MOMENTS OF A DISTRIBUTION AND MGF'S II. 3 1. MOMENTS: 3 MOMENT GENERATING FUNCTIONS: $M_X(t) = E\left(e^{tX}\right)$ AND $E\left[X^{(n)}\right] = M_X^{(n)}(0)$ where $M_X^{(n)} = \frac{\partial^{(n)}}{\partial t}M_X(t)$ 2. MOMENTS OF COMMON DISTRIBUTIONS III. LOCATION AND SCALE FAMILIES IV. EXPECTATION, VARIANCE OF A R.V. A. EXPECTATION SINGLE VARIABLE B. VARIANCE AND STD DEV COVARIANCE AND CORRELATION BETWEEN RV'S A. COVARIANCE INDEPENDENCE AND MEAN INDEPENDENCE VI. VII. **INEQUALITIES** 0. MARKOV'S CHEBYCHEV'S JENSEN'S 3. HOLDER'S 4. CAUCHY-SCHWARTZ INEQUALITY (SPECIAL CASE OF HOLDER'S) 5. MINKOWSKI'S ORDER STATISTICS: THE "ORDERED" STATISTIC (E.G. MIN/MAX/MEDIAN OF AN IID SAMPLE HAS A VIII. **DISTRIBUTION**) 1. PDF OF THE J-TH ORDER STATISTIC: 2. SAMPLE MEDIAN: ROBUST (NOT SENSITIVE TO OUTLIERS). NOTE: SAMPLE MEAN IS NOT ROBUST. IX. MODES OF CONVERGENCE (OF A SEQUENCE OF RV'S) **CONVERGES TO Y ALMOST SURELY** (AKA WITH PROBABILITY 1): IF $\forall \varepsilon > 0$, $P(\lim | Y_n - Y | < \varepsilon) = 1 \Leftrightarrow P(|\lim Y_n = Y |) = 1$ 1. 2. **CONVERGES TO Y IN PROBABILITY:** IF $\forall \varepsilon > 0$, $P(|Y_n - Y| > \varepsilon) \to 0$ as $n \to \infty \Leftrightarrow P(|Y_n - Y| < \varepsilon) \to 1$ 6 **CONVEGES TO Y IN L_p**: IF $E(|Y_N - Y|^p) \rightarrow 0$ AS $N \rightarrow INF$ 6 **Converges to Y in Distribution**: If $F_n(X) \to F(X)$ as $n \to 1$ inf at points X where F is continuous, where F_1 is the cdf of Y_1 AND F IS THE CDF OF Y. $O_{\scriptscriptstyle D}$ and $o_{\scriptscriptstyle D}$ and Modes of Convergence: 7 7 LAW OF LARGE NUMBERS **CHEBYCHEV'S WEAK LAW OF LARGE NUMBERS:** LET $Z_1,...Z_N$ BE A SEQUENCE OF IID RV'S WITH $E(z_i) = \mu$ AND $Var(z_i) = \sigma^2$. Then $\bar{z}_n = \frac{1}{n} \sum_{i=-a.s.}^{\infty} z_i \xrightarrow{a.s.} \mu$ (This follows since $\text{Bias}^2 \to 0$ and $\text{Var} \to 0$, so by Chebychev's inequality, we have convergence IN P) 7 **KOLMOGOROV'S SECOND STRONG LAW OF LARGE NUMBERS:** LET $\{z_i\}_{i=1}^n$ BE IID WITH $E(z_i) = \mu$. THEN, $\bar{z}_n = \frac{1}{n}\sum_{i=1}^n z_i \xrightarrow{a.s.} \mu$ 7 2. **ERGODIC THEOREM:** LET $\{z_i\}_{i=1}^n$ be a stationary and ergodic process with $E(z_i) = \mu$. Then, $\bar{z}_n \equiv \frac{1}{n} \sum_{i=1}^n z_i \xrightarrow{a.s.} \mu$ 3. 5. LLN FOR COVARIANCE STATIONARY PROCESSES WITH VANISHING AUTOCOVARIANCES: LLN for Vector Covariance-Stationary Processes with vanishing Autocovariances (diag element of $\{\Gamma_i\}$): 6. XI. **CENTRAL LIMIT THEOREMS** 8 **LINDBERG-LEVY CLT:** LET $\{z_i\}_{i=1}^n$ BE IID WITH $E(\mathbf{z}_i) = \mu$ and $Var(\mathbf{z}_i) = E(\mathbf{z}_i\mathbf{z}_i) = \Sigma$. Then $\sqrt{n}(\overline{\mathbf{z}}_n - \mu) = \frac{1}{\sqrt{n}}\sum_{i=1}^n (\mathbf{z}_i - \mu) \rightarrow_D N(\mathbf{0}, \Sigma)$ 1.

3

COMMON DISTRIBUTIONS

BILLINGSLEY (ERGODIC STATIONARY MARTINGALE DIFFERENCES) CLT: LET $\{g_i\}$ BE A VECTOR MARTINGALE DIFFERENCE SEQUENCE THAT IS STATIONARY AND ERGODIC WITH $E(g_i g_i') = \sum$, and let $\overline{g} = \frac{1}{n} \sum_{i=1}^n g_i$. Then, $\sqrt{n}\overline{g} = \frac{1}{\sqrt{n}} \sum_{i=1}^n g_i \xrightarrow{D} N(0,\Sigma)$ 8 GENERAL CLT: (FOR NIID) 8 CLT FOR MA(INF) (BILLINGSLEY GENERALIZES LINDBERG-LEVY TO STATIONARY AND ERGODIC MDS, NOW WE GENERALIZE FOR 4. SERIAL CORR) 8 MV CLT FOR MA(INF) 5. 8 XII. TRILOGY OF THEOREMS (WHAT DO WE KNOW ABOUT THE LIMITING DISTRIBUTION OF A SEQUENCE OF 9 **RANDOM VARIABLES?):** SLUTSKY'S THEOREM (GENERAL): CONVERGENCE IN DISTRIBUTION RESULTS 9 9 0 IF $Y_n \xrightarrow{D} Y$ AND $A_n \xrightarrow{P} a_n B_n \xrightarrow{P} b$ FOR A, B NON-RANDOM CONSTANTS, THEN $A_n Y_n + B_n \xrightarrow{D} aY + b$ 9 (VECTOR): $\mathbf{x}_n \to_d \mathbf{x}, \mathbf{y}_n \to_p \alpha \Rightarrow \mathbf{x}_n + \mathbf{y}_n \to_d \mathbf{x} + \alpha$ 0 (VEC/MAT): $\mathbf{x}_n \to_d \mathbf{x}$, $\mathbf{A}_n \to_p \mathbf{A} \Rightarrow \mathbf{A}_n \mathbf{x}_n \to_d \mathbf{A} \mathbf{x}$ (PROVIDED THAT THE MATRIX MULTIPLICATION IS CONFORMABLE) 9 CONTINUOUS MAPPING THEOREM (GENERAL): CONVERGENCE IN PROBABILITY AND DISTRIBUTION RESULTS 2. 9 3. DELTA METHOD: CONVERGENCE IN DISTRIBUTION RESULTS 9 XIII. PROPERTIES OF UNIVARIATE, BIVARIATE, MULTIVARIATE NORMAL 10 XIV. CHANGE OF VARIABLES: UNIVARIATE, BIVARIATE, MULTIVARIATE TRANSFORMATIONS OF PDF 10 THINGS TO CHECK: 1. IS THE FUNCTION 1-1 OVER THE DOMAIN 2. ARE THERE LIMITS TO VALUES OF THE TRANSFORMED VARIABLE. 10 1. UNIVARIATE: 10 2. BIVARIATE: 10 3. TRI-VARIATE: 11 4. MULTIVARIATE: 11 5. USEFUL CHANGE OF VARIABLES FORMULAS 11 XV. PROBABILITY THEORY 13 DEFINITIONS: PROBABILITY MEASURE, SIGMA ALGEBRA (SIGMA ALGEBRA IS WHAT WE DEFINE OUR MEASURES ON), BOREL 1. 13 **FIELDS** PROBABILITY SPACE, RANDOM VARIABLES, AND MEASURABILITY 2. 14 CONDITIONAL EXPECTATIONS AND LAW OF ITERATED EXPECTATIONS 3. 14 XVI. MATRIX ALGEBRA TOPICS 15 RANK OF A MATRIX 15 A. PROJECTION MATRICES: GIVEN P PROJECTION MATRIX ONTO SUBSPACE V 16 POSITIVE (SEMI)DEFINITE / NEGATIVE (SEMI)DEFINITE 16 C. SINGULARITY, POSITIVE DEFINITE VS. NON-SINGULAR (INVERTIBLE) 16 D. TRACE 16 E. **INVERTING 2x2, 3x3** F. 16 **DETERMINANTS** 17 G. DIFFERENTIATING WRT VECTORS 17 н. TRANSPOSE: A^T I. 17 Matrix Multiplication – Properties \forall nxn square matrix A 17 J. **RANDOM PROPERTIES** 17 K. **MISCELLANEOUS** XVII. 18 MEASUREMENT ERROR AND MSE 18 A.

18

APPROXIMATION METHOD: PROPAGATION OF ERROR/DELTA METHOD

В.

