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9 Glossary

Symbols:

⇒ implies
≡ is equivalent to
x mean of a set of values of x
ε error
ε̂ Greenhouse–Geisser correction (see p. 25)

ε~ Huynh–Feldt correction (see p. 25)

µ mean
ρ population correlation
r sample correlation

xyr  or yxr . correlation between x and y

cbayr ,,. multiple correlation between y and (a, b, c)

)|.( zxyr semipartial correlation between y and x, having partialled out z (see
p. 100)

zxyr |. partial correlation between y and x, having partialled out z (see p.
100)

∑ sum of (see p. 209)

Xσ population standard deviation of X
sX sample standard deviation of X
2
Xσ population variance of X
2
X

s sample variance of X

• Additive model. In within-subjects ANOVA, a structural model that assumes
the effects of within-subjects treatments are the same for all subjects.

• ANCOVA. Analysis of covariance: an ANOVA that uses a covariate as a pre-
dictor variable.

• ANOVA. Analysis of variance. See p. 8→ for an explanation of how it works.
• A priori tests. Tests planned in advance of obtaining the data; compare post hoc

tests.
• Balanced ANOVA. An ANOVA is said to be balanced when all the cells have

equal n, when there are no missing cells, and if there is a nested design, when
the nesting is balanced so that equal numbers of levels of the nested factor ap-
pear in the levels of the factor(s) that they are nested within. This greatly simpli-
fies the computation.

• Between-subjects (factor or covariate). If each subject is only tested at a single
level of an independent variable, the independent variable is called a between-
subjects factor. Compare within-subjects.

• Carryover effects. See within-subjects.
• Categorical predictor variable. A variable measured on a nominal scale,

whose categories identify class or group membership, used to predict one or
more dependent variables. Often called a factor.

• Continuous predictor variable. A continuous variable used to predict one or
more dependent variables. Often called a covariate.

• Covariance matrix. If you have three variables x, y, z, the covariance matrix,

denoted ∑, is 
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 where covxy is the covariance of

x and y (= ρxyσxσy where ρxy is the correlation between x and y and σx is the vari-

ance of x). Obviously, 2cov xxx σ= . It is sometimes used to check for compound
symmetry of the covariance matrix, which is a fancy way of saying
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222
zyx σσσ ==  (all numbers on the leading diagonal the same as each other). and

xzyzxy covcovcov ==  (all numbers not on the leading diagonal the same as

each other). If there is compound symmetry, there is also sphericity, which is
what’s important when you’re running ANOVAs with within-subjects factors.
On the other hand, you can have sphericity without having compound symme-
try; see p. 25→.

• Conservative. Apt to give p values that are too large.
• Contrast. See linear contrast.
• Covariate. A continuous variable (one that can take any value) used as a pre-

dictor variable.
• Degrees of freedom (df). Estimates of parameters can be based upon different

amounts of information. The number of independent pieces of information that
go into the estimate of a parameter is called the degrees of freedom (d.f. or df).
Or, the number of observations free to vary. For example, if you pick three
numbers at random, you have 3 df — but once you calculate the sample mean,
x , you only have two df left, because you can only alter two numbers freely;
the third is constrained by the fact that you have ‘fixed’ x . Or, the number of
measurements exceeding the amount absolutely necessary to measure the ‘ob-
ject’ (or parameter) in question. To measure the length of a rod requires 1
measurement. If 10 measurements are taken, then the set of 10 measurements
has 9 df. In general, the df of an estimate is the number of independent scores
that go into the estimate minus the number of parameters estimated from those
scores as intermediate steps. For example, if the population variance σ2 is esti-
mated (by the sample variance s2) from a random sample of n independent
scores, then the number of degrees of freedom is equal to the number of inde-
pendent scores (n) minus the number of parameters estimated as intermediate
steps (one, as µ is estimated by x ) and is therefore n – 1.

• Dependent variable. The variable you measure, but do not control. ANOVA is
about predicting the value of a single dependent variable using one or more
predictor variables.

