\text { Q1 } \approx \text { A }-0.6745 \mathrm{~B} \quad \mathrm{Q} 3 \approx \mathrm{~A}+0.6745 \mathrm{~B} \\
\text { qMean }=\text { qMode }=0.5
\end{gathered}
$$

Notes

1. The CDF is generally tabulated in terms of the standard variable z:

$$
z=\frac{y-A}{B}
$$

2. The sample standard deviation, s , is the maximum-likelihood estimator of B but is biased with respect to the population value. The latter may be estimated as follows:

$$
B=\sqrt{\frac{N}{N-1}} \mathrm{~s}
$$

where N is the sample size.

Aliases and Special Cases

1. The Normal distribution is very often called the Gaussian distribution.
2. In non-technical literature, it is also referred to as the bell curve.
3. Its CDF is closely related to the error function, $\operatorname{erf}(\mathrm{z})$.
4. The FoldedNormal and HalfNormal distributions are special cases.

Characterizations

1. Let $Z_{1}, Z_{2}, \ldots, Z_{N}$ be i.i.d. random variables with finite values for their mean (μ) and variance (σ^{2}). Then, for any real number (z),

$$
\lim _{N \rightarrow \infty} \operatorname{Prob}\left[\frac{1}{\sqrt{N}} \sum_{i=1}^{N}\left(\frac{Z_{i}-\mu}{\sigma}\right) \leq z\right]=\Phi(z)
$$

known as the Central Limit Theorem. Loosely speaking, the sum of k random variables, from the same distribution, tends to be \sim Normal, and more so as k increases.
2. If $X \sim \operatorname{Normal}(A, B)$, then $Y=a X+b \sim \operatorname{Normal}(a A+b, a B)$.
3. If $X \sim \operatorname{Normal}(A, B)$ and $Y \sim \operatorname{Normal}(C, D)$, then $S=X+Y$ (i.e., the convolution of X and Y) is $\sim \operatorname{Normal}\left(\mathrm{A}+\mathrm{C}, \sqrt{\mathrm{B}^{2}+\mathrm{D}^{2}}\right)$.
4. Errors of real-valued observations are often \sim Normal or \sim Laplace.
$\operatorname{Normal}(\mathbf{A}, \mathbf{B}) \boldsymbol{\&}$ Laplace(C,D) B, D $>0,0<\mathrm{p}<1$

Parameters -- A, C $\left(\mu_{1}, \mu_{2}\right)$: Location, B, D $(\sigma, \lambda):$ Scale, p: Weight of Component \#1 Moments, etc.

$$
\begin{gathered}
\text { Mean }=p A+(1-p) C \\
\text { Variance }=p\left[B^{2}-(p-1)(A-C)^{2}\right]-2(p-1) D^{2}
\end{gathered}
$$

Quantiles, etc.: no simple closed form

$$
\text { RandVar: determined by } \mathrm{p}
$$

Notes

1. Binary mixtures may require hundreds of data points for adequate optimization and, even then, often have unusually wide confidence intervals. In fact, the criterion response is sometimes flat over a broad range, esp. with respect to parameter p .
2. Warning! Mixtures usually have several local optima.
3. The alternate, Laplace(A,B)\&Normal(C,D) distribution may be obtained by switching identities in the parameter dialog. In this case, the parameters shown above in the Moments section must be reversed (cf. L\&L and N\&N).

Aliases and Special Cases

Characterizations

1. The usual interpretation of a binary mixture is that it represents an undifferentiated composite of two populations having parameters and weights as described above.

