. COMMON DISTRIBUTIONS
Il.  MOMENTS OF ADISTRIBUTION AND MGF’S

1. MOMENTS:

(n)
2. MOMENT GENERATING FUNCTIONS: M, (t) = E(etX)AND E[X(”)}z M (©) where M{V =%Mx(t)

3. MOMENTS OF COMMON DISTRIBUTIONS
1. LOCATION AND SCALE FAMILIES
V. EXPECTATION, VARIANCE OF AR.V.

A. EXPECTATION SINGLE VARIABLE
B. VARIANCE AND STD DEV

V. COVARIANCE AND CORRELATION BETWEEN RV’S
A. COVARIANCE

VI. INDEPENDENCE AND MEAN INDEPENDENCE

VII. INEQUALITIES

MARKOV’S

CHEBYCHEV’S

JENSEN’S

HOLDER’S

CAUCHY-SCHWARTZ INEQUALITY (SPECIAL CASE OF HOLDER’S)
MINKOWSKI’S

VIIl. ORDER STATISTICS: THE “ORDERED” STATISTIC (E.G. MIN/MAX/MEDIAN OF AN 11D SAMPLE HAS A
DISTRIBUTION)

1. PDF OF THE J-TH ORDER STATISTIC:
2. SAMPLE MEDIAN: ROBUST (NOT SENSITIVE TO OUTLIERS). NOTE: SAMPLE MEAN IS NOT ROBUST.

IX. MODES OF CONVERGENCE (OF A SEQUENCE OF RV’S)

CONVERGES TO Y ALMOST SURELY (AKA WITH PROBABILITY 1) IF vz 5 0 P(lim|Y, - Y |< £) =1 & P(/limY, =Y ) =1
CONVERGES TO Y IN PROBABILITY: IFy2 50, P(Y, -Y > £) > 0 asn — o0 < P(Y, ~Y |< &) >1

CONVEGESTO Y IN Ll IFE([Y- Y[) > 0 ASN DINF

. CONVERGES TOY IN DISTRIBUTION: IF Fy(X) > F(X) ASN = INF AT POINTS X WHERE F IS CONTINUOUS, WHERE F, IS THE CDF OF Y,
AND F ISTHE CDFOF Y.

5. O, and o, AND MODES OF CONVERGENCE:

agrwndEO

el A

X.  LAW OF LARGE NUMBERS

1. CHEBYCHEV’S WEAK LAW OF LARGE NUMBERS: LET Z,...Z, BE A SEQUENCE OF IID RV’SWITH E(Z;) = 1 AND Var(z;) = o2,

.1
THENZ, = —Z zi — > # (THISFOLLOWS SINCE BIAS® > 0 AND VAR > 0, SO BY CHEBYCHEV’S INEQUALITY, WE HAVE CONVERGENCE
n i=1
INP) 7

o _1x
2. KOLMOGOROV’S SECOND STRONG LAW OF LARGE NUMBERS: LET {z; }in_lBE DWITH E(z;) = THEN, Z, == ) 7, ———>u
= N E S
=1

n
3. ERGODIC THEOREM: LET {zi }i”=1 BE A STATIONARY AND ERGODIC PROCESS WITH E(z;) = 1. THEN, Z, = lz i —H
i=1
5. LLNFOR COVARIANCE STATIONARY PROCESSES WITH VANISHING AUTOCOVARIANCES:
6.  LLN FOR VECTOR COVARIANCE-STATIONARY PROCESSES WITH VANISHING AUTOCOVARIANCES (DIAG ELEMENT OF{I"; }) :

XI. CENTRAL LIMIT THEOREMS

n
1. LINDBERG-LEVY CLT: LET {z; }{,BE IDWITH E(z;) = and Var(z;) = E(ziz})zz. Then \/ﬁ(in—y):i E (zi— 1) —p N(0,T)
n <
i=1
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2.

I
SEQUENCE THAT IS STATIONARY AND ERGODICWITH E(Q;0;') =>,ANDLET J =— E g; - THEN,
n <
=1

3.
4.

BILLINGSLEY (ERGODIC STATIONARY MARTINGALE DIFFERENCES) CLT: LET {gi } BE A VECTOR MARTINGALE DIFFERENCE

GENERAL CLT: (FORNIID)

CLT FOR MA(INF) (BILLINGSLEY GENERALIZES LINDBERG-LEVY TO STATIONARY AND ERGODIC MDS, NOW WE GENERALIZE FOR

SERIAL CORR)

5.
XII.

MV CLT FOR MA(INF)

TRILOGY OF THEOREMS (WHAT DO WE KNOW ABOUT THE LIMITING DISTRIBUTION OF A SEQUENCE OF

RANDOM VARIABLES?):

1.
0
0]
0]
2.
3.

X1,
XIV.

THINGS TO CHECK: 1. IS THE FUNCTION 1-1 OVER THE DOMAIN 2. ARE THERE LIMITS TO VALUES OF THE

SLUTSKY’S THEOREM (GENERAL): CONVERGENCE IN DISTRIBUTION RESULTS

_ 1 . D
Jﬁg=ﬁ§gi—>N(o,z)

IFy _© ,y AND oA _* ;4B P, FORA, B NON-RANDOM CONSTANTS, THEN |A1Yn B 2 say +b

(VECTOR): X, =4 X, Yy =p @ = Xy +Y, ¢ X+a

(VECIMAT): X, =4 X, Ay =, A= AX, =4 AX  (PROVIDED THAT THE MATRIX MULTIPLICATION IS CONFORMABLE)

CONTINUOUS MAPPING THEOREM (GENERAL): CONVERGENCE IN PROBABILITY AND DISTRIBUTION RESULTS

DELTA METHOD: CONVERGENCE IN DISTRIBUTION RESULTS

PROPERTIES OF UNIVARIATE, BIVARIATE, MULTIVARIATE NORMAL

CHANGE OF VARIABLES: UNIVARIATE, BIVARIATE, MULTIVARIATE TRANSFORMATIONS OF PDF

TRANSFORMED VARIABLE.

abrwnE

XV.

1.
FIEL
2.
3.

XVI.

“-IeMmMOUOWY

A

XVII.