• Design matrix. The matrix in a general linear model that specifies the experi-
mental design — how different factors and covariates contribute to particular
values of the dependent variable(s).

• Doubly-nested design. One in which there are two levels of nesting (see nested
design). Some are described on p. 159→.

• Error term. To test the effect of a predictor variable of interest with an
ANOVA, the variability attributable to it (MSvariable) is compared to variability
attributed to an appropriate ‘error term’ (MSerror), which measures an appropri-
ate error variability. The error term is valid if the expected mean square for the
variable, E(MSvariable), differs from E(MSerror) only in a way attributable solely to
the variable of interest.

• Error variability (or error variance, 2
eσ ). Variability among observations that

cannot be attributed to the effects of the independent variable(s). May include
measurement error but also the effects of lots of irrelevant variables that are not
measured or considered. It may be possible to reduce the error variability by ac-
counting for some of them, and designing our experiment accordingly. For ex-
ample, if we want to study the effects of two methods of teaching reading on
children’s reading performance, rather than randomly assigning all our students
to teaching method 1 or teaching method 2, we could split our children into
groups with low/medium/high intelligence, and randomly allocate students
from each level of intelligence to one of our two teaching methods. If intelli-
gence accounts for some of the variability in reading ability, accounting for it in
this way will reduce our error variability. Within-subjects designs take this prin-
ciple further (but are susceptible to carryover effects).

• Expected mean square (EMS). The value a mean square (MS) would be ex-
pected to have if the null hypothesis were true.

• F ratio. The ratio of two variances. In ANOVA, the ratio of the mean square
(MS) for a predictor variable to the MS of the corresponding error term.
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• Factor. A discrete variable (one that can take only certain values) used as a
predictor variable. A categorical predictor. Factors have a certain number of
levels.

• Factorial ANOVA. An ANOVA using factors as predictor variables. The term
is often used to refer to ANOVAs involving more than one factor (compare one-
way ANOVA). Factorial designs range from the completely randomized design
(subjects are randomly assigned to, and serve in only one of several different
treatment conditions, i.e. completely between-subjects design), via mixed de-
signs (both between-subjects and within-subjects factors) to completely within-
subjects designs, in which each subject serves in every condition.

• Fixed factor. A factor that contains all the levels we are interested in (e.g. the
factor ‘sex’ has the levels male and female). Compare random factor and see p.
31.

• Gaussian distribution. Normal distribution.
• General linear model. A general way of predicting one or more dependent

variables from one or more predictor variables, be they categorical or continu-
ous. Subsumes regression, multiple regression, ANOVA, ANCOVA, MA-
NOVA, MANCOVA, and so on.

• Greenhouse–Geisser correction/epsilon. If the sphericity assumption is vio-
lated in an ANOVA involving within-subjects factors, you can correct the df for
any term involving the WS factor (and the df of the corresponding error term)
by multiplying both by this correction factor. Often written ε̂ , where 0 < ε̂  ≤
1. Originally from Greenhouse & Geisser (1959).

• Heterogeneity of variance. Opposite of homogeneity of variance. When vari-
ances for different treatments are not the same.

• Hierarchical design. One in which one variable is nested within a second,
which is itself nested within a third. A doubly-nested design (such as the split-
split plot design) is the simplest form of hierarchical designs. They’re complex.

• Homogeneity of variance. When a set of variances are all equal. If you per-
form an ANOVA with a factor with a levels, the homogeneity of variance as-

sumption is that 222
2

2
1 ea σσσσ ==== … , where 2

eσ  is the error variance.

• Huynh–Feldt correction/epsilon. If the sphericity assumption is violated in an
ANOVA involving within-subjects factors, you can correct the df for any term
involving the WS factor (and the df of the corresponding error term) by multi-
plying both by this correction factor. Often written ε~ , where 0 < ε~  ≤ 1. Origi-
nally from Huynh & Feldt (1970).