Parameters -- A (μ) : Location, B, C (σ, λ) : Scale, p: Weight of Component \#1 Moments, etc.

$$
\begin{gathered}
\text { Mean }=\text { Median }=\text { Mode }=\mathrm{A} \\
\text { Variance }=\mathrm{p} \mathrm{~B}^{2}+2(1-\mathrm{p}) \mathrm{C}^{2} \\
\text { Skewness }=0 \\
\text { Kurtosis }=\frac{3 p \mathrm{~B}^{4}+24(1-\mathrm{p}) \mathrm{C}^{4}}{\left(\mathrm{p} \mathrm{~B}^{2}+2(1-\mathrm{p}) \mathrm{C}^{2}\right)^{2}}-3
\end{gathered}
$$

Q1, Q3: no simple closed form

$$
\mathrm{qMean}=\mathrm{qMode}=0.5
$$

RandVar: determined by p

Notes

1. Binary mixtures may require hundreds of data points for adequate optimization and, even then, often have unusually wide confidence intervals. In fact, the criterion response is sometimes flat over a broad range, esp. with respect to parameter p .
2. Warning! Mixtures usually have several local optima.
3. The alternate, Laplace $(\mathbf{A}, \mathbf{B}) \& \operatorname{Normal}(\mathbf{A}, \mathbf{C})$ distribution may be obtained by switching identities in the parameter dialog. In this case, the parameters shown above in the Moments section must be reversed (cf. L\&L and N\&N).

Aliases and Special Cases

1. This is a special case of the $\operatorname{Normal}(\mathbf{A}, \mathbf{B}) \& \operatorname{Laplace}(\mathbf{C}, \mathbf{D})$ distribution.

Characterizations

1. The usual interpretation of a binary mixture is that it represents an undifferentiated composite of two populations having parameters and weights as described above.

Normal(A,B)\&Normal(C,D)

 B, D $>0, \quad 0<p<1$

Parameters -- A, C $\left(\mu_{1}, \mu_{2}\right)$: Location, B, D $\left(\sigma_{1}, \sigma_{2}\right)$: Scale, p: Weight of Component \#1 Moments, etc.

$$
\begin{gathered}
\text { Mean }=p A+(1-p) C \\
\text { Variance }=p\left[B^{2}-(p-1)(A-C)^{2}\right]-(p-1) D^{2}
\end{gathered}
$$

Quantiles, etc.: no simple closed form RandVar: determined by p

Notes

1. Binary mixtures may require hundreds of data points for adequate optimization and, even then, often have unusually wide confidence intervals. In fact, the criterion response is sometimes flat over a broad range, esp. with respect to parameter p.
2. Warning! Mixtures usually have several local optima.
3. Whether or not this much-studied mixture is bimodal depends partly upon parameter p . Obviously, if p is small enough, this mixture will be unimodal regardless of the remaining parameters. If

$$
(\mathrm{A}-\mathrm{C})^{2}>\frac{8 \mathrm{~B}^{2} \mathrm{D}^{2}}{\mathrm{~B}^{2}+\mathrm{D}^{2}}
$$

then there will be some values of p for which this mixture is bimodal. However, if

$$
(\mathrm{A}-\mathrm{C})^{2}<\frac{27 \mathrm{~B}^{2} \mathrm{D}^{2}}{4\left(\mathrm{~B}^{2}+\mathrm{D}^{2}\right)}
$$

then this mixture will be unimodal.

Aliases and Special Cases

Characterizations

1. The usual interpretation of a binary mixture is that it represents an undifferentiated composite of two populations having parameters and weights as described above.
$\operatorname{Normal}(\mathbf{A}, \mathbf{B}) \& \operatorname{Normal}(\mathbf{A}, \mathbf{C})$
B, C $>0, \quad 0<p<1$

Parameters -- A (μ) : Location, B, C $\left(\sigma_{1}, \sigma_{2}\right)$: Scale, p: Weight of Component \#1 Moments, etc.

$$
\begin{aligned}
& \text { Mean }=\text { Median }=\text { Mode }=A \\
& \text { Variance }=p B^{2}+(1-p) C^{2}
\end{aligned}
$$

$$
\text { Skewness }=0
$$

$$
\text { Kurtosis }=\frac{3 p(1-p)\left(B^{2}-C^{2}\right)}{\left(p B^{2}+(1-p) C^{2}\right)^{2}}
$$

Q1, Q3: no simple closed form

$$
\mathrm{qMean}=\mathrm{qMode}=0.5
$$

RandVar: determined by p

Notes

1. Binary mixtures may require hundreds of data points for adequate optimization and, even then, often have unusually wide confidence intervals. In fact, the criterion response is sometimes flat over a broad range, esp. with respect to parameter p .
2. Warning! Mixtures usually have several local optima.