Common Distributions

Distribution	Interpretation	E(X)	VAR(X)	M(t)=E(exp(tx))	$Cdf(X) = P(X \le x)$ of Likelihood Func.	Pmf/Pdf
Binomial(n,p)	K successes in n Bernoulli trials	np	np(1-p)	$(1-p+pe^t)^n$	$L(\pi) = \binom{n}{k} \pi^k (1 - \pi)^{n-k}$	$P(X=k) = \binom{n}{k} p^k q^{n-k}$
Bernoulli(p)	Probability of success	P	p(1-p)			$P(x) = p^{x}(1-p)^{1-x}$ if $x = 0$ or $x = 1$, 0 o.w.
Geom(p)	Prob that N trials for 1st success	1/ p	$(1-p)/p^2$	$(e^{t}p)/(1-(1-p)e^{t})$	$L(\pi) = (1 - \pi)^n \pi$	$P(X = n) = p(1-p)^{n-1}$
Neg Bin(n,p)	Prob that N trials for R successes Generalization of Geometric Sum of R independent geo RV's	r/p	$r(1-p)/p^2$	$\left(\frac{e^t p}{1 - (1 - p)e^t}\right)^r$	$L(\pi) = \binom{N-1}{k-1} \pi^k (1-\pi)^{N-k}$	$P(X=k) = {n-1 \choose r-1} p^r q^{n-r}$
Poisson(λ)	Limit of a binomial distribution as $n \rightarrow \inf$, $p \rightarrow 0$. $\lambda = \text{rate per unit of time}$ at which events occur. Sum of Poi-Poi($\lambda 1 + \lambda 2$)	λ	λ	$e^{\lambda(e^t-1)}$	$L(\lambda) = \prod \frac{\lambda^{x_i} e^{-\lambda}}{x_i!}$	$P(X = k) = \frac{\lambda^k e^{-\lambda}}{k!}, k = 0,1,$
$N(\mu, \sigma^2)$	For X, Y ind., X~N(m1,v1), Y~N(m2,v2), then X+Y~(m1+m2,v1+v2)	μ	σ^2	$e^{\mu t}e^{\sigma^2t^2/2}$	No Closed Form for CDF $L(\lambda) = \prod \frac{1}{\sqrt{2\pi}\sigma} \exp\left[\frac{x_i - \mu}{-2\sigma}\right]$	$\frac{1}{\sqrt{2\pi}\sigma} \exp\left[-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2\right]$
Gamma(α , λ)	Sum of exponential RV's with parameter λ . If sum of 2 exp RV, then $\alpha = 2$, and 2 λ (if iid exp(λ))	α/λ	α/λ^2	$\left(\frac{\lambda}{\lambda - t}\right)^{\alpha}, t < \lambda$		$\frac{\lambda^{\alpha}}{\Gamma(\alpha)} x^{\alpha - 1} e^{-\lambda x}, x \ge 0$
Exp(λ)	Gamma with $\alpha = 1$ So if X-exp(λ), Y -exp(λ), then X+Y ~ Gamma(2,2 λ)	1/λ	$1/\lambda^2$	$\lambda/(\lambda-t), t < \lambda$	$P(0 \le X \le x) = 1 - e^{-\lambda x} \text{ for } x \ge 0, \text{ o}$ o.w. $\Rightarrow P(X > x) = e^{-\lambda x} (x \ge 0)$	$\lambda e^{-\lambda x}$ for $x \ge 0$, 0 o.w.
Chi Sqr (n)	Gamma with $a = \frac{1}{2}$, $L = \frac{1}{2}$, n D.F.					
Uni[a,b]		(b+a)/2	$(b-a)^2/12$	$e^{\lambda(e^t-1)}$	x/(b-a) for x in [a,b], 0 o.w.	1/(b-a) for x in [a,b], 0 o.w.
Cauchy(θ,σ)	A special case of Student's T distribution, when d.f. = 1 (that is, X/Y for X, Y independent N(0,1)). No Moments!	Does Not Exist	Does Not Exist	Does Not Exist		$\frac{1}{\pi\sigma} \frac{1}{1 + \left(\frac{x - \theta}{\sigma}\right)^2}$
Chi-Squared(p)	Sum of p iid Z^2 r.v., $Z \sim N(0,1)$ Note: Sum of p independent X^2 is Chisq(df_1++df_p)	P	2p	$(1-2t)^{-p/2}$		$\frac{(1/2)^{p/2}}{\Gamma(p/2)} x^{p/2 - 1} e^{-x/2}$

Other Important Distributions

- **T-Distribution:** If Z~N(0,1) and C~
$$X^2(q)$$
 are independent, then $\frac{Z}{\sqrt{C/q}} \sim t_q$

$$(\text{So, } \frac{\sqrt{n}(\overline{X} - \mu)/\sigma}{\sqrt{S^2/\sigma^2}} = \frac{\sqrt{n}(\overline{X} - \mu)}{\sqrt{S^2}} \sim t_{n-1})$$

F-Distribution: Let $C_1 \sim X^2(p)$ and $C_2 \sim X^2(q)$ be independent, then $\frac{C_1/p}{C_2/q} \sim F_{p,q}$ (So, $\frac{\left[\sqrt{n}(\overline{X} - \mu)/\sigma\right]^2}{S^2/\sigma^2} = \frac{n(\overline{X} - \mu)^2}{S^2} \sim F_{1,n-1}$)

1. Moments:

II. Moments of a Distribution and MGF's

 $1^{st}\ Moment = E(X), \\ 2^{nd}\ Moment = E(X^2) = Var(X) + E(X)^2 = Var(X) + (1^{st}\ Moment)^2$ Central Moments: nth central moment = $E[\ (X-m)^n\]$. So, 1^{st} central moment = 0, 2^{nd} central moment = Var(X).

Skewness and Kurtosis: Let m_n be the nth central moment of a r.v. X.

Skewness: $a_3 = m_3 / (m_2)^{3/2} \leftarrow \text{Positive} \rightarrow \text{right skewed, negative} \rightarrow \text{left skewed}$ Kurtosis: $a_4 = m_4 / (m_2)^2 \leftarrow \text{Measures the peaked-ness or flatness of the distribution (larger <math>\rightarrow$ more peaked)

Note: Mostly we care about the first 4 moments to summarize the distribution of a r.v.: 1st moment tells us the mean, 2nd moment / central moment gives us

2. Moment Generating Functions:
$$M_X(t) = E(e^{tX})$$
 and $E[X^{(n)}] = M_X^{(n)}(0)$ where $M_X^{(n)} = \frac{\partial^{(n)}}{\partial t} M_X(t)$

Useful Properties of MGF: If X,Y independent $M_{aX+b}(t) = \exp(bt)M_X(at)$

$$M_{X+Y}(t) = M_X(t)M_Y(t)$$

MGF of a Sample Average (of a random sample):
$$M_{\overline{X}}(t) = M_{\frac{1}{N}\left(\sum X_i\right)}(t) = \prod M_X\left(\frac{t}{N}\right)$$

3. Moments of Common Distributions

Moments	Normal	Uniform(0,0)	Exponential(λ)
1	$\mu'_1 = \mu$	$\mu'_1 = \theta/2$	$\mu_1' = {}_{1/\lambda}$
2	$\mu_2' = \mu^2 + \sigma^2$	$\mu_2' = \theta^2/3$	$\mu_2' = {}_{2/\lambda^2}$
3	$\mu_3' = \mu (\mu^2 + 3 \sigma^2)$	$\mu_3' = \theta^3/4$	$\mu_3' = 6/\lambda^3$
4	$\mu_4' = \mu^4 + 6\mu^2\sigma^2 + 3\sigma^4.$	$\mu_4' = \theta^4/5$	$\mu_4' = {}_{24/\lambda^4}$

III. Location and Scale Families

X, Y in the same **Location Family** \rightarrow There exists some m s.t. X = Y + m. (You can get to one from another by adding/subtracting by a constant.) X, Y in the same **Scale Family** \rightarrow There exists some "standard" r.v. and some s_1 and s_2 s.t. $X = s_1 Z$ and $Y = s_2 Z$ (You can get from one to another by multiplying by a constant)

IV. Expectation, Variance of a R.V.

A. Expectation SINGLE VARIABLE

1. Definition: For Discrete RV X: $E(X) = \sum x_i p(X = x_i)$ For Continuous RV X: $E(X) = \int x f_x(x) dx$

2. Expectation of g(X): $E(X) = \int g(x) f_x(x) dx \qquad E(X) = \sum g(x_i) p(X = x_i)$

- 3. E(b) = b, b constant (or more precisely, a RV that takes on only 1 value)
- 4. E(aX) = aE(X), a constant
- 5. E(aX+b) = aE(X) + b
- 6. E(X+Y) = E(X) + E(Y)
- 7. E[g(x)+h(x)] = E[g(x)] + E[h(x)]
- 8. Law of Total Expectation: $E(X) = E[E(X|Y)] = \sum_{i} E(X \mid Y = y_i) p(Y = y_i)$
- 9. Law of Iterated Expectations: E(X) = E[E(X|Y)]
- 10. Generalized Law of Iterated Expectations: For G c H (G is a less fine partition than H, H a "bigger" information set),

$$E(Y | G) = E[E(Y | H) | G] = E[E(Y | G) | H]^{1}$$

Note: Linking sigma fields and random variables: $E(Y|X) = E(Y|\sigma(X)) = E(Y|G)$

- 11. **Property of Conditional Expectation**: For real-valued random variables, Y and X, we have E(YX|X) = E(Y|X)X
- 12. Conditional Expectation: IT'S A FUNCTION OF THE CONDITIONED SET! E(Y|X) is a FUNCTION OF X!

B. Variance and Std Dev

- 1. $Var(X) = E[(X E(X))^{2}] = E(X^{2}) E(X)^{2}$
- 2. $Var(X | Y) = E[X^2 | Y] [E(X | Y)]^2$
- 3. For Discrete RV X: $Var(X) = E[(X E(X))^2] = \sum (x_i \mu)^2 p(X = x_i)$ For Continuous RV X: $Var(X) = E[(X E(X))^2] = \int (x \mu)^2 f(x) dx$
- 4. If Var(X) exists and Y = a + bX, then $Var(Y) = b^2Var(X)$
- 5. Var(X) = Cov(X,X)
- 6. Std(X) = Sqrt[Var(X)]
- 7. Conditional Variance Identity: $Var(X) = E[Var(X \mid Y)] Var[E(X \mid Y)]$

V. Covariance and Correlation between RV's

A. Covariance

- 1. $Cav(X,Y) = E[(X \mu_X)(Y \mu_Y)] = E(XY) E(X)E(Y)$
- 2. If X, Y independent, then $E(XY) = E(X)E(Y) \rightarrow Cov(X,Y) = 0$ (Note: The converse is not true! Cov(X,Y) = 0 does NOT imply independence)
- 3. Cov(a+X,Y) = Cov(X,Y), for constant a
- 4. Cov(aX,bY) = abCov(X,Y), for constants a,b
- 5. Cov(X,Y+Z) = Cov(X,Y) + Cov(X,Z)
- $6. \ Cov(aW+bX,cY+dZ) = acCov(W,Y) + adCov(W,Z) + bcCov(X,Y) + bdCov(X,Z) + bcCov(X,Z) + bcCov$
- 7. Bilinear Property: If $U = a + \sum b_i X_i$ and $V = c + \sum d_j Y_j$, then $Cov(U, V) = \sum \sum b_i d_j Cov(X_i, Y_j)$
- 8. Var(X) = Cov(X,X) and Var(X+Y) = Cov(X+Y,X+Y) = Var(X) + VAR(Y) + 2Cov(X,Y)
- 9. Generalized form of (8): $Var(a + \sum b_i X_i) = \sum \sum b_i b_j Cov(X_i, X_j)$
- 10. If X_i 's are independent, then $Var(\sum X_i) = \sum Var(X_i)$ (Note: $E(\sum X_i) = \sum E(X_i)$ regardless of ind. This is the linear property of expectations)

B. Correlation

$$\rho_{xy} = \frac{Cov(X,Y)}{\sqrt{Var(X)Var(Y)}}, \quad \rho_{xy} \in [-1,1] \quad and \quad \rho_{xy} = 1 \quad or \quad -1 \quad iff \quad Y = a + bX \quad \text{(i.e. X and Y are linear transformations of each other)}$$

¹ So the usual law of iterated expectations is a special case where $G = \{\Omega, \emptyset\}$ because E(Y|G) = E(Y) in this case. Remember, E(Y) is just taking expectation over the trivial sigma field.