• Independent variable. The variables thought to be influencing the dependent
variable(s). In experiments, independent variables are manipulated. In correla-
tional studies, independent variables are observed. (The advantage of the ex-
periment is the ease of making causal inferences.)

• Interaction. There is an interaction between factors A and B if the effect of
factor A depends on the level of factor B, or vice versa. For example, if your
dependent variable is engine speed, and your factors are ‘presence of spark
plugs (Y/N)’ (A) and ‘presence of petrol (Y/N)’ (B), you will find an interac-
tion such that factor A only influences engine speed at the ‘petrol present’ level
of B; similarly, factor B only influences engine speed at the ‘spark plugs pres-
ent’ level of B. This is a binary example, but interactions need not be. Compare
main effect, simple effect.

• Intercept. The contribution of the grand mean to the observations. See p. 65.
The F test on the intercept term (MSintercept/MSerror) tests the null hypothesis that
the grand mean is zero.

• Level (of a factor). One of the values that a discrete predictor variable (factor)
can take. For example, the factor Weekday might have five levels — Monday,
Tuesday, Wednesday, Thursday, Friday. We might write the factor as Weekday5

in descriptions of ANOVA models (as in ‘Tedium = Drowsiness2 × Weekday5 ×
S’), or write the levels themselves as Weekday1 …Weekday5.

• Levene’s test (for heterogeneity of variance). Originally from Levene (1960).
Tests the assumption of homogeneity of variance. If Levene’s test produces a
‘significant’ result, the assumption of homogeneity of variance cannot be made
(this is generally a Bad Thing and suggests that you might need to transform
your data to improve the situation; see p. 34).
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• Liberal. Apt to give p values that are too small.
• Linear contrasts. Comparisons between linear combinations of different

groups, used to test specific hypotheses. See p. 75→.
• Linear regression. Predicting Y from X using the equation of a straight line:

abXY +=ˆ . May be performed with regression ANOVA.
• Logistic regression. See Howell (1997, pp. 548-558). A logistic function is a

sigmoid (see www.mathworld.com). If your dependent variable is dichotomous
(categorial) but ordered (‘flight on time’ versus ‘flight late’, for example) and
you wish to predict this (for example, by pilot experience), a logistic function is
often better than a straight line. It reflects the fact that the dichotomy imposes a
cutoff on some underlying continuous variable (e.g. once your flight delay in
seconds — continuous variable — reaches a certain level, you classify the flight
as late — dichotomous variable). Dichotomous variables can be converted into
variables suitable for linear regression by converting the probability of falling
into one category, P(flight late), into the odds of falling into that category, using

)(

)(
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AP

AP

¬
= , and then into the log odds, using the natural (base e) logarithm

loge(odds) = ln(odds). The probability is therefore a logistic function of the log

odds: 
)oddsln(
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e

+
= , so performing a linear regression on the log

odds is equivalent to performing a logistic regression on probability. This is
pretty much what logistic regression does, give or take some procedural wrin-
kles. Odds ratios (likelihood ratios), the odds for one group divided by the odds
for another group, emerge from logistic regression in the way that slope esti-
mates emerge from linear regression, but the statistical tests involved are differ-
ent. Logistic regression is a computationally iterative task; there’s no simple
formula (the computer works out the model that best fits the data iteratively).

• Main effect. A main effect is an effect of a factor regardless of the other fac-
tor(s). Compare simple effect; interaction.

• MANCOVA. Multivariate analysis of covariance; see MANOVA and ANCOVA.
• MANOVA. Multivariate ANOVA — ANOVA that deals with multiple de-

pendent variables simultaneously. Not covered in this document. For example,
if you think that your treatment has a bigger effect on dependent variable Y2

than on variable Y1, how can you see if that is the case? Certainly not by making
categorical decisions based on p values (significant effect on Y1, not significant
effect on Y2 — this wouldn’t mean that the effect on Y1 and Y2 were signifi-
cantly different!). Instead, you should enter Y1 and Y2 into a MANOVA.