Aliases and Special Cases

1. This is a special case of the $\operatorname{Normal}(\mathbf{A}, \mathbf{B}) \& \operatorname{Normal}(\mathbf{C}, \mathbf{D})$ distribution.

Characterizations

1. The usual interpretation of a binary mixture is that it represents an undifferentiated composite of two populations having parameters and weights as described above.

 $$
\operatorname{PDF}=\frac{\mathrm{p}}{\mathrm{~B} \sqrt{2 \pi}} \exp \left(-\frac{1}{2}\left(\frac{\mathrm{y}-\mathrm{A}}{\mathrm{~B}}\right)^{2}\right)+\frac{(1-\mathrm{p})(\mathrm{C}<\mathrm{y}<\mathrm{D})}{\mathrm{D}-\mathrm{C}}
$$
 $$
\mathrm{CDF}=\left\{\begin{array}{l} \mathrm{p} \Phi\left(\frac{\mathrm{y}-\mathrm{A}}{\mathrm{~B}}\right), \mathrm{y} \leq \mathrm{C} \\ \mathrm{p} \Phi\left(\frac{\mathrm{y}-\mathrm{A}}{\mathrm{~B}}\right)+(1-\mathrm{p})\left(\frac{\mathrm{y}-\mathrm{C}}{\mathrm{D}-\mathrm{C}}\right), \mathrm{C}<\mathrm{y}<\mathrm{D} \\ \mathrm{p} \Phi\left(\frac{\mathrm{y}-\mathrm{A}}{\mathrm{~B}}\right)+(1-\mathrm{p}), \mathrm{y} \geq \mathrm{D} \end{array}\right.
$$

Parameters -- A (μ), C: Location, B (σ), D : Scale ($\mathrm{D}=$ upper bound of Uniform(C,D)), p: Weight of Component \#1

Moments, etc.

$$
\text { Mean }=\mathrm{pA}+\frac{(1-\mathrm{p})(\mathrm{C}+\mathrm{D})}{2}
$$

$$
\text { Variance }=\mathrm{p}\left(\mathrm{~A}^{2}+\mathrm{B}^{2}\right)-\left[\mathrm{p} \mathrm{~A}+\frac{(1-\mathrm{p})(\mathrm{C}+\mathrm{D})}{2}\right]^{2}+\frac{1}{3}(1-\mathrm{p})\left(\mathrm{C}^{2}+\mathrm{CD}+\mathrm{D}^{2}\right)
$$

Quantiles, etc.: no simple closed form
RandVar: determined by p

Notes

1. Binary mixtures may require hundreds of data points for adequate optimization and, even then, often have unusually wide confidence intervals. In fact, the criterion response is sometimes flat over a broad range, esp. with respect to parameter p .
2. Warning! Mixtures usually have several local optima.

Aliases and Special Cases

Characterizations

1. The usual interpretation of a binary mixture is that it represents an undifferentiated composite of two populations having parameters and weights as described above.

Parameters -- A (μ), C: Location, B (σ), C : Scale (C = half-width of Uniform(A,C)), p : Weight of Component \#1

Moments, etc.

$$
\begin{aligned}
& \text { Mean }=\text { Median }=\text { Mode }=A \\
& \text { Variance }=\frac{3 p B^{2}+(1-p) C^{2}}{3}
\end{aligned}
$$

$$
\begin{gathered}
\text { Skewness }=0 \\
\text { Kurtosis }=\frac{9\left(15 \mathrm{p} \mathrm{~B}^{4}+(1-\mathrm{p}) \mathrm{C}^{4}\right)}{5\left(3 \mathrm{pB}^{2}+(1-\mathrm{p}) \mathrm{C}^{2}\right)^{2}}-3 \\
\text { Q1, Q3: no simple closed form } \\
\text { qMean }=\text { qMode }=0.5 \\
\text { RandVar: determined by } \mathrm{p}
\end{gathered}
$$

Notes

1. Binary mixtures may require hundreds of data points for adequate optimization and, even then, often have unusually wide confidence intervals. In fact, the criterion response is sometimes flat over a broad range, esp. with respect to parameter p .
2. Warning! Mixtures usually have several local optima.
3. It is especially difficult to get the optimum value for parameter C in this distribution. There is an unusual amount of ambiguity in this case. It might be best to start out with parameter C Constant at its likely value (if known) and proceed from there.