VI. Independence and Mean Independence

Independence

Def: X ind Y if E(XY) = E(X)E(Y)

Properties of Independence:

- $X \perp Y \Rightarrow f(X) \perp g(Y)$ for some arbitrary functions f, g
- $X \perp (W, Y, Z) \Rightarrow X \perp Any \text{ subset of } (W, Y, Z)$
- But, $X \perp W$, $X \perp Y$, $X \perp Z \neq > X \perp (W, Y, Z)$ (see 271(a) HW1 #1(c))
- $X \perp Y \Rightarrow Cov(X,Y) = 0$ (REVERSE IMPLICATION NOT TRUE EXCEPT FOR NORMAL)

Special Case: For Normal, $Cov(X,Y) = 0 \rightarrow X$ ind Y.

• $X \perp Y \Rightarrow E(Y \mid X) = E(X)$ and $E(X \mid Y) = E(Y)$ (mean independence)

Mean Independence

Def: X mean ind Y if E(X|Y) = E(X)

Implications: X ind Y \rightarrow X mean ind Y and Y mean ind. X

X mean ind Y \rightarrow E[X | g(Y)] = E(X) \rightarrow Cov(X,Y) = 0 \rightarrow Cov(X, g(Y)) = 0

X mean ind Y not \rightarrow Y mean ind X

not \rightarrow f(X) mean ind. Y

VII. Inequalities

0. Markov's

Let X be a nonnegative RV, then ... $P(X \ge t) \le \frac{E(X)}{t}$

1. Chebychev's

Let Y be a R.V. Then, $P(|Y - E(Y)| \ge t) = \frac{Var(Y)}{t^2}$ (follows from Markov's with $X = |Y - E(Y)|^2$)

2. Jensen's

If f convex, $E(f(X)) \ge f(E(X))$ with strict inequality if linear $(Var(X) = E(X^2) - E(X)^2 \ge 0)$ concave, $E(f(X)) \le f(E(X))$ with strict inequality if linear

Useful For: Bounding the expectations of functions of RVs.

3. Holder's

Let X,Y be RV's, and p,q > 0 s.t.
$$1/p + 1/q = 1$$
. Then $|E(XY)| \le E(|XY|) \le (E(|X|^p))^{1/p} (E(|Y|^q))^{1/q}$

Useful For: Bounding the expected values involving 2 RV's using the moments of individual RV's)

4. Cauchy-Schwartz Inequality (Special Case of Holder's)

$$E\left(\left|XY\right|\right) \leq \sqrt{E\left(\left|X\right|^{2}\right)}\sqrt{E\left(\left|Y\right|^{2}\right)} \quad or \quad Cov(X,Y) \leq \sqrt{Var(X)}\sqrt{Var(Y)} \quad or \mid < x,y> \mid \leq \parallel x \parallel \parallel y \parallel \ for \ x,y \in \mathbb{R}^{N}$$

Useful For: Bounding the covariance between random variables.

5. Minkowski's

Let X, Y be RV's. Then, for
$$1 \le p < \infty$$
, $\left[E \left(\left| X + Y \right|^p \right) \right]^{1/p} \le \left[E \left(\left| X \right|^p \right) \right]^{1/p} + \left[E \left(\left| Y \right|^p \right) \right]^{1/p}$

Useful For: If X and Y have finite pth moment, then so does X+Y.

VIII. Order Statistics: The "ordered" statistic (e.g. min/max/median of an iid sample has a distribution)

Motivation: Siuppose we have an iid normally distributed sample of n observations. How do we find the distribution of the max of the n-sample?

1. Pdf of the j-th order statistic:

Let $X_{(1)},...,X_{(n)}$ denote the order statistic of a iid sample, $X_1,...,X_n$, with cdf $F_X(x)$ and pdf $f_X(x)$.

Then, pdf of the j-th order statistic is:

$$f_{X_{(j)}}(x) = \frac{n!}{(j-1)!(n-j)!} f_X(x) [F_X(x)]^{j-1} [1-F(x)]^{n-j}$$

- 2. Sample Median: Robust (not sensitive to outliers). Note: Sample mean is not robust.
 - Population Median = $F^{-1}(0.5) \rightarrow At$ this point, 50% of population is less than the value. \rightarrow It's the "middle" observation.
 - Population median need not be unique, but for this course we assume it is uniquely defined.
 - Asymptotic Distribution of the sample median: For $X_1...X_n$ iid density f, with median θ . If f is continuous at θ with $f(\theta) > 0$ (i.e. the probability of median x > 0),

Then... $\sqrt{n}(\tilde{X}_n - \theta) \xrightarrow{D} N[0,1/4f^2(\theta)]$ or $\tilde{X}_n \xrightarrow{D} N[\theta,1/4nf^2(\theta)]$ where \tilde{X}_n is the sample median.

• We can compute the **asymptotic relative efficiency** (between sample mean and sample median) = ratio of asymptotic variances.

IX. Modes of Convergence (Of a Sequence of RV's)

Given a Sequence of R.V.'s Y1,Y2,... Then Yn

1. Converges to Y Almost Surely (aka with probability 1): if $\forall \varepsilon > 0$, $P(\lim |Y_{\varepsilon} - Y| < \varepsilon) = 1 \Leftrightarrow P(\lim Y_{\varepsilon} = Y|) = 1$

(Meaning: for any s in sample space S, then beyond a certain tail, N, the sequence is ALWAYS within a neighborhood of Y. i.e. Pointwise convergence of sequence of functions. So, as n gets large, the function Y_n is always within ϵ of Y.)

2. **Converges to Y in Probability**: if $\forall \varepsilon > 0$, $P(|Y_n - Y| > \varepsilon) \to 0$ as $n \to \infty \Leftrightarrow P(|Y_n - Y| < \varepsilon) \to 1$

(Meaning: as n gets large, then on **average** the sequence gets closer to Y. It doesn't say anything about a particular sequence $Y_n(w)$, a la almost sure convergence. So, on average as n gets large, Y_n becomes better and better approximation of x, although there could still be infinitely bad elements of the sequence, they just occur less and less frequently.)

Note: We write $Y_n \xrightarrow{P} Y$ and $Y_n - Y = o_p(1)$

Note2: If $n^q(Y_n - Y) \xrightarrow{P} 0$ then we write $Y_n - Y = o_n(n^{-q})$ since $Y_n - Y$ goes to 0 faster than n^q goes to infinity, or faster than n^{-q} goes to 0.

Note3: *Y* is a consistent estimator of Y if *Y* converges to Y in probability.

Note4: Y is a super consistent estimator of Y if Y converges to Y in probability s.t. $n^{1/2}(Y_n - Y) \xrightarrow{P} 0$ or $Y_n - Y = o_n(n^{-1/2})$

Note5: Convergence in probability does not imply asymptotic unbiased-ness

3. Conveges to Y in L_n : if $E(|Y_n - Y|^p) \rightarrow 0$ as $n \rightarrow \inf$

(Meaning: The pth central moment converges, since $|E[(Y_n - Y)^p]| < E(|Y_n - Y|^p)$)

Note:
$$\xrightarrow{L_p} \Rightarrow \xrightarrow{L_q} for \ p \ge q > 0$$

Note2: We normally care about L_2 because L_2 convergence \rightarrow L_1 convergence in probability. To show L_2 convergence, or convergence of MSE, enough to show

Var $\rightarrow 0$ and Bias $\rightarrow 0$!

Note 3: How to Show Consistency/ Conv in Prob Using L₂:

(i.e.
$$P(|Y_n - \mu| > \varepsilon) \xrightarrow{P} 0$$
?) By Chebychev we know

$$P(|Y_n - \mu| > \varepsilon) \le \frac{E[(Y_n - \mu)^2]}{\varepsilon^2} = \frac{E[|Y_n - \mu|^2]}{\varepsilon^2} = \frac{Var(Y_n - \mu) + [E(Y_n - \mu)]^2}{\varepsilon^2} = \frac{Var(Y_n) + Bias^2}{\varepsilon^2}$$

4. Converges to Y in Distribution: If F_n(x) → F(x) as n → inf at points x where F is continuous, where F_i is the cdf of Y_i and F is the cdf of Y. (Meaning: at the limit, the marginal distributions are the same, i.e. pointwise convergence of the sequence of cdf's to F. But this says nothing about

the inter-dependence relations between the variables. It could be that the two RV's are completely different functions, or have a correlation of -1, but

has same cdf. Thus, only the CDF's converge, the random variables do not necessarily converge.)

Note: All of the above imply convergence in distribution.