UNIVARIATE:

BIVARIATE:

TRI-VARIATE:

MULTIVARIATE:

USEFUL CHANGE OF VARIABLES FORMULAS

PROBABILITY THEORY

DEFINITIONS: PROBABILITY MEASURE, SIGMA ALGEBRA (SIGMA ALGEBRA 1S WHAT WE DEFINE OUR MEASURES ON), BOREL
DS

PROBABILITY SPACE, RANDOM VARIABLES, AND MEASURABILITY
CONDITIONAL EXPECTATIONS AND LAW OF ITERATED EXPECTATIONS

MATRIX ALGEBRA TOPICS

RANK OF A MATRIX

PROJECTION MATRICES: GIVEN P PROJECTION MATRIX ONTO SUBSPACE V

PosITIVE (SEMI)DEFINITE / NEGATIVE (SEMI)DEFINITE
SINGULARITY, POSITIVE DEFINITE VS. NON-SINGULAR (INVERTIBLE)
TRACE

INVERTING 2X2, 3X3

DETERMINANTS

DIFFERENTIATING WRT VECTORS

TRANSPOSE: A"

MATRIX MULTIPLICATION — PROPERTIES V¥ NXN SQUARE MATRIX A
RANDOM PROPERTIES

MISCELLANEOUS

MEASUREMENT ERROR AND MSE
APPROXIMATION METHOD: PROPAGATION OF ERROR/DELTA METHOD

o oo

OO © O © oo ©

10
10

10

10
10
11
11
11

13

13
14
14

15

15
16
16
16
16
16
17
17
17
17
17

18
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I. Common Distributions

Distribution Interpretation E(X) VAR(X) M(t)=E(exp(tx)) Cdf(X) = P(X < x) of Likelihood Func. Pmf/Pdf
Binomial(n,p) K successes in n Bernoulli trials np np(l— p) 1— p+ pe')" n n
( p p ) L(ﬁ)z(k]ﬂ_k(l_ﬂ_)nk P(X :k):(k]pkan
Bernoulli(p) Probability of success P p(1-p) P(x) = p*(1-p)*ifx=00rx=1,00w.
A st t b
Geom(p) Prob that N trials for 1% success 1/ p (1_ p)/ pz (e'p)/(1-(1-p)e’) L(ﬂ') — (1_ ”)nﬂ. P(X — n) — p(l— p)ﬂfl
Neg Bin(n,p) Prob that N trials for R successes r/ _ 2 t r N -1 n-1
Generalization of Geometric P rd-p/p ep L(7) = -zt P(X =k) = pg™"
Sum of R independent geo RV’s 1-(1- p)e' k-1 r-1
Poisson( 1) Limit of a binomial distribution as A 2 A1) Qg ket
n->inf, p > 0. 1 = rate per unit of time e L(4) :H P(X =k)= k=01,...
at which events occur. X! k!
Sum of Poi~Poi( A1+ 12)
NG For X, Y ind., M 2 1\ 12 No Closed Form for CDF 2
(o) X~-N(mLv1), Y~N(m2,v2), then o ee L-T] 1 R 1 exp _E(X —ﬂj
X+Y~(ml+m2,v1i+v2 = exp 2
( : Voro "2 | V%O o
Gamma(, A) | Sum of exponential RV’s with parameter al A al 12 2\ A o w
A . Ifsumof2exp RV, then O =2, — | <A () e, x20
and 2 1 (ifiid exp( 1)) A-t @
Exp(A) Gammawith ¢ =1 1/ 1/ 12 A(A-1)t<i | PO<X <x)=1-e™forx>0,0 | Je ™ forx>0,00.w.
So if X~exp(A), Y ~exp( 1), then 2
ow. > —e ¥ (x>0
X+Y ~Gamma(2,2 1) P(X > X) e 00
Chi Sqr (n) Gammawitha=%, L =% nD.F.
Uni[a,b] (b+a)/2 (b-2)%/12 gHe' D) x/(b-a) for x in [a,b], 0 o.w. 1/(b-a) for x in [a,b], 0 0.w.
Cauchy(9, o) A special case of Student’s T Does Does Does Not Exist 1 1
distribution, when d.f. = 1 (that is, X/Y Not Not Exist S e——
for X, Y independent N(0,1) ). Exist ”‘71+(X_‘9)
No Moments! o
Chi-Squared(p) Sum of p iid Z%r.v., Z~N(0,1) P 2p —n/2 /2
Note: Sum of p independent X? is Chi- (1-2t) P %x p/2-1,-x/2
sq(dfi+...+dfy) I'(p/2)

Other Important Distributions

- T-Distribution: If Z~N(0,1) and C~X?(q) are independent, then  Z

(So, n(X =)/ o _\n(X - p) .

{S$?/c?

- F-Distribution: Let C; ~ X(p) and C, ~ X*(q) be independent, then C,/p _

Js?

(so, V(X - w1of _n(X-p)?

$%/o?

I1. Moments of a Distribution and MGF’s

1. Moments:

1* Moment = E(X),

SZ

- F1,n 1)

)

-t
Clqg *

c,/lq "

2" Moment = E(X?) = Var(X) + E(X)? = Var(X) + (1% Moment)?
Central Moments: nth central moment = E[ (X — m)"]. So, 1% central moment = 0, 2™ central moment = Var(X).
Skewness and Kurtosis: Let m, be the nth central moment of ar.v. X.
Skewness: a; = m3 / (m,)¥? & Positive = right skewed, negative = left skewed
Kurtosis: a; = my / (M,)? < Measures the peaked-ness or flatness of the distribution (larger - more peaked)

Note: Mostly we care about the first 4 moments to summarize the distribution of a r.v.: 1 moment tells us the mean, 2" moment / central moment
gives us

(n)
2. Moment Generating Functions: M (t) = E(etx ) and E[X(”)} ~M{P(0) where M{V :%M % ()
e  Useful Properties of MGF: If X,Y independent

Max +b (t) = exp(bt)M y (at)

My .y () =My (t)My (t)

N

t
MGF of a Sample Average (of a random sample): M o (t) = M 1[zx} t) = H M, (Wj



3. Moments of Common Distributions

Moments Normal Uniform(0,0) Exponential(A)
! o= 1= g1z M=,

2 o=t ot "2 = 23 2 = )2

3 #;:Iu,[luz+30'2] s = 34 ft3 = g/,3

4 e =46t ot +30%, s = g5 e = 24124

I11. Location and Scale Families
X, Y in the same Location Family = There exists some ms.t. X =Y +m. (You can get to one from another by adding/subtracting by a constant.)
X, Y in the same Scale Family - There exists some “standard” r.v. and some s; and s, s.t. X =s;Z and Y =s,Z (You can get from one to another by
multiplying by a constant)

IVV. Expectation, Variance of a R.V.
A. Expectation SINGLE VARIABLE
1. Definition: For Discrete RV X: E(X) =Y xp(X =Xx)

For Continuous RV X:  g(x) = Ixfx(x)dx

Expectation of g(X): ECO=[90 (e E(X)=29(x)P(X = %)

E(b) = b, b constant (or more precisely, a RV that takes on only 1 value)

E(aX) = aE(X), a constant

E(@X+b) =aE(X) + b

E(X+Y) = E(X) + E(Y)

E[g(x)+h(x)] = E[g(x)] + E[h(x)]

Law of Total Expectation: E(X) = E[E(X|Y)] = SEXY =y)p(Y =)

Law of Iterated Expectations: E(X) = E[E(X|Y)]

O Generalized Law of Iterated Expectations: For G ¢c H (G is a less fine partition than H, H a “bigger” information set),

E(Y|G)=E[E(Y|H)|G]=E[E(Y|G)|H ]
Note: Linking sigma fields and random variables: E(Y|X) = E(Y|o(X) ) = E(Y|G)
11. Property of Conditional Expectation: For real-valued random variables, Y and X, we have E(YX|X) = E(Y|X)X
12. Conditional Expectation: IT’S A FUNCTION OF THE CONDITIONED SET! E(Y|X) isa FUNCTION OF X!