• Mauchly’s test (for sphericity of the covariance matrix). Originally from
Mauchly (1940). See sphericity, covariance matrix, and p. 25.

• Mean square (MS). A sum of squares (SS) divided by the corresponding num-
ber of degrees of freedom (df), or number of independent observations upon
which your SS was based. This gives you the mean ‘squared deviation from the
mean’, or the ‘mean square’. Effectively, a variance.

• Mixed model. An ANOVA model that includes both between-subjects and
within-subjects predictor variables. Alternatively, one that includes both fixed
and random factors. The two uses are often equivalent in practice, since Sub-
jects is usually a random factor.

• Multiple regression. Predicting a dependent variable on the basis of two or
more continuous variables. Equivalent to ANOVA with two or more covariates.

• Nested design. An ANOVA design in which variability due to one factor is
‘nested’ within variability due to another factor. For example, if one were to
administer four different tests to four school classes (i.e. a between-groups fac-
tor with four levels), and two of those four classes are in school A, whereas the
other two classes are in school B, then the levels of the first factor (four differ-
ent tests) would be nested in the second factor (two different schools). A very
common example is a design with one between-subjects factor and one within-
subjects factor, written A × (U × S); variation due to subjects is nested within
variation due to A (or, for short-hand, S is nested within A), because each sub-
ject is only tested at one level of the between-subjects factor(s). We might write
this S/A (‘S is nested within A’); SPSS uses the alternative notation of S(A).
See also doubly-nested design.
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• Nonadditive model. In within-subjects ANOVA, a structural model that allows
that the effects of within-subjects treatments can differ across subjects.

• Null hypothesis. For a general discussion of null hypotheses, see handouts at
www.pobox.com/~rudolf/psychology. In a one-way ANOVA, when you test
the main effect of a factor A with a levels, your null hypothesis is that µ1 = µ2 =
… = µa. If you reject this null hypothesis (if your F ratio is large and signifi-
cant), you conclude that the effects of all a levels of A were not the same. But if
there are >2 levels of A, you do not yet know which levels differed from each
other; see post hoc tests.

• One-way ANOVA. ANOVA with a single between-subjects factor.
• Order effects. See within-subjects.
• Overparameterized model. A way of specifying a general linear model design

matrix in which a separate predictor variable is created for each group identified
by a factor. For example, to code Sex, one variable would be created in which
males score 1 and females score 0, and another variable would be created in
which males score 0 and females score 1. These two variables contain mutually
redundant information: there are more predictor variables than are necessary to
determine the relationship of a set of predictors to a set of dependent variables.
Compare sigma-restricted model.

• Planned contrasts. Linear contrasts run as a priori tests.
• Polynomial ANCOVA. An ANCOVA in which a nonlinear term is used as a

predictor variable (such as x2, x3…, rather than the usual x). See Myers & Well
(1995, p. 460).

• Post hoc tests. Statistical tests you run after an ANOVA to examine the nature
of any main effects or interactions you found. For example, if you had an
ANOVA with a single between-subjects factor with three levels,
sham/core/shell, and you found a main effect of this factor, was this due to a
difference between sham and core subjects? Sham and shell? Shell and core?
Are all of them different? There are many post hoc tests available for this sort of
purpose. However, there are statistical pitfalls if you run many post-hoc tests;
you may make Type I errors (see handouts at
www.pobox.com/~rudolf/psychology) simply because you are running lots of
tests. Post hoc tests may include further ANOVAs of subsets of your original
data — for example, after finding a significant Group × Difficulty interaction,
you might ask whether there was a simple effect of Group at the ‘easy’ level of
the Difficulty factor, and whether there was a simple effect of Group at the ‘dif-
ficult’ level of the Difficulty factor (see pp. 20, 39→).