5. O_p and O_p and Modes of Convergence:

Def:
$$X_n = O_p(n)$$
 iff $p \lim_{Y \to Y} \frac{X_n}{n} < \infty$

Def:
$$X_n = o_p(n)$$
 iff $p \lim \frac{X_n}{n} = 0$

Interpretations:

$$\begin{split} X_n &= o_p(1) \Leftrightarrow X_n \xrightarrow{P} 0 \\ X_n &= O_p(1) \Leftrightarrow X_n \ bounded \ in \ probability \Leftrightarrow \forall \ \varepsilon > 0, \exists M < \infty \ st \ P(\big|X_n\big| \ge M\big) < \varepsilon \\ X_n &= o_p(Y_n) \Leftrightarrow \frac{\big|X_n\big|}{\big|Y_n\big|} = o_p(1) \ \ (Y_n \ goes \ to \ 0 \ in \ prob \ faster) \\ X_n &= O_p(Y_n) \Leftrightarrow \frac{\big|X_n\big|}{\big|Y_n\big|} = O_p(1) \ \ (Y_n \ goes \ to \ 0 \ in \ prob \ faster) \end{split}$$

Properties:

$$O_p(1)o_p(1)=o_p(1)$$

 $O_p(1)+o_p(1)=O_p(1)$

Op op and WLLN and clt

$$X_i$$
 iid as X with $E \mid X \mid < \infty$. $E(X) = \mu$.
WLLN: $\overline{X}_n = \mu + o_p(1)$

if
$$E |X|^2 < \infty$$

 $CLT : \overline{X}_n = \mu + O_n(n^{-1/2})$

X. Law of Large Numbers

1. Chebychev's Weak Law of Large Numbers: Let $Z_1,...Z_n$ be a sequence of iid RV's with $E(z_i) = \mu$ and $Var(z_i) = \sigma^2$.

Then $\overline{z}_n \equiv \frac{1}{n} \sum_{i=1}^n z_i \xrightarrow{a.s.} \mu$ (This follows since bias² \Rightarrow 0 and var \Rightarrow 0, so by chebychev's inequality, we have convergence in p)

(Again, in op notation: $\overline{X}_n = \mu + o_p(1)$)

2. **Kolmogorov's Second Strong Law of Large Numbers**: Let $\{z_i\}_{i=1}^n$ be iid with $E(z_i) = \mu$. Then, $\overline{z}_n \equiv \frac{1}{n} \sum_{i=1}^n z_i \xrightarrow{a.s.} \mu$

(Unlike above, now we don't need assumption about existence of second moment or variance)

3. **Ergodic Theorem**: Let $\{z_i\}_{i=1}^n$ be a stationary and ergodic process with $E(z_i) = \mu$. Then, $\overline{z}_n \equiv \frac{1}{n} \sum_{i=1}^n z_i \xrightarrow{a.s.} \mu$ (This generalizes Kolmogrov's)

- 4. **Uniform Law of Large Numbers**: Under regularity conditions, z_t niid converges uniformly to $E(z_t)$ in θ (the parameter).
- 5. LLN for Covariance Stationary Processes with vanishing Autocovariances:

Let $\{y_t\}$ be covariance-stationary with mean μ and $\{\gamma_i\}$ be the autocovariances of $\{y_t\}$. Then,

(a)
$$\overline{y} = \frac{1}{T} \sum_{t=1}^{T} y_t \xrightarrow{m.s./L2} \mu$$
 if $\lim_{j \to \infty} \gamma_j = 0$

(b)
$$\lim_{j\to\infty} Var\left(\sqrt{n}\,\overline{y}\right) = \sum_{j=-\infty}^{\infty} \gamma_j < \infty \text{ if }$$

(Note: we also call this the **long-run variance** of the covariance stationary process², it can be expressed from AGF $g_Y(1)$).

² We can think of the sample as being generated from an infinite sequence of random variables (which is cov. Stationary). So, the "long-run" variance is the sum of covariances from any 1 element in the sequence to all the other elements.

6. LLN for Vector Covariance-Stationary Processes with vanishing Autocovariances (diag element of $\{\Gamma_i\}$):

Let $\{\mathbf{y}_t\}$ be a vector covariance-stationary with mean $\overline{\mu}$ and $\{\Gamma_i\}$ be the autocovariances³ of $\{\mathbf{y}_t\}$. Then,

(a)
$$\overline{y} = \frac{1}{T} \sum_{t=1}^{T} y_t \xrightarrow{m.s./L2} \mu$$
 if diagonal elements of $\Gamma_j \to_{m.s.} 0$ as $j \to \infty$

(b)
$$\lim_{j\to\infty} Var\left(\sqrt{n}\,\overline{y}\right) = \sum_{j=-\infty}^{\infty} \Gamma_j < \infty \text{ if } \{\Gamma_j\} \text{ is summable (i.e. each component of } \Gamma_j \text{ summable)}$$

(Note: we also call this the **long-run covariance variance matrix** of the vector covariance stationary process, it can be expressed

from Multivariate AGF:
$$G_Y(1) = \sum_{j=-\infty}^{\infty} \Gamma_j = \Gamma_0 + \sum_{j=1}^{\infty} (\Gamma_j + \Gamma_j')$$
.

XI. Central Limit Theorems

- 1. **Lindberg-Levy CLT**: Let $\{z_i\}_{i=1}^n$ be iid with $E(\mathbf{z}_i) = \mu$ and $Var(\mathbf{z}_i) = E(\mathbf{z}_i \mathbf{z}_i) = \Sigma$. Then $\sqrt{n}(\overline{\mathbf{z}}_n \mu) = \frac{1}{\sqrt{n}} \sum_{i=1}^n (\mathbf{z}_i \mu) \rightarrow_D N(\mathbf{0}, \Sigma)$ (Or in Op notation: $\overline{X}_n = \mu + O_p(n^{-1/2})$)
- 2. **Billingsley** (**Ergodic Stationary Martingale Differences**) **CLT**: Let $\{g_i\}$ be a vector martingale difference sequence that is stationary and ergodic with $E(g_i g_i') = \sum_{i=1}^4$, and let $\overline{g} = \frac{1}{n} \sum_{i=1}^n g_i$. Then, $\sqrt{n}\overline{g} = \frac{1}{\sqrt{n}} \sum_{i=1}^n g_i \xrightarrow{D} N(0, \Sigma)$
- 3. General CLT: (For niid)

Let $\{y_t\}$ be a sequence of niid r.v. s.t. $E(y_t) = 0$, $Var(y_t) = \sigma_t^2$, and let $\overline{\sigma}_T^2 = \frac{1}{T} \sum_{t=1}^{T} \sigma_t^2$

If
$$E\left[\left|y_{t}\right|^{2+\delta}\right]<\infty\ \forall\ t\ for\ some\ \delta>0$$
, then

$$\sqrt{T} \left(\frac{1}{T} \sum_{t=1}^{T} y_t \right) \to_D N \left(0, p \lim_{t \to 1} \frac{1}{T} \sum_{t=1}^{T} \sigma_t^2 \right) = N \left(0, p \lim_{t \to 1} \overline{\sigma}_T^2 \right)$$

Note: If we have iid, we can get rid of the condition.

4. **CLT for MA(inf)** (Billingsley generalizes Lindberg-Levy to stationary and ergodic mds, now we generalize for serial corr)

Let
$$y_t = \mu + \sum_{j=0}^{\infty} \psi_j \varepsilon_{t-j}$$
 where $\{\varepsilon_t\}$ is iid white noise and $\sum_{j=0}^{\infty} |\psi_j| < \infty$. Then,

$$\sqrt{n} \left(\overline{y} - \mu \right) \xrightarrow{D} N \left(0, \sum_{j=-\infty}^{\infty} \gamma_j \right)$$

5. MV CLT for MA(inf)

Let $y_t = \mu + \sum_{j=0}^{\infty} \psi_j \varepsilon_{t-j}$ where $\{\varepsilon_t\}$ is vector iid white noise (i.e. jointly covariance stationary) and $\sum_{j=0}^{\infty} |\psi_j| < \infty$. Then,

$$\sqrt{n}\left(\overline{y}-\mu\right) \xrightarrow{D} N\left(0, \sum_{j=-\infty}^{\infty} \Gamma_{j}\right)$$

³ In a vector process, the diagonal elements of $\{\Gamma_j\}$ are the autocovariances and the off diagonal are the covariances between the lagged values of the elements of the vector.

Let
$$y_t = \begin{bmatrix} x_t \\ z_t \end{bmatrix}$$
.

For example: Then, $\Gamma_j = \text{cov}(y_t, y_{t-j}) = E(y_t y_{t-j}') - E(y_t) E(y_{t-j}) = E\begin{bmatrix} x_t \\ z_t \end{bmatrix} \begin{bmatrix} x_{t-j} & z_{t-j} \end{bmatrix} - E\begin{bmatrix} x_t \\ z_t \end{bmatrix} E\begin{bmatrix} x_{t-j} & z_{t-j} \end{bmatrix}$

$$= \begin{bmatrix} E(x_{t}x_{t-j}) - E(x_{t})E(x_{t-j}) & E(x_{t}z_{t-j}) - E(x_{t})E(z_{t-j}) \\ E(x_{t-j}z_{t}) - E(x_{t-j})E(z_{t}) & E(z_{t}z_{t-j}) - E(z_{t})E(z_{t-j}) \end{bmatrix} = \begin{bmatrix} Cov(x_{t}, x_{t-j}) & Cov(x_{t}, z_{t-j}) \\ Cov(x_{t-j}, z_{t}) & Cov(z_{t}, z_{t-j}) \end{bmatrix}$$

⁴ Since $\{g_i\}$ stationary, the matrix of cross moments does not depend on i. Also, we implicitly assume that all the cross moments exist and are finite.