BO© ONOOR® N

B. Variance and Std Dev
L var(X) = E[(X —~E(X))*]= E(X*) - E(X)*
2. var(X |Y)=E[X? |Y]-[E(X |Y)]?
3. For Discrete RV X: var(X) = E[(X — E(X))?] = Z(Xi — 1) p(X =x) For Continuous RV X: var(X) = E[(X — E(X))*] = J'(X_ﬂ)z f (x)dx
4, If Var(X) exists and Y = a + bX, then Var(Y) = b?Var(X)
5. Var(X) = Cov(X,X)
6. Std(X) = Sqrt[Var(X)]
7. Conditional Variance Identity: var(X) = E[Var(X |Y)]-Var[E(X |Y)]

V. Covariance and Correlation between RV’s

A. Covariance

L Cav(X,Y) = EI(X = s )(Y = #4,)] = E(XY) = E(X)E(Y)

. If X, Y independent, then E(XY) = E(X)E(Y) = Cov(X,Y) =0 (Note: The converse is not true! Cov(X,Y) = 0 does NOT imply independence)
. Cov(a+X,Y) = Cov(X,Y), for constant a
. Cov(aX,bY) = abCov(X,Y), for constants a,b
. Cov(X,Y+2Z) = Cov(X,Y) + Cov(X,2)
. Cov(aW+bX,cY+dZ) = acCov(W,Y) + adCov(W,Z) + bcCov(X,Y) + bdCov(X,Z2)
. Bilinear Property: If y = 3+ Zbixi andy —¢+ Zdej , then covU V) = Zzbid;COV(xi'Y;)
. Var(X) = Cov(X,X) and Var(X+Y) = Cov(X+Y,X+Y) = Var(X) + VAR(Y) + 2Cov(X,Y)
. Generalized form of (8): var(a + Zbix.) = zzb.b;COV(x. X,)
. If X;’s are independent, then Var(z X,) = ZVaf(X.) (Note: E(z X;) = z E(X,) regardless of ind. This is the linear property of expectations)

OO0 NoubhwiN

=
o

B. Correlation
Cov(X,Y)

Py = «Nar(X)Var(Y) '

Pxy € [—1, 1] and p,, =lor —1iff Y =a+bX (i.e. Xand Y are linear transformations of each other)

! So the usual law of iterated expectations is a special case where G = {Q,@} because E(Y|G) = E(Y) in this case. Remember, E(Y) is just

taking expectation over the trivial sigma field.
4



VI. Independence and Mean Independence
Independence
Def: X ind Y if E(XY) = E(X)E(Y)

Properties of Independence:
e X 1Y = f(X)Lg(Y) for some arbitrary functions f,g

e X 1W,Y,Z)= X L Any subset of (W,Y,Z)
e But, X ILW, XL1Y,XLZ#X_1LW,Y,Z) (see271(a) HW1 #1(c))
. X 1Y = Cov(X,Y)=0 (REVERSE IMPLICATION NOT TRUE EXCEPT FOR NORMAL)

Special Case: For Normal, Cov(X,Y)=0-> Xind Y.
e XL1Y=E(]|X)=E(X) and E(X|Y) =E(Y) (mean independence)

Mean Independence
Def: X mean ind Y if E(X|Y) = E(X)
Implications: X ind Y = X mean ind Y and Y mean ind. X
Xmeanind Y = E[X|g(Y)]=E(X)
> Cov(X,Y)=0
- Cov(X,g(Y))=0
X mean ind Y not-> Y mean ind X
not = f(X) mean ind. Y

VII. Inequalities

0. Markov’s
E(X
Let X be a nonnegative RV, then ... P(X >t)< (t )
1. Chebychev’s
Var(Y)

(follows from Markov’s with X = [Y-E(Y))

Let Y be a RV. Then, P()Y —E(Y)|2t) = %

2. Jensen’s
If f convex, E(f(X))> f(E(X)) with strict inequality if linear (Var(X)=E(X?)-E(X)*20)
concave, E (f(X))< f (E(X)) with strict inequality if linear

Useful For: Bounding the expectations of functions of RVs.

3. Holder’s
Let X,Y be RV’s, and p,g > 0 s.t. 1/p + 1/g = 1. Then [E(XY)| < E(XY|)< (E(\x \"))UP(E(\Y\“))Uq
Useful For: Bounding the expected values involving 2 RV’s using the moments of individual RV’s)

4. Cauchy-Schwartz Inequality (Special Case of Holder’s)

E(|xY|)< {E(\x\z) IE(\Y\Z) or Cov(X,Y)< Nar(X)Nar(Y) or|<xy>l <[yl for xyeR"

Useful For: Bounding the covariance between random variables.

5. Minkowski’s
Let X, Y be RV’s. Then, for 1< p < oo, [EQX +Y\p)}/p < [EQX\D)]UP + [EQY\D)]UID

Useful For: If X and Y have finite pth moment, then so does X+Y.



VIIL. Order Statistics: The “ordered” statistic (e.g. min/max/median of an iid sample has a distribution)
Motivation: Siuppose we have an iid normally distributed sample of n observations. How do we find the distribution of the max of the n-sample?
1. Pdf of the j-th order statistic:
Let Xy, X(n) denote the order statistic of a iid sample, Xy, ..., X,,, with cdf Fy (x) and pdf fy (x).

Then, pdf of the j—th order statistic is:

n! j-1 n-j
m fx (X)[Fx (X)] [1— F(X)]

fx(j) (x) =

2. Sample Median: Robust (not sensitive to outliers). Note: Sample mean is not robust.
e Population Median = F(0.5) > At this point, 50% of population is less than the value. - It’s the “middle” observation.

e  Population median need not be unique, but for this course we assume it is uniquely defined.
e  Asymptotic Distribution of the sample median: For X;...Xniid density f, with mediang . If f is continuous at g with f(g) >0 (i.e. the

probability of median > 0),
Then... Jn(X, —0)—2>N[01/4f2(8)] O X, —2>N[6,1/4nf2(g)]Where X is the sample median.
¢ We can compute the asymptotic relative efficiency (between sample mean and sample median) = ratio of asymptotic variances.

IX. Modes of Convergence (Of a Sequence of RV’s)

Given a Sequence of R.V.’s Y1,Y,,... Then Y,

1. Converges to Y Almost Surely (aka with probability 1): if v o pgim|Y, -Y |< &) =1 P(/limY, =Y |) =1
(Meaning: for any s in sample space S, then beyond a certain tail, N, the sequence is ALWAYS within a neighborhood of Y. i.e. Pointwise
convergence of sequence of functions. So, as n gets large, the function Y, is always within ¢ of Y.)

2. Converges to Y in Probability: ify. > 0 p(Y, -Y |5 &) > 0asn— o < P(Y, Y |< &) >1
(Meaning: as n gets large, then on average the sequence gets closer to Y. It doesn’t say anything about a particular sequence Y,(w), a la almost
sure convergence. So, on average as n gets large, Y, becomes better and better approximation of x, although there could still be infinitely bad

elements of the sequence, they just occur less and less frequently.)