• Power of an ANOVA. Complex to work out. But things that increase the ex-
pected F ratio for a particular term if the null hypothesis is false increase power,

and 
predictorerror

errorpredictor

error

predictor

SS

SS

MS

MS

df

df
F

×
×

== . Bigger samples contribute to a larger

df for your error term; this therefore decreases MSerror and increases the ex-
pected F if the null hypothesis is false, and this therefore increases your power.
The larger the ratio of E(MStreatment) to E(MSerror), the larger your power. Some-
times two different structural models give you different EMS ratios; you can use
this principle to find out which is more powerful for detecting the effects of a
particular effect (see p. 73→). For references to methods of calculating power
directly, see p. 102.

• Predictor variable. Factors and covariates: things that you use to predict your
dependent variable.

• Pseudoreplication. What you do when you analyse correlated data without ac-
counting for the correlation. A Bad Thing — entirely Wrong. For example, you
could take 3 subjects, measure each 10 times, and pretend that you had 30 inde-
pendent measurements. No, no, no, no, no. Account for the correlation in your
analysis (in this case, by introducing a Subject factor and using an appropriate
ANOVA design with a within-subjects factor).

• Random factor. A factor whose levels we have sampled at random from many
possible alternatives. For example, Subjects is a random factor — we pick our
subjects out of a large potential pool, and if we repeat the experiment, we may
use different subjects. Compare fixed factor and see p. 31.
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• Regression ANOVA. Performing linear regression using ANOVA. A simple
linear regression is an ANOVA with a single covariate (i.e. ANCOVA) and no
other factors.

• Repeated measures. Same as within-subjects. ‘Repeated measures’ is the more
general term — within-subjects designs involve repeated measurements of the
same subject, but things other than subjects can also be measured repeatedly. In
general, within-subjects/repeated-measures analysis is to do with accounting
for relatedness between sets of observations above that you’d expect by chance.
Repeated measurement of a subject will tend to generate data that are more
closely related (by virtue of coming from the same subject) than data from dif-
ferent subjects.

• Robust. A test that gives correct p values even when its assumptions are vio-
lated to some degree (‘this test is fairly robust to violation of the normality as-
sumption…’).

• Sequence effects. See within-subjects.
• Sigma-restricted model. A way of specifying a general linear model in which

a categorical variable with k possible levels is coded in a design matrix with k –
1 variables. The values used to code membership of particular groups sum to
zero. For example, to code Sex, one variable would be created in which males
score +1 and females –1. Compare overparameterized model.

• Simple effect. An effect of one factor considered at only one level of another
factor. A simple effect of A at level 2 of factor B is written ‘A at B2’ or ‘A/B2’.
See main effect, interaction, and pp. 20, 39→.

• Source of variance (SV). Something contributing to variation in a dependent
variable. Includes predictor variables and error variability.

• Sphericity assumption. An important assumption applicable to within-subjects
(repeated measures) ANOVA. Sphericity is the assumption of homogeneity of
variance of difference scores. Suppose we test 5 subjects at three levels of A.
We can therefore calculate three sets of difference scores (A3 – A2), (A2 – A1),
and (A3 – A1), for each subject. Sphericity is the assumption that the variances
of these difference scores are the same. See p. 25→.

• Standard deviation. The square root of the variance.
• Structural model. An equation giving the value of the dependent variable in

terms of sources of variability including predictor variables and error variabil-
ity.

• Sum of squares (SS). In full, the sum of the squared deviations from the mean.
See variance. Sums of squares are used in preference to actual variances in
ANOVA, because sample sums of squares are additive (you can add them up
and they still mean something) whereas sample variances are not additive unless
they’re based on the same number of degrees of freedom.

• t test, one-sample. Equivalent to testing MSintercept/MSerror with an ANOVA

with no other factors (odd as that sounds). 2
,1 kk tF =  and kk Ft ,1= . See inter-

cept.
• t test, two-sample, paired. Equivalent to ANOVA with one within-subjects

factor with two levels. 2
,1 kk tF =  and kk Ft ,1= .