XII. Trilogy of Theorems (WHAT DO WE KNOW ABOUT THE LIMITING DISTRIBUTION OF A SEQUENCE OF RANDOM VARIABLES?):

- 1. Slutsky's Theorem (general): Convergence in distribution results
 - o If $Y_n \xrightarrow{D} Y$ and $A_n \xrightarrow{P} a_n B_n \xrightarrow{P} b$ for a, b non-random constants, then $A_n Y_n + B_n \xrightarrow{D} aY + b$
 - $\circ \quad \text{(vector):} \ \mathbf{X}_n \to_d \mathbf{X}, \ \mathbf{y}_n \to_p \alpha \Rightarrow \mathbf{X}_n + \mathbf{y}_n \to_d \mathbf{X} + \alpha$
 - o (vec/mat): $\mathbf{x}_n \to_d \mathbf{x}$, $\mathbf{A}_n \to_n \mathbf{A} \Rightarrow \mathbf{A}_n \mathbf{x}_n \to_d \mathbf{A} \mathbf{x}$ (provided that the matrix multiplication is conformable)
- 2. Continuous Mapping Theorem (general): Convergence in probability and distribution results

Let Y₁,Y₂,... be a sequence of random vectors. g(.) be continuous, vector valued function that does not depend on n. Then,

- o If $Y_n \xrightarrow{P} Y$, and **g continuous function**, then $g(Y_n) \xrightarrow{P} g(Y)$ (provided that the plim exists) o If $Y_n \xrightarrow{D} Y$, and **g continuous function**, then $g(Y_n) \xrightarrow{D} g(Y)$
- (similar to Delta Method ASK YING)
- 3. Delta Method: Convergence in distribution results

If $\sqrt{n}(Y_n - \mu) \xrightarrow{D} N(0, \tau^2)$ and g such that g'(y) exists in a neighborhood around m

a. First Order: if
$$g'(\mu) \neq 0$$
, then
$$\sqrt{n(g(Y_n) - g(\mu)) \xrightarrow{D} N(0, \tau^2[g'(\mu)]^2)}$$

b. Second Order: if $g'(\mu) = 0$, then

$$n(g(Y_n) - g(\mu)) \xrightarrow{D} \sigma^2 \frac{g''(\mu)}{2} \chi_1^2$$

Why? For g non-linear, we linearlize by Taylor approximation about μ to the second order, then we get...

$$Y = g(X) \approx g(\mu_X) + (x - \mu_X)g'(\mu_X) + \frac{1}{2}(x - \mu_X)^2 g''(\mu_X) = g(\mu_X) + \frac{1}{2}(x - \mu_X)^2 g''(\mu_X)$$

$$\Rightarrow E(Y) = g(\mu_X) + \frac{1}{2}g''(\mu_X)E((X - \mu_X)^2) = g(\mu_X) + \frac{1}{2}g''(\mu_X)Var(X)$$

$$\Rightarrow Var(Y) = Var\left(g(\mu_X) + \frac{1}{2}(x - \mu_X)^2 g''(\mu_X)\right) = \frac{1}{4}(g''(\mu_X))^2 Var(X)$$

c. Multivariate (First Order):

Let $\{x_n\}$ be a sequence of K – dim vectors s.t. $x_n \to_P \beta$ and sup pose $a(.): R^K \to R^r$ has cont first derivatives $A(\beta)_{rxK} \equiv \frac{\partial a(\beta)}{\partial \beta^*}$ Then,

$$\sqrt{n}\left(x_{n}-\beta\right) \rightarrow_{D} N(0,\Sigma) \Rightarrow \sqrt{n}\left(a(x_{n})-a\left(\beta\right)\right) \rightarrow_{D} N(0,A(\beta)\Sigma A(\beta)')$$

Why? For g non-linear, we linearlize by Taylor approximation about μ to the first order, then we get... $Y = g(X) \approx g(\mu_X) + g'(\mu_X)(x - \mu_X) \Rightarrow E(Y) = g(\mu_X), Var(Y) = Var(X)[g'(\mu_X)]^2$ Then, by slutsky's....

⁶ Check page 244 of casella berger for proof.

XIII. Properties of Univariate, Bivariate, Multivariate Normal

1. PDF:
$$f(\underline{x}) = (2\pi)^{-p/2} |\Sigma|^{-1/2} \exp\left\{-\frac{1}{2}(\underline{x} - \underline{\mu})'\Sigma^{-1}(\underline{x} - \underline{\mu})\right\}, \ \underline{x} \in \Re^p, \ \underline{\mu} = E(\underline{x}), \ and \ \Sigma_{ij} = Cov(X_i, X_j)$$

- Mutual Independence: $X_1...X_n \sim N$, then X_i , X_j independent iff $Cov(X_i, X_i) = 0$ for all $i \neq j$.
- Linear Transformation of MVN: Let $\underline{\mathbf{X}} \sim N_p(\underline{\mu}, \Sigma)$, and let $A \in \mathfrak{R}^{q \times p}$ and $\underline{b} \in \mathfrak{R}^q$, where A has full row rank $(q \leq p)$. Then, $\boxed{Y = AX + \underline{b} \sim N_q(A\underline{\mu} + \underline{b}, A\Sigma A')}$

$$Y = AX + \underline{b} \sim N_q (A\underline{\mu} + \underline{b}, A\Sigma A')$$

Conditional Distributions 4.

Bivariate Case:

$$If \begin{bmatrix} X \\ Y \end{bmatrix} \sim N_2 \left(\begin{bmatrix} \mu_X \\ \mu_Y \end{bmatrix}, \begin{bmatrix} \sigma_X^2 & \sigma_{XY} \\ \sigma_{XY} & \sigma_Y^2 \end{bmatrix} \right) \quad Then, \quad Y \mid X = x \sim N \left(\mu_Y + \rho \frac{\sigma_Y}{\sigma_X} \left(X - \mu_X \right), \sigma_Y^2 \left(1 - \rho^2 \right) \right) = N \left(\mu_Y + \frac{\sigma_{XY}}{\sigma_X^2} \left(X - \mu_X \right), \sigma_Y^2 \left(1 - \rho^2 \right) \right)$$

This is how we interpret regressions!

(Casella Berger p.199)

Functions of Normals

$$X,Y \text{ normal, } a,b \text{ cons} \Rightarrow aX + bY = N(a\mu_X + b\mu_Y, a^2\sigma_X^2 + b^2\sigma_Y^2 + 2ab\sigma_{XY})$$

Distribution of Mahalanobis Distance: Let $\underline{\mathbf{X}} \sim N_m(\underline{\mu}, \Sigma)$, for some vector $\underline{\mu}$, $(m \times 1)$, and some covariance matrix Σ , $(m \times m)$. Then,

$$\frac{(\mathbf{x} - \mu)' \Sigma^{-1} (\mathbf{x} - \mu) \sim \chi_m^2}{(\mathbf{x} - \mu)' \Sigma^{-1} (\mathbf{x} - \mu) \sim \chi_m^2}$$

Note: For a P symmetric projection matrix, then, $X \sim N(0,I_n) \rightarrow X'PX \sim X^2(rank P)$

XIV. Change of Variables: Univariate, Bivariate, Multivariate Transformations of PDF

Things to Check: 1. Is the Function 1-1 over the domain 2. Are there limits to values of the transformed variable.

Univariate:

Let X be a continuous RV with density f_X , and Y = g(X) a RV whose PDF we're interested in.

Let $A_0,...,A_k$ be a partition of X (the domain of X) such that...

- $P(X \text{ in } A_0) = 0$
- $f_X(x)$ is continuous on each A_i b)
- g_i monotonic on A_i
- g_i^{-1} has continuous derivatives on $Y_i = g_i(A_i)$.

Then, PDF of Y is:
$$f_{Y}(y) = \sum_{i=1}^{k} f_{Y}^{(i)}(y) \quad \text{where} \quad f_{Y}^{(i)}(y) = \begin{cases} f_{X}(g^{-1}(y)) \left| \frac{d}{dy} g_{i}^{-1}(y) \right| & \text{if } y \in Y_{i} = g_{i}(A_{i}) \\ 0 & \text{if } y \notin Y_{i} \end{cases}$$

(Note: This is the most general case. If g is monotone and g⁻¹ is continuously differentiable on the whole domain of X, then there is no need to partition.)

Bivariate:

Given (X,Y) continuous random vector with joint pdf f_{Xy} , then the joint pdf of (U,V) where U = f(x,y) and V = g(x,y) can be expressed in terms of

Let $A_0,...,A_k$ be a partition of $X \times Y$ (usually \mathbb{R}^2) such that...

- (u,v) = (f(x,y), g(x,y)) is a 1-1 transformation on each A_i
- g^{-1} and f^{-1} exist uniquely and are differentiable $\rightarrow x = h(u,v)$ and y = i(u,v)

Then, the PDF of (U,V) is:

$$\boxed{f_{UV}(u,v) = \sum_{i=1}^{k} f_{XY}^{(i)}(f^{-1}(u,v), g^{-1}(u,v)) \|J\|} \text{ where } J = abs \left[\det \begin{bmatrix} \frac{\partial f_i^{-1}(u,v)}{\partial u} & \frac{\partial f_i^{-1}(u,v)}{\partial v} \\ \frac{\partial g_i^{-1}(u,v)}{\partial u} & \frac{\partial g_i^{-1}(u,v)}{\partial v} \end{bmatrix} \right]$$

(J: Jacobian from $(x,y) \rightarrow (u,v)$)

Tri-Variate:

Given (X,Y,Z) continuous random vector with joint pdf f_{xyz} , then the joint pdf of (U,V,W) where U=f(x,y,z), V=g(x,y,z), W=h(x,y,z) can be expressed in terms of $f_{xyz}(x,y,z)$.

Let $A_0,...,A_k$ be a partition of $X \times Y \times Z$ such that...

- (u,v,w) = (f(x,y,z), g(x,y,z), h(x,y,z)) is a 1-1 transformation on each A_i g^{-1} and f^{-1} and h^{-1} exist uniquely and are differentiable $\rightarrow x = i(u,v,w)$, y = j(u,v,w), z = k(u,v,w)

Then, the PDF of (U,V,W) is:

$$f_{UVW}(u,v,w) = \sum_{i=1}^{k} f_{XYZ}^{(i)}(f^{-1}(u,v,w), g^{-1}(u,v,w), h^{-1}(u,v,w)) \|J\|$$
 where $J = abs$
$$\det \begin{bmatrix} \frac{\partial f_{i}^{-1}(u,v,w)}{\partial u} & \frac{\partial f_{i}^{-1}(u,v,w)}{\partial v} & \frac{\partial f_{i}^{-1}(u,v,w)}{\partial w} \\ \frac{\partial g_{i}^{-1}(u,v,w)}{\partial u} & \frac{\partial g_{i}^{-1}(u,v,w)}{\partial v} & \frac{\partial g_{i}^{-1}(u,v,w)}{\partial w} \\ \frac{\partial h_{i}^{-1}(u,v,w)}{\partial u} & \frac{\partial h_{i}^{-1}(u,v,w)}{\partial v} & \frac{\partial h_{i}^{-1}(u,v,w)}{\partial w} \end{bmatrix}$$

(J: Jacobian from $(x,y,z) \rightarrow (u,v,w)$)

(Note: Again, no need to partition if g and f are 1-1 transformation on the whole space and the inverses exist uniquely and are differentiable)

Multivariate:

Let $(X_1,...,X_n)$ be a random vector with pdf $f_{\mathbf{x}}(x_1,...,x_n)$. Let $A = \{x: f_{\mathbf{x}}(x) > 0\}$ be the support of $f_{\mathbf{x}}$.