Note: We write Y, —*—Y and Y, =Y =0, (1)
Note2: If na(y —y)—P 0 then we write Y, —Y = 0,(n") since Y, — Y goes to 0 faster than n° goes to infinity, or faster than n"® goes to 0.

Note3: Y is a consistent estimator of Y if Y converges to Y in probability.
Note4: Y is a super consistent estimator of Y if Y converges to Y in probability s.t. nv2(y _y)_P ,00rY, -Y = 0,(n?)

Note5: Convergence in probability does not imply asymptotic unbiased-ness

3. Convegesto Y in Ly: if E([Y,- Y[’) > 0as n inf
(Meaning: The pth central moment converges, since | E[(Y, = Y)’]| < E(Yq- YIP))

Note: & y—s_ ', for p2q>0
Note2: We normally care about L, because L, convergence - L; convergence - convergence in probability. To show L, convergence, or

convergence of MSE, enough to show
Var - 0 and Bias - 0!

Note 3: How to Show Consistency/ Conv in Prob Using L:

(ie. qun — 4> £)—F »07) By Chebychev we know

EL(Y, —4)°] _ E0Y, —u "1 _Var(Y, - ) +[E(Y, - #)]* _Var(Y,)+ Bias®
&

2 &2 &? &2

PQYH —/1‘ > g)s

4. Converges to Y in Distribution: If F,(x) = F(x) as n > inf at points x where F is continuous, where F; is the cdf of Y; and F is the cdf of Y.
(Meaning: at the limit, the marginal distributions are the same, i.e. pointwise convergence of the sequence of cdf’s to F. But this says nothing

about
the inter-dependence relations between the variables. It could be that the two RV’s are completely different functions, or have a correlation of -1,

but
has same cdf. Thus, only the CDF’s converge, the random variables do not necessarily converge.)

Note: All of the above imply convergence in distribution.



5. Op and 0p and Modes of Convergence:
. X
Def: X, = Op(n)iff plim—*- <o
n

Def: X, = 0p(n) iff plimﬁ:O
n

Interpretations:
Xp=0,(1) & X, ——>0

X, =0, (1) < X, bounded in probability < V& >0,3M <oostP(|Xn|2 M)<g

X
Xn =0p(Yn)<:>M=op(l) (Y, goes to 0 in prob faster)

\

X
X —Op(Yn)QH—Op(l) (Y, goesto 0in prob faster)
n

Properties:
Op(l)op(l)zop(l)
Op()+0,(D)=0,()
Op op and WLLN and clt
X;iidas X withE | X |< 0. E(X) = 4.
WLLN : X, = z+0,(1)

if E|X <o
CLT: X, =u+0,(n"?)

X. Law of Large Numbers
1. Chebychev’s Weak Law of Large Numbers: Let Z;,...Z, be a sequence of iid RV’s with E(z;) = x# and Var(z;) = 2.

.1y _ N . . .
ThenZ, =— z i —H (This follows since bias? > 0 and var - 0, so by chebychev’s inequality, we have convergence in p)
i=1
(Again, in op notation: X, = z+0,(1))

2. Kolmogorov’s Second Strong Law of Large Numbers: Let {Z } be iid with E(z;) = & .Then, Z, ——z i —H
(Unlike above, now we don’t need assumption about existence of second moment or variance) -

3. Ergodic Theorem: Let {zi }i":l be a stationary and ergodic process with E(z;) = z. Then, z, E%Zn: i —H
(This generalizes Kolmogrov’s) "

4. Uniform Law of Large Numbers: Under regularity conditions, z; niid converges uniformly to E(z;) in 6 (the parameter).

5. LLN for Covariance Stationary Processes with vanishing Autocovariances:
Let {y:} be covariance-stationary with mean x and {y;} be the autocovariances of {y:}. Then,

() y== Zyt — B2 if limy 7 =0

(b) lim, Var(fy) Z}/l<oo if

(Note: we also call this the long-run variance of the covariance stationary process?, it can be expressed from AGF gy(1)).

2 \We can think of the sample as being generated from an infinite sequence of random variables (which is cov. Stationary). So, the “long-run”
variance is the sum of covariances from any 1 element in the sequence to all the other elements.
7



6. LLN for Vector Covariance-Stationary Processes with vanishing Autocovariances (diag element of{I";})_:

Let {y:} be a vector covariance-stationary with mean x and {I";} be the autocovariances® of {y;}. Then,

(a) y = Zyt —MelL2 5 ) if diagonal elements of T'j —;; 0 as j—> oo

(b) Iimj_mVar(\/ﬁy) = Z [; <oo if {I'j} is summable (i.e. each component of I"; summable)

j =—00

(Note: we also call this the long-run covariance variance matrix of the vector covariance stationary process, it can be expressed

from Multivariate AGF: G, (1) = ZF _FO+Z(F +T59).

j=—o =1
Xl1. Central Limit Theorems

n
1. Lindberg-Levy CLT: Let {z;}I beiid with E(z;) = x and Var(z;) = E(ziz,) <. Then v/n(Z, :iz N(0,2)
n
i=

(Or in Op notation: X, = u +Op(n‘1/2) )

2. Billingsley (Ergodic Stationary Martingale Differences) CLT: Let {gi } be a vector martingale difference sequence that is stationary and

n
ergodic with E(g;0;') =X % and let g ——Z g; - Then, Jﬁ@z%ZgiLN(O,Z)

=1

3. General CLT: (For niid)

T
Let {y;} be a sequence of niid r.v. st. E(y;) =0, Var(y;) = crtz, and let ETZ :%Zatz
t=1

If E[|yt|2+b} <o Yt for some & >0, then

ﬁ[%Zyt]—m N[O, pIimTiiatz]z N(O,plimETz)
t=1 t=1

Note: If we have iid, we can get rid of the condition.

4. CLT for MA(inf)_(Billingsley generalizes Lindberg-Levy to stationary and ergodic mds, now we generalize for serial corr)

Let y, = ,u+Zl,z/Jgt j Where {&}is iid white noise and Z|V/J|<°O Then,

ﬁ(v—u)—%N[o,Zi_wmj

5. MV CLT for MA(inf)

Let y, = y+2y/jgt7j where {g,}is vector iid white noise (i.e. jointly covariance stationary) and Z|y/j | <oo. Then,
j=0 j=0

In (¥ -u)—>N (O,Zimrjj

® In a vector process, the diagonal elements of {I’ jyare the autocovariances and the off diagonal are the covariances between the lagged values
of the elements of the vector.