Aliases and Special Cases

1. This is a special case of the $\operatorname{Normal}(\mathbf{A}, \mathbf{B}) \& \operatorname{Uniform}(\mathbf{C}, \mathbf{D})$ distribution.

Characterizations

1. The usual interpretation of a binary mixture is that it represents an undifferentiated composite of two populations having parameters and weights as described above.

Pareto(A,B)
$0<\mathrm{A} \leq \mathrm{y}, \quad \mathrm{B}>0$

Parameters -- A (k): Location, Scale, B (a): Shape
Moments, etc. (see Note \#3.)

$$
\text { Mean }=\frac{\mathrm{A} \mathrm{~B}}{\mathrm{~B}-1}
$$

$$
\begin{array}{r}
\text { Variance }=\frac{A^{2} B}{(B-2)(B-1)^{2}} \\
\text { Skewness }=\frac{2(B+1) \sqrt{B-2}}{(B-3) \sqrt{B}} \\
\text { Kurtosis }=\frac{6\left(B^{3}+B^{2}-6 B-2\right)}{B\left(B^{2}-7 B+12\right)}
\end{array}
$$

$$
\begin{gathered}
\text { Mode }=\mathrm{A} \\
\text { Median }=\mathrm{A} \sqrt[\mathrm{~B}]{2} \\
\mathrm{Q} 1=\mathrm{A} \sqrt[\mathrm{~B}]{\frac{4}{3}} \quad \mathrm{Q} 3=\mathrm{A} \sqrt[\mathrm{~B}]{4} \\
\text { qMean }=1-\left(\frac{\mathrm{B}-1}{\mathrm{~B}}\right)^{\mathrm{B}} \mathrm{q} \text { Mode }=0 \\
\text { RandVar }=\frac{\mathrm{A}}{\sqrt[8]{\mathrm{u}}}
\end{gathered}
$$

Notes

1. The Pareto distribution is always right-skewed.
2. There are several alternate forms for this distribution. In fact, the term Pareto is often applied to a class of distributions.
3. Moment k exists if $\mathrm{B}>\mathrm{k}$.

Aliases and Special Cases

Characterizations

1. The Pareto distribution is often used as an income distribution. Thus, the probability that a random income, in some defined population, exceeds a minimum, A, is \sim Pareto.

Parameters -- A (θ): Expectation

Moments, etc.

$$
\begin{gathered}
\text { Mean }=\text { Variance }=\mathrm{A} \\
\text { Mode }=\operatorname{int}(\mathrm{A})
\end{gathered}
$$

Notes

1. If A is an integer, Mode also equals $\mathrm{A}-1$.

Aliases and Special Cases

Characterizations

1. The Poisson distribution is commonly used as an approximation to the Binomial(A) distribution when A is very small.
2. In queueing theory, when interarrival times are \sim Exponential, the number of arrivals in a fixed interval are \sim Poisson.
3. Errors in observations with integer values (i.e., miscounting) are \sim Poisson.
$\operatorname{Poisson}(A) \& P o i s s o n(B) \quad y=0,1,2, \ldots, \quad 0<A<B, \quad 0<p<1$

Parameters -- A, B $\left(\theta_{1}, \theta_{2}\right)$: Expectation, p: Weight of Component \#1 Moments, etc.

$$
\text { Mean }=p A+(1-p) B
$$

$$
\text { Variance }=\mathrm{pA}(\mathrm{~A}+1)+(1-\mathrm{p}) \mathrm{B}(\mathrm{~B}+1)-[\mathrm{p}(\mathrm{~A}-\mathrm{B})+\mathrm{B}]^{2}
$$

Mode: no simple closed form

Notes

1. Here, parameter A is stipulated to be the Component with the smaller expectation.
2. This distribution may or may not be bimodal.
3. Binary mixtures may require hundreds of data points for adequate optimization and, even then, often have unusually wide confidence intervals. In fact, the criterion response is sometimes flat over a broad range, esp. with respect to parameter p .
4. Warning! Mixtures usually have several local optima.