Consider a new random vector $(U_1,...,U_n)$ s.t. $U_1 = g_1(\mathbf{X})$... $U_n = g_n(\mathbf{X})$

Suppose that $A_0, ..., A_k$ form a partition partition of A such that...

- a) $P(X_1,...,X_n \in A_0) = 0$ $(A_0 \text{ may be empty})$
- b) The transformation $(U_1,...,U_n) = (g_1(\mathbf{X}),...,g_n(\mathbf{X}))$ is a 1-1 transformation from A_i onto B for each i = 1,...,k(so the inverse function is well defined)

Let the i-th inverse give, for each $(u_1,...,u_n) \in B$, the unique $(x_1,...,x_n) \in A_i$ s.t. $(u_1,...,u_n) = (g_1(x_1,...,x_n),...,g_n(x_1,...,x_n))$

$$\text{Then, } f_{\mathbf{U}}(u_1,\ldots,u_n) = \sum_{i=1}^k f_{\mathbf{X}} \Big(g_{1i}^{-1}(u_1,\ldots,u_n),\ldots,g_{ni}^{-1}(u_1,\ldots,u_n) \Big) \mid J_i \mid \quad , J_i = \begin{vmatrix} \frac{\partial g_{1i}^{-1}(\mathbf{u})}{\partial u_1} & \frac{\partial g_{1i}^{-1}(\mathbf{u})}{\partial u_2} & \cdots & \frac{\partial g_{1i}^{-1}(\mathbf{u})}{\partial u_n} \\ \frac{\partial g_{2i}^{-1}(\mathbf{u})}{\partial u_1} & \frac{\partial g_{2i}^{-1}(\mathbf{u})}{\partial u_2} & \cdots & \frac{\partial g_{2i}^{-1}(\mathbf{u})}{\partial u_n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial g_{ni}^{-1}(\mathbf{u})}{\partial u_1} & \frac{\partial g_{ni}^{-1}(\mathbf{u})}{\partial u_2} & \cdots & \frac{\partial g_{ni}^{-1}(\mathbf{u})}{\partial u_n} \end{vmatrix}$$

(J: Jacobian from $(x_1,...,x_n) \rightarrow (u_1,...,u_n)$

(Note: No need to partition, if functions are 1-1 transformations on the whole space then the inverses exist uniquely and are differentiable.)

Useful Change of Variables Formulas

If X, Y independent continuous random variables with PDF $f_X(x)$, $f_Y(y)$,

Cauchy Distribution Example: (Where partitioning is important) Let X, Y ind. Standard Normals

1. Find PDF of X²

 $u = f(x) = x^{2}, -\infty < x < \infty : Not \ a \ 1 - 1 \ transformation \ over \ the \ domain.$ $Let \ A_{0} = \{0\}, \ A_{1} = (-\infty, 0), A_{2} = (0, \infty)$ $On \ A_{1} : x = g_{1}^{-1}(x) = -\sqrt{u} \Rightarrow \left| \frac{\partial g_{1}^{-1}(x)}{\partial u} \right| = \frac{1}{2\sqrt{u}}$ $On \ A_{2} : x = g_{2}^{-1}(x) = \sqrt{u} \Rightarrow \left| \frac{\partial g_{2}^{-1}(x)}{\partial u} \right| = \frac{1}{2\sqrt{u}}$ $Then, f_{u} = \sum_{i} f_{x}(g^{-1}(y)) \left| \frac{\partial g_{i}^{-1}(x)}{\partial u} \right| = f_{x}(-\sqrt{u}) + f_{x}(\sqrt{u}) = \frac{1}{\sqrt{2\pi}} \frac{1}{2\sqrt{u}} \exp\left\{-\frac{1}{2}(u)\right\} + \frac{1}{\sqrt{2\pi}} \frac{1}{2\sqrt{u}} \exp\left\{-\frac{1}{2}(u)\right\} = \frac{1}{\sqrt{2\pi u}} \exp\left\{-\frac{1}{2}u\right\} \sim Chi - Sq(1)$

2. Find PDF of X/(X+Y)

$$\begin{split} &U = \frac{X}{X + Y} \\ &V = X + Y \end{split} \Rightarrow \frac{X = UV}{Y = V - UV} \Rightarrow |\mathbf{J}| = \left\| \begin{matrix} v & u \\ -v & 1 - u \end{matrix} \right\| = |v(1 - u) + uv| = |v| \\ &f_{UV} = f_{XY}(uv, v - uv) |v| = \frac{|v|}{2\pi} \exp\left[-\frac{1}{2} \left((uv)^2 + (v - uv)^2 \right) \right] = \frac{|v|}{2\pi} \exp\left[-v^2 \left(u^2 - u + \frac{1}{2} \right) \right] \\ &f_U = \int_{v = -\infty}^{\infty} \frac{|v|}{2\pi} \exp\left[-v^2 \left(u^2 - u + \frac{1}{2} \right) \right] = \int_{v = -\infty}^{0} \frac{-v}{2\pi} \exp\left[-v^2 \left(u^2 - u + \frac{1}{2} \right) \right] + \int_{v = 0}^{\infty} \frac{v}{2\pi} \exp\left[-v^2 \left(u^2 - u + \frac{1}{2} \right) \right] \\ &= \frac{1}{4\pi \left(u^2 - u + \frac{1}{2} \right)} \int_{v = -\infty}^{0} 2v \left(u^2 - u + \frac{1}{2} \right) \exp\left[-v^2 \left(u^2 - u + \frac{1}{2} \right) \right] + \frac{-1}{4\pi \left(u^2 - u + \frac{1}{2} \right)} \int_{v = -\infty}^{0} -2v \left(u^2 - u + \frac{1}{2} \right) \exp\left[-v^2 \left(u^2 - u + \frac{1}{2} \right) \right] \\ &= \frac{1}{2\pi \left(u^2 - u + \frac{1}{2} \right)} = \frac{1}{\pi \left(2u^2 - 2u + 1 \right)} \sim Cauchy \left(\frac{1}{2}, \frac{1}{2} \right) \end{split}$$

3. Find PDF of X/|Y| (Partition)

$$U = \frac{X}{|Y|}$$
 \Rightarrow $U, V \text{ not a } 1-1 \text{ mapping from } R^2 \text{ to } R \text{ (multiple Y's map to same } U.$

Partition R^2 s.t. (u,v) is a 1-1 transformation on each A_i :

Let
$$A_0 = \{(x, y) : y = 0\}, A_1 = \{(x, y) : y > 0\}, A_2 = \{(x, y) : y < 0\}$$

$$On \ A_{1}: \frac{U = \frac{X}{Y}}{V = Y} \Rightarrow \frac{X = UV}{Y = V} \Rightarrow |\mathbf{J}| = \begin{vmatrix} v & u \\ 0 & 1 \end{vmatrix} = |v|$$

$$\Rightarrow f_{UV}^{1} = f_{XY}(uv, v) |v| = \frac{|v|}{2\pi} \exp\left[-\frac{1}{2}(u^{2}v^{2} + v^{2})\right] = \frac{|v|}{2\pi} \exp\left[-v^{2}(u^{2} + 1)\right]$$

$$On \ A_{2}: \frac{U = \frac{-X}{Y}}{V = -Y} \Rightarrow \frac{X = -UV}{Y = -V} \Rightarrow |\mathbf{J}| = \begin{vmatrix} -v & -u \\ 0 & -1 \end{vmatrix} = |v|$$

$$\Rightarrow f_{UV}^{2} = f_{XY}(-uv, -v) |v| = \frac{|v|}{2\pi} \exp\left[-\frac{1}{2}(u^{2}v^{2} + v^{2})\right] = \frac{|v|}{2\pi} \exp\left[-\frac{1}{2}v^{2}(u^{2} + 1)\right]$$

$$f_{UV} = f_{UV}^{1} + f_{UV}^{2} = \frac{|v|}{\pi} \exp\left[-\frac{1}{2}v^{2}(u^{2} + 1)\right] = \frac{v}{\pi} \exp\left[-\frac{1}{2}v^{2}(u^{2} + 1)\right] \sin ce \ v \in [0, \infty)$$

$$f_{U} = \int_{v=0}^{\infty} \frac{v}{\pi} \exp\left[-\frac{1}{2}v^{2}(u^{2} + 1)\right] dv = \frac{-1}{\pi(u^{2} + 1)} \int_{v=0}^{\infty} -v(u^{2} + 1) \exp\left[-\frac{1}{2}v^{2}(u^{2} + 1)\right]$$

$$= \frac{1}{\pi(u^{2} + 1)} \sim Cauchy(0, 1)$$

Where Domain of New Variable is Important:

Let X_1, X_2, X_3 iid exponential, $f(x) = a \exp(-ax)$, x > 0

Find distribution of $(X_1, X_1 + X_2, X_1 + X_3) = (U, V, W)$

$$\begin{vmatrix} X_1 \\ X_2 \\ X_3 \end{vmatrix} = \begin{matrix} U \\ V - U \\ W - U \end{matrix} \Rightarrow \parallel \mathbf{J} \parallel = \begin{vmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ -1 & 0 & 1 \end{vmatrix} = 1$$

$$f_{UVW} = f_{x_1 x_2 x_3}(u, v - u, w - u) = f_{x_1}(u) f_{x_2}(v - u) f_{x_3}(w - u) \text{ where } \boxed{u > 0, v - u > 0, w - u > 0}$$

$$= a \exp(-au) a \exp(-a(v - u)) a \exp(-a(w - u))$$

$$= a^3 \exp(-a(v + w - u)) \text{ where } u > 0, v > u, w > u$$

Find distr of V,W: Integrate out u, 0 < u < v and 0 < u < w

$$\int_{u=0}^{u=\min(v,w)} a^3 \exp(-a(v+w-u)) \ du = a^2 \exp(-a(v+w-u)) \Big|_{u=0}^{u=\min(v,w)} = a^2 \left(\exp(-a(v+w-\min(v,w)) - \exp(-a(v+w)) \right) \right)$$

$$= a^2 \exp(-a(v+w)) \left(\exp(a\min(v,w)) - 1 \right)$$

XV. Probability Theory

1. Definitions: Probability Measure, Sigma Algebra (Sigma Algebra is what we define our measures on), Borel Fields

Def: The set S of all possible outcomes of a particular experiment is called the **sample space** of the experiment.