X
Let y, = |
t

X X
For example: Then, T'j = cov(y;, i ;) = E(vi i ) - E(V)E(: ) = E(Lt}[xt_j zt_j]J— ELt}E[xt_j zt_j]
t 1

~ E(xX-j) —EMX)E(MX_;) E(%z_j)—E(X)E(z_;) ~ Cov(x,X%_j) Cov(X,z_;)
E(x-jz) —E(x_j)E(z) E(zz_;)-E(z)E(z_j) Cov(x_j,z) Cov(z,z_j)
4 Since {gi } stationary, the matrix of cross moments does not depend on i. Also, we implicitly assume that all the cross moments exist and are finite.
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XI1. Trilogy of Theorems (WHAT DO WE KNOW ABOUT THE LIMITING DISTRIBUTION OF A SEQUENCE OF RANDOM VARIABLES?):

1. Slutsky’s Theorem (general): Convergence in distribution results

o If Y, —2 5y and A—F5aB —F b for a, b non-random constants, then |A1Yn +B,—2aY +b
0 (vector): X, =g X, Y =p @ =Xy +Y, =g X+
o]

(vec/mat): X, —>¢ X, Ay >, A= A X, =>4 AX  (provided that the matrix multiplication is conformable)

2. Continuous Mapping Theorem (general): Convergence in probability and distribution results
Let Y1,Y,,... be a sequence of random vectors. g( . ) be continuous, vector valued function that does not depend on n. Then,
o

If Y, —FY, and g continuous function, then |g(y,)—"—g(Y)| (provided that the plim exists)
o Ify o ,y,andg continuous function, then lg0v)—2g(v)

(similar to Delta Method — ASK YING)

3. Delta Method: Convergence in distribution results
If yn(y, — 1)—2>N(0,7%) and g such that g’(y) exists in a neighborhood around m

a. First Order: if g'() =0, then

[Vn(a(",) - 9(1) —2>N(.2°[g' () [

b. Second Order: if g'(4)=0, then

- 6
(g0t - g(u)—2o? S 2

Why? For g non-linear, we linearlize by Taylor approximation about /¢ to the second order, then we get...

Y =000 % )+ (X 09 (i )+ (0 40070 ) = 0 )+ 6= 020" o)

= E() = 00 + 39" (0 JE(X = 030 )= 81 + 39" (e War(X)

= Var(r) =Ver| )+ 5 (- )76 o )| =6 G O Var()

¢. Multivariate (First Order):

Let {x,} be a sequence of K —dim vectors st. x, »p £ and sup pose a(.): RK 5 R has cont first derivatives A(B)rxk = ag(ﬂé
Then,

]Jﬁ (%0 = 8)—p N(©0.5) =+n (alxy) -a(B8)) > N(O. ABZA(B))

Why? For g non-linear, we linearlize by Taylor approximation about £/ to the first order, then we get... y = g(X) ~ 9(ex )+ ' (x )X =y )= E(Y) = g(uy ), Var(Y) =Var(X)[g' (ux )]2 Then, by
slutsky’s....

® Check page 244 of casella berger for proof.



XIII. Properties of Univariate, Bivariate, Multivariate Normal
1. PDF: f(x)=(27) "% |2["? exp{—%(g—/_z)'yl(x—ﬁ)}, xeR’, u=E(x), and T; = Cov(X, X,)

2. Mutual Independence: X;...X, ~N, then Xi, Xj independent iff Cov(X;,X;) =0 forall j = j.

3. Linear Transformation of MVN: Let X ~ N /(#,X),and let Ae R*" and b e R", where Ahas full rowrank (g < p). Then,
Y =AX +b~N,(Au+b,AZA’)

4. Conditional Distributions
Bivariate Case:

X #x} 0'>2< Oxy [ Oy 2 zj Oxy 2 2
If ~N , Then, Y| X =x~N| +p X =uy )00 |1=p°) |=N| gy + X —uy ),oy |1-p
{Y} ? |:/UY [GXY 03 ! O'X( X) Y( ) ! O'>2(( X) Y( )

This is how we interpret regressions!
(Casella Berger p.199)

5. Functions of Normals
X,Y normal, a,b cons = aX +bY =N (ayx +by 8%k +b%c? +2abaXY)
6. Distribution of Mahalanobis Distance: Let X ~ N,_(x,X), for.somevector , (mx1),and somecov ariancematrixX, (mxm).Then,

(x—u)' 2 x-u) ~ 14

Note: For a P symmetric projection matrix, then, X~N(0,1,) = X’PX ~X*(rank P)

XIV. Change of Variables: Univariate, Bivariate, Multivariate Transformations of PDF
Things to Check: 1. Is the Function 1-1 over the domain 2. Are there limits to values of the transformed variable.
1. Univariate:
Let X be a continuous RV with density fy, and Y = g(X) a RV whose PDF we’re interested in.
Let Ay, ..., Ay be a partition of X (the domain of X) such that...
a) P(XinAyp=0
b) fx(x) is continuous on each A;
C) i monotonic on A;
d) g;* has continuous derivatives on Y; = gi(A)).

K 1 d 1,4
: . f 2 if yeY = g;(A
Then, PDF of Yis: | fy (y) = E £ (y) where £ (y)= x (9 (y))‘dy g (y)‘ yeYi=ai(A)
i1 0 if yeV,

(Note: This is the most general case. If g is monotone and g™ is continuously differentiable on the whole domain of X, then there is no need to
partition.)

2. Bivariate:
Given (X,Y) continuous random vector with joint pdf f,, then the joint pdf of (U,V) where U = f(x,y) and V = g(x,y) can be expressed in terms of

fry(X,Y)-

Let A,,...,A be a partition of X x Y (usually R?) such that...

a)  (uv) = (f(x,y), g(x,y)) is a 1-1 transformation on each A;

b) g*and f!exist uniquely and are differentiable - x = h(u,v) and y = i(u,v)

Then, the PDF of (U,V) is:

oftu,v)  ofiu,v)

k
fUV(u,v)zzff&(ffl(u.v),gfl(u,v))"J" where J = abs| det ?u fv
i-1 agi ~(u,v)  agi ~(u,v)
ou ov

(J: Jacobian from (x,y) = (u,v))
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3. Tri-Variate:
Given (X,Y,Z) continuous random vector with joint pdf f,,, then the joint pdf of (U,V,W) where U=f(x,y,z), V=g(x,y,z), W = h(x,y,z) can be
expressed in terms of f,,(x,y,2).

Let A,,...,Ax be a partition of X x Y x Z such that...
a)  (uv,w) = (f(x,y,2), 9(x,y,2), h(x,y,z)) is a 1-1 transformation on each A;
b) g*andf!and h? exist uniquely and are differentiable > x = i(u,v,w) , y = j(u,v,w), z = k(u,v,w)

Then, the PDF of (U,V,W) is:

I of tuvw)  ofu,v,w) o i (u,v,w) |
au ov ow
ko -1 -1 -1
fovw (Uvaw) = ST HEL (L, v,w), g 7w, v, ), h 2w, v, W) |3 | where 3 = abs| det| 29 Ovw o5 uvw) 26 Wv.W
uww € )éxvz( (u,v,w), g7 (u.v,w), (v, w)) 9] Y o Y
oh7t(u,v,w)  ohi(u,v,w)  ohi(u,v,w)
au v ow

(J: Jacobian from (x,y,z) = (u,v,w))
(Note: Again, no need to partition if g and f are 1-1 transformation on the whole space and the inverses exist uniquely and are differentiable)

4. Multivariate:
Let (Xy,...,Xp) be a random vector with pdf fy(xy,...,X,). Let A = { x: fx(x) >0 } be the support of fy.