Aliases and Special Cases

Characterizations

1. The usual interpretation of a binary mixture is that it represents an undifferentiated composite of two populations having parameters and weights as described above.

Reciprocal(A,B)

Parameters -- A, B: Shape
Moments, etc. $[\mathrm{d} \equiv \log (\mathrm{A} / \mathrm{B})]$

$$
\begin{gathered}
\text { Mean }=\frac{A-B}{d} \\
\text { Variance }=\frac{(A-B)[A(d-2)+B(d+2)]}{2 d^{2}}
\end{gathered}
$$

$$
\begin{gathered}
\text { Skewness }=\frac{\sqrt{2}\left[12 d(A-B)^{2}+d^{2}\left(A^{2}(2 d-9)+2 A B d+B^{2}(2 d+9)\right)\right]}{3 d \sqrt{A-B}[A(d-2)+B(d+2)]^{\frac{3}{2}}} \\
\text { Kurtosis }=\frac{-36(A-B)^{3}+36 d(A-B)^{2}(A+B)-16 d^{2}\left(A^{3}-B^{3}\right)+3 d^{3}\left(A^{2}+B^{2}\right)(A+B)}{3(A-B)[A(d-2)+B(d+2)]^{2}}-3 \\
M o d e=A \\
M e d i a n=\sqrt{A B} \\
Q 1=\sqrt[4]{A^{3}} \sqrt[4]{B} \quad Q 3=\sqrt[4]{A} \sqrt[4]{B^{3}} \\
q M e a n=\frac{1}{d} \log \left(\frac{A d}{A-B}\right) \quad q M o d e=0 \\
\text { RandVar }=A^{1-u} B^{u}
\end{gathered}
$$

Notes

1. The Reciprocal distribution is unusual in that it has no location or scale parameter.

Aliases and Special Cases

Characterizations

1. The Reciprocal distribution is often used to describe $1 / f$ noise.

Semicircular(A,B)

$$
\mathrm{A}-\mathrm{B} \leq \mathrm{y} \leq \mathrm{A}+\mathrm{B}, \quad \mathrm{~B}>0
$$

Parameters -- A: Location, B: Scale

Moments, etc.

$$
\begin{gathered}
\text { Mean }=\text { Median }=\text { Mode }=\mathrm{A} \\
\text { Variance }=\frac{\mathrm{B}^{2}}{4} \\
\text { Skewness }=0 \\
\text { Kurtosis }=-1 \\
\text { Q1 } \approx \mathrm{A}-0.4040 \mathrm{~B} \quad \mathrm{Q} 3 \approx \mathrm{~A}+0.4040 \mathrm{~B} \\
\text { qMean }=\mathrm{qMode}=0.5 \\
\mathrm{~A}-107
\end{gathered}
$$

Notes

Aliases and Special Cases

Characterizations

1. The Semicircular distribution, like the Cosine distribution, is sometimes used as an alternative to the Normal distribution.