Def: A collection of subsets of S, denoted B, is called a **sigma field** or **sigma algebra** if it satisfies the following:

- 1. *Empty Set* : $\emptyset \in \beta$
- 2. Complements: If $A \in \beta$, then $S \setminus A = A^c \in \beta$
- 3. Unions: If $A_1, A_2, ... \in \beta$, then $\left(\bigcup_{i=1}^{n} A_i\right) \in \beta$

$$Pf: If \ A_1, A_2, \ldots \in \beta, \ then \ \ clearly \ \left(\bigcap_{i=1}^{\infty} A_i\right) \in \beta \Rightarrow \left(\bigcap_{i=1}^{\infty} A_i\right)^c \in \beta \ \ by \ \ 2 \Rightarrow \left(\bigcup_{i=1}^{\infty} A_i^c\right) \in \beta \ \ by \ \ De \ \ Morgan's \ \ Laws$$

Def: P is a **probability measure** on the pair (S,B), if P satisfies:

- 1. $P(A) \ge 0$ for all $A \in \beta$
- 2. P(S) = 1
- 3. If $A_1, A_2, ... \in \beta$ are pairwise disjoint, $P(\bigcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} P(A_i)$

Def: Let $X: (\Omega, F) \to (R, B)$ be F measurable. A Borel field is the smallest σ -field that makes X measurable, given by: $\sigma(X) = \left\{ G \subseteq \Omega : G = X^{-1}(B) \text{ for some } B \in \beta \right\}$

(Think of this is the only sets in the universe that the random variables gives us information about – since they are the sets that are

preimages of all the possible outcomes of the r.v. So, the random variables X is informative about members of $\sigma(X)$ but not more than that!

2. Probability Space, Random Variables, and Measurability

Def: The triple (Ω, F, P) is called a **probability space**, where Ω is the "universe" (or the whole set of outcomes, like S), F is the σ -field on Ω (like B), and P is the underlying probability measure that governs all random variables, i.e. a probability measure on (Ω, F)

Def: A **random variable** is a function from the sample space into the real numbers, or a measurable mapping from (Ω, F) into (R, B) (So, for a random variable X: $(\Omega, F) \rightarrow (R, B)$, the **sample space** for X is R)

Def : A random variable X: $(\Omega, F) \rightarrow (R, B)$ is **F-measurable** if the preimage $\{\omega \in \Omega : X(\omega) \in \beta\} \in F \text{ for all } B \in \beta$ (all the events in *B* can be mapped back to *F* and be measured there)

Note: $X(\omega)$ is a random variable that induces a probability measure P_X on (R, B), $\omega \in \Omega$ (the universe)

 P_X is defined from P (a probability measure on (Ω, F)) by

Pr X takes on values in $B: P_X(B) \equiv P(X \in B) = P(\{\omega \in \Omega : X(\omega) \in B\})$ for some $B \in \beta$

Def: A random variable Y = g(X): $(R_X, B_X) \rightarrow (R_Y, B_Y)$ induces the probability measure P_Y on the sample space R_Y as follows: for some $A \in B_Y$, $P_Y(A) \equiv P(Y \in A) = P(X \in \{x \in R_X : Y = g(x) \in A\}) = P_X(\{x \in R_X : Y = g(x) \in A\})$

Prop: Let F and G be 2 σ -fields s.t. G c F (all the sets in G are also in F). If a random variable X is G-measurable, then X is F-measurable⁷.

3. Conditional Expectations and Law of Iterated Expectations

⁷ $Pf: \forall B \in \beta, \{\omega \in \Omega: X(\omega) \in B\} \in G \subseteq F$

Def: Let X and Y be real-valued random variables on (Ω, F, P) and let $G = \sigma(X)$. Suppose E|Y| finite. The conditional expected value of Y given X is a random variable (function of X) that satisfies the following 3 conditions⁸:

1.
$$E|E(Y|X)| < \infty$$

2. $E(Y \mid X)$ is G-measurable: i.e. $\forall B \in \beta$, $\{\omega \in \Omega : E(Y \mid X)(\omega)\} \in \sigma(X)$ $(E(Y \mid X))$ is as informative as X but no more sophis

3. For all
$$g \in G$$
, $\int_g E(Y \mid X)(\omega) dP(\omega) = \int_g Y(\omega) dP(\omega)$

Alternative representation of E(Y|X) and usefulness:

 $E(Y|X) = E(Y|\sigma(X)) = E(Y|G)$

→ We do this be when X takes on certain values, it maps to values in the preimage or equivalently the Borel field.

Example: Let $E(Y|X) = E(Y|\sigma(X)) = E(Y|G)$ and $E(Y|X,Z) = E(Y|\sigma(X,Z)) = E(Y|H)$ Since $G \ c \ H$, then $E(E(Y|X,Z)) = E(E(Y|H)) = E(E(Y|G) \ | \ H) = E(Y|G) = E(Y|X)$

Law of Iterated Expectations: $E(Y) = E[E_X(Y | X)]^9$

Generalized Law of Iterated Expectations: For G c H (G is a less fine partition than H, H a "bigger" information set),

$$E(Y \mid G) = E[E(Y \mid H) \mid G] = E[E(Y \mid G) \mid H]^{10}$$

Property of Conditional Expectation: For real-valued random variables, Y and X, we have E(YX|X) = E(Y|X)X

REMEMBER: E(Y|X) IS A FUNCTION OF X, E[E(Y|X)|Z] IS A FUNCTION OF Z!

XVI. Matrix Algebra Topics

a. Rank of a Matrix

⁸ Y always satisfies 1 and 3. But Y will only satisfy 2 if $\sigma(Y) \subseteq \sigma(X)$ i.e. Y is no more informative than X. So typically not possible to use Y as E(Y|X).

for
$$\Omega \in \Omega$$
, $E(E(Y \mid X)) = \int_{\Omega} E(Y \mid X)(\omega) dP(\omega) = \int_{\Omega} Y(\omega) dP(\omega) = E(Y)$

⁹ By condition 3 in the definition of conditional expectation, since E(Y|X) is clearly Ω -measurable,

¹⁰ So the usual law of iterated expectations is a special case where $G = \{\Omega, \emptyset\}$ because E(Y|G) = E(Y) in this case. Remember, E(Y) is just taking expectation over the trivial sigma field.

Prop: If **A** is Mxn and **B** is nxn s.t. rank(B) = n, then rank(**AB**) = rank(**A**)

Prop: Rank(A) = rank(A'A) = rank(AA')

Prop: For any matrix A and nonsingular matrices B and C, rank(BAC) = rank(A) (provided that the multiplication is conformable)

Rank: # of leading 1s in rref(A).

Properties of Rank: 1. Rank(A)<=m, Rank(A)<=n for all mxn matrix A.

- 2. If Rank(A) = m then system is consistent \rightarrow no 0 row. (But can have either unique solution or infinitely many solutions).
- 3. If Rank(A) = n then system has **at most** 1 solution. (has 0 solution if inconsistent, i.e. when m>n with incons row).
- 4. If Rank(A) < n then system has either 0 (if inconsistent) or infinitely many solutions (if consistent, but there's free vars).
- 5. If Rank(A) = m = n, then $rref(A) = I_n$ (square matrix, invertible).

b. Projection Matrices: Given P Projection Matrix onto subspace V

- 1. $P^2 = PP = P$ (Idempotent)
- 2. P projection \rightarrow I P projection as well
- $3. \qquad I = P_V + P_V^{\perp}$
- 4. Eigenvalues of P are 1 or 0
- 5. For any vector/matrix X, X(X'X)X' is a projection matrix onto the column space of X

c. Positive (semi)Definite / Negative (semi)Definite

Def: A (square) matrix A is **positive definite** if for all non-zero vectors x, x'Ax > 0 (i.e. matrix projected on any direction is > 0) Def: A (square) matrix A is **positive semidefinite** if for all non-zero vectors x, x'Ax \ge 0

- 1. If **A** has full rank, then $\mathbf{A}'\mathbf{A}$ is p.d¹¹ but AA' is p.s.d.
- 2. If **A** is p.d. and B is a nonsingular matrix, then BA'B is p.d.
- 3. **A** p.d. iff all eigenvalues of A > 0.¹²
- 4. **A** p.d. iff tr(A) > 0 (follows from above)
- 5. **A** p.d. iff $det(A) > 0 \rightarrow invertible$ (follows from 3)
- 6. For any matrix A, A'A is symmetric positive semi-definite

d. Singularity, Positive Definite vs. Non-singular (invertible)

Prop: p.d. \rightarrow nonsingular, but nonsingular does not imply p.d. ¹³ (b.c. nonsingular matrices can be negative definite)

$$\Leftrightarrow L(\vec{x}) = A\vec{x}$$
 is onto $\Leftrightarrow \text{Im}(A) = R^N \Leftrightarrow \text{Im}(A) = R^N \Leftrightarrow \text{Im}(A) = R^N \Leftrightarrow A\vec{x} = \vec{b}$ has unique solution $\vec{x} \ \forall \vec{b} \in R^N$

A_{nxn} invertible

$$\Leftrightarrow L(\vec{x}) = A\vec{x} \text{ is 1-1} \Leftrightarrow Ker(A) = \{\vec{0}\} \Leftrightarrow \text{Columns of A are linearly ind.} \Leftrightarrow rref(A) = I_n \Leftrightarrow rank(A) = n \Leftrightarrow \det(A) \neq 0$$

e. Trace

- 1. Tr(A+B) = Tr(A) + Tr(B)
- 2. Tr(AB) = Tr(BA) (if the multiplication is defined)
- 3. Tr(A) = Tr(A')
- 4. $Tr(A'A) = \sum_{i} a_i' a_i = \sum_{j} \sum_{i} a_{ij}^2$ where a_i is the ith col of A

f. Inverting 2x2, 3x3

2x2:

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix}^{-1} = \frac{1}{ad - cb} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$$

3x3:

$$\forall c \neq 0, c'X'Xc \leq 0 \Rightarrow (cX)'I(Xc) \leq 0$$
 for some non – zero vector Xc

(sin ce X full rank, there does not exist non-trivial linear combinations of rows/columns s.t. Xc = 0)

Thus, this implies I is not p.d. Contradiction!