Consider a new random vector (Uy,..,U,) st.Uy=g;(X) ... Uy =0,(X)

Suppose that A,,...,Ay form a partition partition of A such that...

a) P(Xy,... X, €Ag)=0 (Ay may be empty)

b) The transformation (Uy,...,Up,)=(83(X)....g5(X)) is a 1-1 transformation from A, onto B for each i =1,... k

(so the inverse function is well defined)
Let the i-th inverse give, for each (uy,...,u,) € B, the unique (Xy,....X,) € A St. (U, Un) = (81 (X X )sees O (X000 Xp))

0gi'(u) Ggg'(u)  Agg(u)
oy ou, ou,
K . ) 0g5i(u) 09z ()  Agai(u)
Then, fU(ul,...,un)=ZfX(gl‘i (UgseeesUp )y e O (ul,...,un))IJiI i = aul auz aun
i=1 : : . :
agm (w) agm w agnl (O)
Oy ou, ouy,

(J: Jacobian from (Xy,...,X,) 2> (Uy,...,Up)
(Note: No need to partition, if functions are 1-1 transformations on the whole space then the inverses exist uniquely and are differentiable.)

5. Useful Change of Variables Formulas
If X, Y independent continuous random variables with PDF fy(x), fy(y),

z

=
T
> +

© Y =
1.PDFof Z=X+Y: fz(z)zj' fy (W) fy (z—w) dw }:Y }:>||J||_H ]ﬂ 1= foy (Z,W) = fyy (W, Z — W)

N
I
>
|
<

2 PDFofZ=X-Y: fz(z)zj' oo (W) fy (2 + W) dw

}:Y N }:>||J||—“ i”:l: fow (Z,W) = fyy (W,Z +W)

3. PDF of Z = XY:

fX (w) fy (z/w) dw

Z-XY]  X=W 0 1
W=x["v=z/W 2"J":uw ~7 /W2

‘ ‘:> fow (2, W) = fyy (W, 2/ W)

4. PDF of Z=X/Y: fx (w) fy (w/z) dw

W

Z=XIY X =W 1
} 22 = fow (Z,w) = fyy (W,w/2)

W =X :>Y:W/Z} I°l= “W/z2 W
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Cauchy Distribution Example: (Where partitioning is important)
Let X, Y ind. Standard Normals

1. Find PDF of X2

u=f(x)= X2,—oo <X <o:Not al-1transformation over the domain.

Let Ay ={0}, A =(-,0), Ay = (0,)

-1
Onﬁl:x=gf1<x>=—ﬁ:>aglafu(x)=%
-1
On A2:x=g§1(x)=\/ﬂjagé_u(x)=ﬁ
_ 1o [29H0]_ ( S S SO U RN WS S S O Y WS SN (N B GRp
Then’fWZfX(g S il \/U)+fx(\/a)7\/52«/ie)(p{ z(u)}+ﬂ zx/UeXp{ Z(U)}f 27U eXp{ zu} chi=Sa®

2. Find PDF of X/(X+Y)

:xXY = X =Uv }:|J| v H [v(@—u)+uv|=|v
+ = = — =
V=X4Y Y=V-UV -v 1-u

[v] 1( 2 2) [V] 2(,2 1
fuy = fyy (Uv,v—uv) |v]|=—exp| —=((uv)” +(v—uv =—exp| Vv |u —u+=
uv = fxy ( )Vl 2 P 75 (uv)”+( ) 5. &P 5
© 0 . 0
fu :.[ Mexp —v? u2—u+l :.[ —Vexp —v? u2—u+l +I Lexp —v? u2—u+l
V=—00 27T 2 V=—00 27T 2 v=0 27 2
0 _ 0
=;1J- ZV(UZ—u+%}exp{—v2(u2—u+%ﬂ+—llj —ZV[UZ—u+%}exp{—v2[u2—u+%ﬂ
4”[UZ_U+EJ V= 4”(u2_u+§j v=—u

1 1 11
= = ~ Cauchy| =,=
ZH[UZ_UJFEJ 7[(2U2—2U+1) 22
2
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3. Find PDF of X/|Y| (Partition)
X
|Y|¢=U,V not al-1mapping from R2to R (multiple Y 's map to same U.
VY|

Partition R? st. (u,v) is al-1transformation on each A :

Let Ag={(x,¥):y=0hLA ={(x,y):y>0} A ={(x,y):y <0}

On A:

U= L X =UV
Y= =13 v

Y=V

vu‘
V=Y 01

= f&v = fyy (Uv,v) |v |=%GXP{—%(U2VZ +v? )} =|2L|exp[—v2(u2 +1)J

T
u="X| x=-uv v -u
On Ay : Y = Y =y == 0 1 =v]|
V=Y T B

Y 1 VI | 1 2( 2
:>fUV—fXY( uv,—v) |v|= exp{ 2 u?v? +v } o exp{ 2v (u +1)}
fUV:ij+fU2V:Mexp{ u +1)} Vexp{ u +1)} since v € [0,0)
T
© v 1 509 1 @ 1 2 2
f :I —exp| —=v(u“+1 dv——j uc+1jexp| - uc+1
ey p{ 2 ( )} 7Z'(U2+1) v= ( ) p{ 2 ( )}

—— 1 Cauchy(0,)

7r(u2 +1)

Where Domain of New Variable is Important:
Let X, X,, X5 iid exponential, f(x)=aexp(-ax), x>0
Find distribution of (X, X3 + X5, X; + X3) =(U,V,W)

X,] U 1 00
X,t=V-Ut=|dl=|-1 1 of=1
X5 W-U 10 1

fow = Frpon, U V—u,w—u) = f, (u)f, (v—u)f, (w-u) where |u >0,v-u>0,w-u>0
=aexp(-au)aexp(-a(v—u))aexp(-a(w-u))

=a’exp(-a(v+w—u)) where u>0,v>u,w>u

Find distr of V,W : Integrate out u, 0<u<vand O<u<w

J-u min(v,w) 3

u= mln(vw)
a®exp(-a(v+w—u)) du=a?exp(-a(v+w- u))

a® (exp(-a(v+w-min(v, w)) —exp(-a(v+w)))

= a’ exp(-a(v+w)(exp(amin(v,w)) —1)

XV.Probability Theory

1. Definitions: Probability Measure, Sigma Algebra (Sigma Algebra is what we define our measures on), Borel Fields

13



Def: The set S of all possible outcomes of a particular experiment is called the sample space of the experiment.
Def: A collection of subsets of S, denoted B, is called a sigma field or sigma algebra if it satisfies the following:
1.Empty Set:J e S

2. Complements: If Ae B, then S\A=A°ecp
3.Unions: If A, A,,...€ S, then (Ui_lA)eﬂ

C
Pf:If A, A,..€p, then clearly [ﬂA]eﬂ:{ﬂA} efby?2 :[UN]G,B by De Morgan's Laws
i=1 i=1
Def: P is a probability measure on the pair (S,B), if P satisfies:

1.P(A)=0 for all Ae g

2.P(S) =1

i=1

3. If A,A,,...cp are pairwise disjoint, P(Ui:lAi)=iP(As)
=

Def: Let X: (QQ,F) = (R, B) be F measurable. A Borel field is the smallest o-field that makes X measurable, given by:
a(X)E{G c Q:G=X"(B) for some B eﬂ}