StudentsT(A,B,C)

Parameters -- A: Location, B: Scale, C (v): Shape (also, degrees of freedom)
Moments, etc. (See Note \#4.)

$$
\begin{gathered}
\text { Mean }=\text { Median }=\text { Mode }=\mathrm{A} \\
\text { Variance }=\left(\frac{\mathrm{C}}{\mathrm{C}-2}\right) \mathrm{B}^{2} \\
\text { Skewness }=0 \\
\text { A-109 }
\end{gathered}
$$

$$
\begin{gathered}
\text { Kurtosis }=3\left[\frac{(\mathrm{C}-2)^{2} \Gamma\left(\frac{\mathrm{C}}{2}-2\right)}{4 \Gamma\left(\frac{\mathrm{C}}{2}\right)}-1\right] \\
\text { Q1, Q3: no simple closed form } \\
\text { qMean }=\text { qMode }=0.5
\end{gathered}
$$

Notes

1. In the literature, $\mathrm{C}>0$. The bounds shown here are used to prevent divergence.
2. The Student's-t distribution approaches the Normal distribution asymptotically as C -> infinity.
3. If the optimum model has $\mathrm{C}=100$, use Normal instead.
4. Moment k exists if $\mathrm{C}>\mathrm{k}$.

Aliases and Special Cases

1. The Student's-t distribution is often referred to as simply the t-distribution.

Characterizations

1. The Student's-t distribution is used to characterize small samples (typically, $\mathrm{N}<30$) from a Normal population.

Triangular(A,B,C)

Parameters -- A: Location, B: Scale (upper bound), C: Shape (Mode)
Moments, etc. $\left[d \equiv A^{2}+B^{2}-B C+C^{2}-A(B+C)\right]$

$$
\text { Mean }=\frac{\mathrm{A}+\mathrm{B}+\mathrm{C}}{3}
$$

$$
\begin{gathered}
\text { Variance }=\frac{\mathrm{d}}{18} \\
\text { Skewness }=\frac{\sqrt{2}(\mathrm{~A}+\mathrm{B}-2 \mathrm{C})(2 \mathrm{~A}-\mathrm{B}-\mathrm{C})(\mathrm{A}-2 \mathrm{~B}+\mathrm{C})}{5 \sqrt{\mathrm{~d}^{3}}} \\
\text { Kurtosis }=-\frac{3}{5} \\
\text { Mode }=\mathrm{C}
\end{gathered}
$$

$$
\begin{aligned}
& \text { Median }=A+\frac{1}{\sqrt{2}} \sqrt{(B-A)(C-A)}, \text { if } C \geq \frac{A+B}{2} \text { else } B-\frac{1}{\sqrt{2}} \sqrt{(B-A)(B-C)} \\
& Q 1=A+\frac{1}{2} \sqrt{(B-A)(C-A)}, \text { if } q M o d e \geq \frac{1}{4} \text { else } B-\frac{1}{2} \sqrt{3(B-A)(B-C)} \\
& Q 3=A+\frac{1}{2} \sqrt{3(B-A)(C-A)}, \text { if qMode } \geq \frac{3}{4} \text { else } B-\frac{1}{2} \sqrt{(B-A)(B-C)} \\
& q M e a n=\left\{\begin{array}{l}
\frac{(B+C-2 A)^{2}}{9(B-A)(C-A)}, C \geq \frac{A+B}{2} \\
\frac{A^{2}+5 A B-5 B^{2}-7 A C+5 B C+C^{2}}{9(A-B)(B-C)}, C<\frac{A+B}{2} \\
q M o d e=\frac{C-A}{B-A}
\end{array}\right.
\end{aligned}
$$

RandVar $=A+\sqrt{u(B-A)(C-A)}$, if q Mode $\geq u$ else $B-\sqrt{(1-u)(B-A)(B-C)}$

Notes

Aliases and Special Cases

Characterizations

1. If X is $\sim \operatorname{Uniform}(\mathrm{a}, \mathrm{b})$ and Z is $\sim \operatorname{Uniform}(\mathrm{c}, \mathrm{d})$ and $(\mathrm{b}-\mathrm{a})=(\mathrm{d}-\mathrm{c})$, then $(\mathrm{X}+\mathrm{Z})$ is \sim Triangular $(a+c, b+d,(a+b+c+d) / 2)$. The latter is called the convolution of the two Uniform distributions.