¹¹ Pf: Suppose for contradiction that X'X not p.d.

For nonzero x, x'Ax > 0 \rightarrow Det(x'Ax) = |A||x'x|> 0 \rightarrow |A| = product of eigenvalues must be > 0

¹³ A p.d. \rightarrow x'Ax > 0 \rightarrow det(x'Ax) = det(A)det(x'x) > 0 \rightarrow either det(A) > 0 and det(x'x) > 0 or det(A)<0 and det(x'x) < 0 \rightarrow A invertible/nonsingular.

$$A = \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix}^{-1} = \frac{1}{a(ei-hf)-b(di-fg)+c(dh-eg)} \begin{pmatrix} ei-fg & ch-ib & bg-ec \\ fg-di & ai-cg & cd-af \\ gh-ge & bg-ha & ae-db \end{pmatrix}$$

g. Determinants

Det(AB) = Det(A)Det(B) if A,B square

If A invertible, Det(A) = 1/Det(A) (this follows from above)

h. Differentiating wrt Vectors

Let \mathbf{x}_{kx1} \mathbf{a}_{kx1} , and \mathbf{A}_{dxk} . Then:

$$\bullet \quad \frac{\partial (a'x)}{\partial x} = a$$

$$\bullet \quad \frac{\partial (Ax)}{\partial x_{kx1}} = A_{kxd}$$

(The convention is, when you differentiate wrt a vector kx1, the resulting matrix is kx(.))

If A is square

•
$$\frac{\partial (x'Ax)}{\partial x_{kx}} = (A + A')x$$

If A symmetric

$$\bullet \quad \frac{\partial (x'Ax)}{\partial x_{lx1}} = 2Ax$$

$$\bullet \quad \frac{\partial (x'Ax)}{\partial A} = x'x$$

$$\bullet \quad \frac{\partial \ln |A|}{\partial A} = A^{-1}$$

i. Transpose: A^T

- 1. $(A+B)^{T} = A^{T}+B^{T}$ 2. $(AB)^{T} = B^{T}A^{T}$
- 3. $(A^{T})^{-1} = (A^{-1})^{T}$ if A invertible $[AA^{-1}=I_n \rightarrow (AA^{-1})^T=(I_n)^T \rightarrow (A^{-1})^TA^T=I_n \rightarrow (A^T)^{-1}=(A^{-1})^T]$
- 4. $rank(A) = rank(A^{T})$ for any A
- 5. $Ker(A) = Ker(A^{T}A)$ for any nxm matrix A.

 $[Ker(A)cKer(A^{T}A), Ker(A^{T}A)c Ker(A)]$

- 6. If $Ker(A) = {0}$ then $A^{T}A$ is invertible for any nxm matrix A
- $[Ker(A^TA) = Ker(A) = \{0\}]$

- 7. $Det(A) = Det(A^{T})$ for square matrix A
- 8. Dot Product: $\vec{v} \bullet \vec{u} = \vec{v}^T \vec{u}$
- 9. For Orthogonal Matrices: $A^{T}A = I_{n} \Leftrightarrow A^{-1} = A^{T}$
- 10. For Matrix of Orthogonal Projection (of x onto subspace V): $P_V(x) = QQ^T$ [Columns of Q = orthonormal basis of V]
- 12. Quadratic Forms: $q(\vec{x}) = \vec{x} \cdot A\vec{x} = \vec{x}^T A\vec{x}$

j. Matrix Multiplication – Properties \forall nxn square matrix A

- 1. Associative: A(BC) = (AB)C, (kA)B = k(AB)
- 2. Distributive: (A + B)C = AC + BC
- 3. Rarely Commutative: $AB \neq BA$ (AI=IA)
- 3. Identity: Given invertible matrix nxn A there exists A^{-1} s.t. $A^{-1}A = I_n$
- 4. Invertibility: (BA)⁻¹= A⁻¹ B⁻¹ exists when A, B both invertible.
- 5. $B_{nxn}A_{nxn}=I_n \Rightarrow A=B^{-1}, B=A^{-1}, AB=B^{-1}A^{-1}=I_n \Rightarrow A, B$ invertible by 4.
- 6. Linearity: Matrix product is linear. A(C+D) = AC+AD, (A+B)C = AC+BC, (kA)B = k(AB) = A(kB) given k scalar.
- 7. Matrix in Summation Form: Each entry in a matrix product is a dot product, so $B_{mxn}A_{nxp}=C_{mxp}$, $c_{ij}=\sum b_{ik}a_{kj}$

For any vector c, c'c is p.s.d.

Any symmetric, idempotent matrix is p.s.d.

If a matrix A is symmetric and positive definite, then there exists some C nonsingular s.t. A=C'C

XVII. Miscellaneous

a. Measurement Error and MSE

Mean Square Error (MSE) = Overall measure of the size of the measurement error when an estimate X is used to measure X_0 (true quantity)

=
$$E[(X-X_0)^2] = Var(X-X_0) + E(X-X_0)^2 = Var(X) + Bias^2 = \sigma_X^2 + \beta^2$$

Note: For an unbiased estimator, $E(X) = X_0$, the $MSE = E[(X-X_0)^2] = E[(X-E(X))^2] = Var(X)$

b. Approximation Method: Propagation of Error/Delta Method

Given RVs X and Y, and we know E(X) and Var(X). Suppose Y = g(X) where g is a nonlinear function.

To find E(Y) and Var(Y) requires that g be linear. We can **linearlize g using the Taylor expansion of g about the mean of X** (we choose the mean of X so we can get E(g(X)) and Var(g(X)) easily).

- 1. To the first order: $Y = g(X) \approx g(\mu_X) + (x \mu_X)g'(\mu_X) \Rightarrow E(Y) = g(\mu_X), Var(Y) = Var(X)[g'(\mu_X)]^2$ or $\mu_Y \approx g(\mu_X), \sigma_Y^2 \approx \sigma_X^2[g'(\mu_X)]^2$
 - \rightarrow This allows us to approximate the E and Var of nonlinear functions of a RV X, whose E(X) and Var(X) we know
- → THIS IS THE **DELTA METHO**
- 2. To the second order: 2. $Y = g(X) \approx g(\mu_X) + (x \mu_X)g'(\mu_X) + \frac{1}{2}(x \mu_X)^2g''(\mu_X) \Rightarrow E(Y) \approx g(\mu_X) + \frac{1}{2}Var(X)g''(\mu_X)$

 \rightarrow 2nd order lets us estimate bias (the second term)

3. (1-Dimensional) Taylor Expansion of a real-valued function f(x) about a point x = a:

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (x-a)^n = f(a) + f'(a)(x-a) + \frac{1}{2}f''(a)(x-a)^2 + \frac{1}{6}f'''(a)(x-a)^3 + \dots$$

Miscellaneous Definitions

Law of Total Probability: $P(X) = \sum P(X \mid Y = y_i)P(Y = y_i)$

Binomial Expansion:
$$(1+x)^n = \sum_{k=0}^{\infty} \binom{n}{k} x^k$$
 Geometric Series: $\sum_{k=0}^{\infty} \alpha^k = 1/(1-\alpha)$ for $0 < \alpha < 1$

Indicators and Expectation: Exp. Number of things can be expressed as sum of indicators.

Fundamental Theorem of Calculus: If $F(x) = \int_{-\infty}^{x} f(t)dt$, then F'(x) = f(x)dx \rightarrow Application: If $P(Y \le y) = F_Z(\ln y)$, then $PDF_Y = F_Z'(\ln y) = f_Z(\ln y)$ (1/y)

Bias: If x is an estimator of x_0 , then bias = $E(x - x_0)$

Symmetric: If f(x) symmetric about n, then f(y) = f(2n-y)

Or, for all e > 0, f(a+e) = f(a-e), then f is symmetric about a.

Even Function: f even if f(-t) = f(t) for all t (ie. symmetric about 0)

Statistic/Estimator: A statistic/estimator is some function of the data (and doesn't depend on unknown parameters - thought its properties do).

Unbiased Estimator: An estimator $T = t(x_1...x_N)$ is called an unbiased estimator of some unknown parameter if $E_{\theta}(T) = \theta \ \forall \theta \ \Rightarrow$ Show T consistent, show

Consistent Estimator: An estimator $T = t(x_1...x_N)$ is called a consistent estimator of some unknown parameter θ if $T \xrightarrow{P} \theta$.

How to Show Consistency (i.e. $P(|Y_n - \mu| > \varepsilon) \xrightarrow{P} 0$?) By Chebychev we know $P(|Y_n - \mu| > \varepsilon) \le \frac{E[(Y_n - \mu)^2]}{\varepsilon^2} = \frac{Var(Y_n - \mu) + [E(Y_n - \mu)]^2}{\varepsilon^2} = \frac{Var(Y_n - \mu) + [E(Y_n - \mu)]^2}{\varepsilon^2}$

Show $Var(Y_n) \rightarrow 0$ and Bias $\rightarrow 0$ (sufficient but not necessary). But in application, we can just appeal to the law of large numbers (which, like consistency, is convergence in probability!)

EXAMPLE:
$$\hat{\theta}_{n,c} = c \frac{1}{n} \sum |x_i|$$
 is a consistent estimator of σ , then $\hat{\theta}_{n,c} \xrightarrow{P} \sigma$. But by law of large numbers, we know $\hat{\theta}_{n,c} = c \frac{1}{n} \sum |x_i| \xrightarrow{P} cE(|x_i|)$
 $\therefore cE(|x_i|) = \sigma$

Note₁: So if the estimator is unbiased, all we need is to show $Var(Y_n) \rightarrow 0$. But under appropriate smoothness conditions, $Var \rightarrow 0$ is guaranteed for MLEs. So normally, unbiasedness is enough.

Note₂: For an unbiased estimator, the equation above just refers to its variance.

Note₃: Consistency does not imply unbiasedness, and vice versa. (e.g. $\overline{X}_{n+1/n}$ is consistent but biased).