(Think of this is the only sets in the universe that the random variables gives us information about — since they are the sets that
are

preimages of all the possible outcomes of the r.v. So, the random variables X is informative about members of o(X) but not
more than that! )

2. Probability Space, Random Variables, and Measurability

Def: The triple (Q,F,P) is called a probability space,
where Q is the “universe” (or the whole set of outcomes, like S), F is the o-field on Q (like B), and P is the underlying
probability measure that governs all random variables, i.e. a probability measure on (Q,F)

Def: A random variable is a function from the sample space into the real numbers, or a measurable mapping from (€2,F) into (R, B)
(So, for a random variable X: (©,F) = (R, B), the sample space for X is R)

Def : A random variable X: (Q,F) = (R, B) is F-measurable if the preimage {a) eQ: X(w) e ﬁ} eF forallBepg

(all the events in B can be mapped back to F and be measured there)
Note: X(w) is a random variable that induces a probability measure Px on (R, B), ® € Q (the universe)
Py is defined from P (a probability measure on (QQ,F) ) by

Pr X takes on values in B: P (B) = P(X € B) = P({w e Q: X (w) € B}) for some B 8

Def: A random variable Y = g(X): (Rx, Bx)=> (Ry, By) induces the probability measure Py on the sample space Ry as follows:
for some Ae By, R (A)=P(Y € A)=P(X e{xeRy :Y =g(x) € A}) =Py ({xeRy :Y =g(x) € A})

Prop: Let F and G be 2 o-fields s.t. G ¢ F (all the sets in G are also in F). If a random variable X is G-measurable, then X is F-measurable’.

3. Conditional Expectations and Law of Iterated Expectations

T Pf :VBeﬁ,{a)eQ:X(a))eB}eGgF
14



Def: Let X and Y be real-valued random variables on (Q,F,P) and let G = o(X). Suppose E|Y| finite. The conditional expected value
of Y given X is a random variable (function of X) that satisfies the following 3 conditions®:

LE[E(Y|X)[<w
2. E(Y | X) is G—measurable:ie. VBe S, {oc Q:E(Y | X)(w)}eo(X) (E(Y | X) is as inf ormative as X but no more sophis
3. Forall g €G, J‘E(Y | X)(o) dP(w) =J'Y(w) dP(w)

g 9

Alternative representation of E(Y|X) and usefulness:

E(YIX) = E(Y|o(X) ) = E(Y|G)

- We do this bc when X takes on certain values, it maps to values in the preimage or equivalently the Borel field.
Example: Let E(Y|X) = E(Y|o(X) ) = E(Y|G) and E(Y|X,Z) = E(Y|o(X,Z) ) = E(Y|H)

Since G ¢ H, then E(E(Y|X,2)) = E(E(Y|H)) = E(E(Y|G) | H) = E(Y|G) = E(Y|X)

Law of Iterated Expectations: E(Y)=E[Ex(YIX)]®

Generalized Law of Iterated Expectations: For G ¢ H (G is a less fine partition than H, H a “bigger” information set),
E(Y|G)=E[E(Y|H)|G]=E[E(Y[G)[H]®
Property of Conditional Expectation: For real-valued random variables, Y and X, we have E(YX|X) = E(Y|X)X

REMEMBER: E(Y|X) IS A FUNCTION OF X, E[E(Y|X)|Z] IS A FUNCTION OF Z!

XVI.

a.

Matrix Algebra Topics

Rank of a Matrix

8 Y always satisfies 1 and 3. But Y will only satisfy 2 if 5(Y) ¢ o(X) i.e. Y is no more informative than X. So typically not possible to use Y as

E(Y|X).

° By condition 3 in the definition of conditional expectation, since E(Y|X) is clearly Q-measurable,
for Qe Q, E(E(Y | X)) = I E(Y | X)(w) dP(w) = IY(a)) dP(w) = E(Y)
Q Q

1050 the usual law of iterated expectations is a special case where G = {Q,@} because E(Y|G) = E(Y) in this case. Remember, E(Y) is just
taking expectation over the trivial sigma field.
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Prop: If A is Mxn and B is nxn s.t. rank(B) = n, then rank(AB) = rank(A)
Prop: Rank(A) = rank(A’A) = rank(AA’)
Prop: For any matrix A and nonsingular matrices B and C, rank(BAC) = rank(A) (provided that the multiplication is conformable)

Rank: # of leading 1s in rref(A).

Properties of Rank: 1. Rank(A)<=m, Rank(A)<=n for all mxn matrix A.
2. If Rank(A) = m then system is consistent > no 0 row. (But can have either unique solution or infinitely many solutions).
3. If Rank(A) = n then system has at most 1 solution. (has 0 solution if inconsistent, i.e. when m>n with incons row).
4. If Rank(A) < n then system has either O (if inconsistent) or infinitely many solutions (if consistent, but there’s free vars).
5. If Rank(A) = m = n, then rref(A) = I, (square matrix, invertible).

b. Projection Matrices: Given P Projection Matrix onto subspace V

P2=PP=P (ldempotent)

P projection = | — P projection as well

=R +R'

Eigenvalues of P are 1 or 0

For any vector/matrix X, X(X’X)X’ is a projection matrix onto the column space of X

asr wheE

c. Positive (semi)Definite / Negative (semi)Definite

Def: A (square) matrix A is positive definite if for all non-zero vectors x, x’Ax >0 (i.e. matrix projected on any direction is > 0)
Def: A (square) matrix A is positive semidefinite if for all non-zero vectors x, X’Ax >0

If A has full rank, then A’A is p.d™ but AA” is p.s.d.

If A'is p.d. and B is a nonsingular matrix, then BA’B is p.d.

A p.d. iff all eigenvalues of A > 0.*?

A p.d. iff tr(A) >0 (follows from above)

A p.d. iff det(A) > 0 > invertible (follows from 3)

For any matrix A, A’A is symmetric positive semi-definite

oupwdE

d. Singularity, Positive Definite vs. Non-singular (invertible)
Prop: p.d. > nonsingular, but nonsingular does not imply p.d. ** (b.c. nonsingular matrices can be negative definite)
& L(X) = AXisonto = Im(A) = R" < Im(A) = R" < Im(A) = R" < AX = b has unique solution X Vb € R™
A, invertible
< L(X) = AXis1-1 < Ker(A) = {6}@ Columns of A are linearly ind. < rref (A) =1, < rank(A) =n < det(A) =0

e. Trace
1. Tr(A+B) =Tr(A) + Tr(B)
2. Tr(AB) = Tr(BA) (if the multiplication is defined)
3. Tr(A)=Tr(A")
4 Tr(AA)=>a'a =Y Y a; wherea, is the ith col of A

]

f. Inverting 2x2, 3x3

2X2:
a b)' 1 (d -b
c d) ad-cbl-c a

3x3:

1 pf: Suppose for contradiction that X’X not p.d.
Vec#0,¢'X"'Xc <0= (cX)'I(Xc) <0 for some non— zero vector Xc

(since X full rank, there does not exist non —trivial linear combianations of rows/columns st. Xc = 0)