Uniform(A,B)

Parameters -- A : Location, B : Scale (upper bound)
Moments, etc.

$$
\begin{gathered}
\text { Mean }=\text { Median }=\frac{A+B}{2} \\
\text { Variance }=\frac{1}{12}(B-A)^{2} \\
\text { Skewness }=0 \\
\text { Kurtosis }=-\frac{6}{5} \\
\text { Mode }=\text { none } \\
\text { Q1 }=\frac{3 \mathrm{~A}+\mathrm{B}}{4} \quad \mathrm{Q} 3=\frac{\mathrm{A}+3 \mathrm{~B}}{4}
\end{gathered}
$$

$$
\begin{gathered}
\text { qMean }=0.5 \\
\text { RandVar }=A+u(B-A)
\end{gathered}
$$

Notes

1. The parameters for the Uniform distribution are sometimes given, equivalently, as the mean and half-width of the domain.

Aliases and Special Cases

1. The Uniform distribution is often called the Rectangular distribution.

Characterizations

1. The Uniform distribution is commonly used to describe total ignorance within a bounded interval.
2. Pseudo-random number generators typically return $X \sim \operatorname{Uniform}(0,1)$ as their primary output.

Uniform(A,B)\&Uniform(C,D)
where

$$
\begin{aligned}
& \operatorname{cdf} 1=p \text { if }(y>B), \text { else } \frac{p(y-A)}{B-A} \text { and } \\
& \operatorname{cdf} 2=0 \text { if }(y<C), \text { else }(1-p) \text { if }(y>D), \text { else } \frac{(1-p)(y-C)}{D-C}
\end{aligned}
$$

Parameters -- A, C: Location, B, D: Scale (upper bounds), p: Weight of Component \#1 Moments, etc.

$$
\text { Mean }=\frac{\mathrm{p}(\mathrm{~A}+\mathrm{B})+(1-\mathrm{p})(\mathrm{C}+\mathrm{D})}{2}
$$

Variance $=\frac{p\left(A^{2}+A B+B^{2}\right)-\frac{3}{4}[p(A+B)+(1-p)(C+D)]^{2}+(1-p)\left(C^{2}+C D+D^{2}\right)}{3}$
Quantiles, etc.: case-dependent

$$
\text { RandVar: determined by } p
$$

Notes

1. As implemented here, this distribution requires overlap between the two components. Also, Component \#1 must cover min(y) although either Component may cover max (y).
2. Binary mixtures may require hundreds of data points for adequate optimization and, even then, often have unusually wide confidence intervals. In fact, the criterion response is sometimes flat over a broad range, esp. with respect to parameter p .
3. Warning! Mixtures usually have several local optima.

Aliases and Special Cases

Characterizations

1. The usual interpretation of a binary mixture is that it represents an undifferentiated composite of two populations having parameters and weights as described above.

Uniform(A,B)\&Uniform(A,C)
$\mathrm{A}-\mathrm{C}<\mathrm{y}<\mathrm{A}+\mathrm{C}, \quad \mathrm{B}<\mathrm{C}, \quad 0<\mathrm{p}<1$

Parameters -- A: Location, B, C: Scale (half-widths), p: Weight of Component \#1 Moments, etc.

$$
\begin{gathered}
\text { Mean }=\text { Median }=A \\
\text { Variance }=\frac{p B^{2}+(1-p) C^{2}}{3}
\end{gathered}
$$

$$
\text { Skewness }=0
$$

$$
\begin{gathered}
\text { Kurtosis }=\frac{9\left(\mathrm{p}^{4}+(1-\mathrm{p}) \mathrm{C}^{4}\right)}{5\left(\mathrm{p} \mathrm{~B}^{2}+(1-\mathrm{p}) \mathrm{C}^{2}\right)^{2}}-3 \\
\text { Mode }=\text { none } \\
\text { Q1, Q3: determined by } \mathrm{p} \\
\text { qMean }=0.5 \\
\text { RandVar: determined by } \mathrm{p}
\end{gathered}
$$

Notes

1. Note that the parameters are defined differently here than in all other Uniform distributions discussed elsewhere in this document.
2. Binary mixtures may require hundreds of data points for adequate optimization and, even then, often have unusually wide confidence intervals. In fact, the criterion response is sometimes flat over a broad range, esp. with respect to parameter p .
3. Warning! Mixtures usually have several local optima.

Aliases and Special Cases

1. This is a special case of the $\operatorname{Uniform}(\mathbf{A}, \mathbf{B}) \& \mathbf{U n i f o r m}(\mathbf{C}, \mathbf{D})$ distribution.

Characterizations

1. The usual interpretation of a binary mixture is that it represents an undifferentiated composite of two populations having parameters and weights as described above.

Weibull(A,B,C)

$$
\mathrm{y}>\mathrm{A}, \quad \mathrm{~B}, \mathrm{C}>0
$$

Parameters -- A (ξ) : Location, B (α): Scale, C (c): Shape
Moments, etc.

$$
\begin{gathered}
\text { Mean }=\mathrm{A}+\mathrm{B} \Gamma\left(\frac{\mathrm{C}+1}{\mathrm{C}}\right) \\
\text { Variance }=\mathrm{B}^{2}\left[\Gamma\left(\frac{\mathrm{C}+2}{\mathrm{C}}\right)-\Gamma^{2}\left(\frac{\mathrm{C}+1}{\mathrm{C}}\right)\right] \\
\text { Skewness }=\frac{2 \Gamma^{3}\left(\frac{\mathrm{C}+1}{\mathrm{C}}\right)-3 \Gamma\left(\frac{\mathrm{C}+1}{\mathrm{C}}\right) \Gamma\left(\frac{\mathrm{C}+2}{\mathrm{C}}\right)+\Gamma\left(\frac{\mathrm{C}+3}{\mathrm{C}}\right)}{\sqrt{\left(\Gamma\left(\frac{\mathrm{C}+2}{\mathrm{C}}\right)-\Gamma^{2}\left(\frac{\mathrm{C}+1}{\mathrm{C}}\right)\right)^{3}}}
\end{gathered}
$$

$$
\begin{gathered}
\text { Kurtosis }=\frac{-3 \Gamma^{4}\left(\frac{C+1}{C}\right)+6 \Gamma^{2}\left(\frac{C+1}{C}\right) \Gamma\left(\frac{C+2}{C}\right)-4 \Gamma\left(\frac{C+1}{C}\right) \Gamma\left(\frac{C+3}{C}\right)+\Gamma\left(\frac{C+4}{C}\right)}{\left(\Gamma^{2}\left(\frac{C+1}{C}\right)-\Gamma\left(\frac{C+2}{C}\right)\right)^{2}}-3 \\
\text { Mode }=\left\{\begin{array}{c}
A, C \leq 1 \\
A+B \sqrt[c]{\frac{C-1}{C}}, C>1
\end{array}\right. \\
\text { Median }=A+B \sqrt[c]{\log (2)} \\
Q 1=A+B \sqrt[c]{\log \left(\frac{4}{3}\right)} \quad Q 3=A+B \sqrt[c]{\log (4)} \\
\text { qMean }=1-\exp \left(-\Gamma^{C}\left(\frac{C+1}{C}\right)\right) \quad q M o d e=1-\exp \left(\frac{1-C}{C}\right), C>1 ; \text { else } 0
\end{gathered}
$$

Notes

1. The Weibull distribution is roughly symmetrical for C near 3.6. When C is smaller/larger, the distribution is left/right-skewed, respectively.

Aliases and Special Cases

1. The Weibull is sometimes known as the Frechet distribution.
2. Weibull(-y) is the upper-bound analogue of the ExtremeLB distribution, one of a class of Extreme-value distributions.
3. Weibull(A,B,1) is the Exponential distribution.
4. Weibull $(0,1,2)$ is the standard Rayleigh distribution.

Characterizations

1. If $X=\left(\frac{y-A}{B}\right)^{C}$ is $\sim \operatorname{standard}$ Exponential, then $y \sim$ Weibull(A, B, C). Thus, the Weibull distribution is a generalization of the Exponential distribution.
2. Weibull $(-y)$ is an extreme-value distribution for variates with an upper bound.