Thus, this implies I is not p.d. Contradiction!
12 For nonzero x, x’Ax > 0 2 Det(x’Ax) = |A||x’x|> 0 > |A| = product of eigenvalues must be >0
B Ap.d 2 x’Ax >0 - det(x’Ax) = det(A)det(x’x) > 0 > either det(A) > 0 and det(x’x) > 0 or det(A)<0 and det(x’x) <0 > A
invertible/nonsingular.
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N ei—fy ch—ib bg-ec
1 - -
" a(ei—hf)—b(di— fg)+c(dh b e
a(ei—hf)—b(di— cldh—e
(ei —hf)—b(di— fg) +c( 9) gh—ge bg-ha ae—db

> @ T

g. Determinants

Det(AB) = Det(A)Det(B) if A,B square

If A invertible, Det(A) = 1/Det(A) (this follows from above)
h. Differentiating wrt Vectors

Let X1 aket, and Agye. Then:

. o@x _ a
OX
O(Ax) .
anXl - Akxd
(The convention is, when you differentiate wrt a vector kx1, the resulting matrix is kx(.))
If A'is square
AXAY) _ (A+ A
akal
If A symmetric
O(X'AX) _ 2 Ax
akal
o(x" Ax) x
OA
a In | Al — Al—l
oA

i. Transpose: A"
1. (A+B) = AT+BT
2. (AB)'=B'A"

(A= (ADT if Ainvertible  [AA=1,> (AAD =) (ADHTAT=L > (AN = (AYT]

.rank(A) = rank(A") for any A

. Ker(A) = Ker(ATA) for any nxm matrix A. [Ker(A)cKer(ATA), Ker(ATA)c Ker(A)]
. If Ker(A) = {0} then A"A is invertible ~ for any nxm matrix A [Ker(ATA) = Ker(A) = {0}]

. Det(A) = Det(A") for square matrix A

. Dot Product: V el =V '
. For Orthogonal Matrices: ATA = I,<> A*= AT
10. For Matrix of Orthogonal Projection (of x onto subspace V): Py(x) = QQ"  [Columns of Q = orthonormal basis of V]

12. Quadratic Forms: (X) = X @ AX = X' AX

O© 00 NO Ul b~ Ww

j. Matrix Multiplication — Properties V nxn square matrix A
. Associative: A(BC) = (AB)C, (kA)B = k(AB)
. Distributive: (A+ B)C = AC + BC

1

2

3. Rarely Commutative: AB = BA (AI=IA)

3. ldentity: Given invertible matrix nxn A there exists Alst ATA=,
. Invertibility: (BA)'= A B exists when A, B both invertible.

BAy,=1,=A=B",B=A" AB=B"A™" =1, = A Binvertible by 4.
. Linearity: Matrix product is linear. A(C+D) = AC+AD, (A+B)C = AC+BC, (kA)B = k(AB) = A(kB) given k scalar.

o 01 b~

~

n
- Matrix in Summation Form: Each entry in a matrix product is a dot product, so B, /A, =C_ ., C; = z by
k=1
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For any vector c, c’c is p.s.d.
Any symmetric, idempotent matrix is p.s.d.
If a matrix A is symmetric and positive definite, then there exists some C nonsingular s.t. A=C’C

XVII.  Miscellaneous
a. Measurement Error and MSE
Mean Square Error (MSE) = Overall measure of the size of the measurement error when an estimate X is used to measure X (true quantity)

= E[(X-Xp)?] = Var(X-Xo) + E(X-Xo)* = Var(X) + Bias’ = 52 + 42
Note: For an unbiased estimator, E(X) = X,, the MSE = E[(X-X)?] = E[(X-E(X))?] = Var(X)

b. Approximation Method: Propagation of Error/Delta Method

Given RVs X and Y, and we know E(X) and Var(X). Suppose Y = g(X) where g is a nonlinear function.
To find E(Y) and Var(Y) requires that g be linear. We can linearlize g using the Taylor expansion of g about the mean of X (we choose the mean
of X so we can get E(g(X)) and Var(g(X)) easily).

1. To the first order: Y = g(X) ~ g(uy ) + (X~ 2,)9" (1) = E(Y) = 9y ) Var(Y) =Var(X)[g' (" O s, = 9(us,), 07 = o519 ()
-> This allows us to approximate the E and Var of nonlinear functions of a RV X, whose E(X) and Var(X) we know

- THIS IS THE DELTA METHO

2. To the second order: 2.y _ g(x ) ~ g(ux)+(x—ux)g'(ux)%(x—ux) 0" (1) = E(Y) = g(ux)%Var(X)g"(ux)

2" order lets us estimate bias (the second term)

3. (1-Dimensional) Taylor Expansion of a real-valued function f(x) about a point x = a:
o (n)
F(x) = %(x-a)" ~ f(a)+ f'(a)(x—a) +% £ (a)(x - a)? % fr@(x—a) +..

n=0

Miscellaneous Definitions
Law of Total Probability: P(X) = SP(XIY =y)P(Y =)

k

Indicators and Expectation: Exp. Number of things can be expressed as sum of indicators.
Fundamental Theorem of Calculus: If F(x) =J‘Xf (t)dt - then F'(x) = f(x)dx = Application: If P(Y<y) = Fz(Iny), then PDFy = F7’(Iny) = fz(Iny) (1/y)

Binomial Expansion: (L3 = Z(n}(k Geometric Series: ¥~ ;" —1/(1-q) for0< @ <1

Bias: If x is an estimator of X, then hias = E( X — Xg)
Symmetric: If f(x) symmetric about n, then f(y) = f(2n-y)

Or, for all e > 0, f(a+e) = f(a — e), then f is symmetric about a.
Even Function: f even if f(-t) = f(t) for all t (ie. symmetric about 0)

Statistic/Estimator: A statistic/estimator is some function of the data (and doesn’t depend on unknown parameters — thought its properties do).

Unbiased Estimator: An estimator T =t(x;... Xy) is called an unbiased estimator of some unknown parameter if E,(T)=0V0 -> Show T consistent, show
EM=0

Consistent Estimator: An estimator T = t(x;... Xy) is called a consistent estimator of some unknown parameter ¢ if T—" 9.

How to Show Consistency (i.e. p(y, - | > £}——0?) By Chebychev we know PV, — > £)< EI(Y, —#)°] _Var(Y, - ) +[E(Y, - )]’ _Var(Y,) + Bias’
" a g? g? &
Show Var(Y,) = 0 and Bias = 0 (sufficient but not necessary). But in application, we can just appeal to the law of large numbers (which, like
consistency, is convergence in probability!)

EXAMPLE: 6 =C£Z\Xi\ is a consistent estimator of &, then én.c P_, . But by law of large numbers, we know 0. =C£Z\Xi\ Py cE(|X )
: n : n

~LCE(x) =0

Note;: So if the estimator is unbiased, all we need is to show Var(Y,) = 0. But under appropriate smoothness conditions, Var-> 0 is guaranteed for
MLEs. So normally, unbiasedness is enough.

Note,: For an unbiased estimator, the equation above just refers to its variance.

Notes: Consistency does not imply unbiasedness, and vice versa. (e.g. X +1/n is consistent but biased).
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