• t test, two-sample, unpaired. Equivalent to ANOVA with one between-

subjects factor with two levels. 2
,1 kk tF =  and kk Ft ,1= .

• Variance. To calculate the variance of a set of observations, take each observa-
tion and subtract it from the mean. This gives you a set of deviations from the
mean. Square them and add them up. At this stage you have the sum of the
squared deviations from the mean, also known as the sum of squares (SS). Di-
vide by the number of independent observations you have (n for the population
variance; n–1 for the sample variance; or, in general, the number of degrees of
freedom) to get the variance. See the Background Knowledge handouts at
www.pobox.com/~rudolf/psychology.

• Within-subjects (factor or covariate). See also repeated measures. If a score is
obtained for every subject at each level of an independent variable, the inde-
pendent variable is called a within-subjects factor. See also between-subjects.
The advantage of a within-subjects design is that the different treatment condi-
tions are automatically matched on many irrelevant variables — all those that
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are relatively unchanging characteristics of the subject (e.g. intelligence, age).
However, the design requires that each subject is tested several times, under dif-
ferent treatment conditions. Care must be taken to avoid order, sequence or car-
ryover effects — such as the subject getting better through practice, worse
through fatigue, drug hangovers, and so on. If the effect of a treatment is per-
manent, it is not possible to use a within-subjects design. You could not, for ex-
ample, use a within-subjects design to study the effects of parachutes (versus no
parachute) on mortality rates after falling out of a plane.
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10 Further reading

• A very good statistics textbook for psychology is Howell (1997).
• Abelson (1995) examines statistics as an technique of argument and is very

clear on the logical principles and some of the philosophy of statistics.
• Keppel (1991) is a fairly hefty tome on ANOVA techniques. Winer (1991) is

another monster reference book. Neither are for the faint-hearted.
• Myers & Well (1995) is another excellent one. Less fluffy than Howell (1997)

but deals with the issues head on.

There is also an excellent series of Statistics Notes published by the British Medical
Journal, mostly by Bland and Altman. A list is available at

www.mbland.sghms.ac.uk/pbstnote.htm

and the articles themselves are available online from

www.bmj.com

This series includes the following:

• The problem of the ‘unit of analysis’ (Altman & Bland, 1997). Correlation and
regression when repeated measurements are taken, and the problem of pseu-
doreplication (Bland & Altman, 1994a). The approach one should take to meas-
ure correlation within subjects (Bland & Altman, 1995a) and correlation be-
tween subjects (Bland & Altman, 1995b).

• Why correlation is utterly inappropriate for assessing whether two ways of
measuring something agree (Bland & Altman, 1986).

• Generalization and extrapolation (Altman & Bland, 1998).
• Why to randomize (Altman & Bland, 1999b), how to randomize (Altman &

Bland, 1999a), and how to match subjects to different experimental groups
(Bland & Altman, 1994b).

• Blinding (Day & Altman, 2000; Altman & Schulz, 2001).
• Absence of evidence is not evidence of absence — about power (Altman &

Bland, 1995).
• Multiple significance tests: the problem (Bland & Altman, 1995c).
• Regression to the mean (Bland & Altman, 1994e; Bland & Altman, 1994d).
• One-tailed and two-tailed significance tests (Bland & Altman, 1994c).
• Transforming data (Bland & Altman, 1996b) and how to calculate confidence

intervals with transformed data (Bland & Altman, 1996c; Bland & Altman,
1996a).

• ANOVA, briefly (Altman & Bland, 1996), and the analysis of interaction ef-
fects (Altman & Matthews, 1996; Matthews & Altman, 1996a; Matthews &
Altman, 1996b).

• Comparing estimates derived from separate analyses (Altman & Bland, 2003).
• Dealing with differences in baseline by ANCOVA (Vickers & Altman, 2001).

Finally, there’s an excellent on-line textbook (StatSoft, 2002):

www.statsoft.nl/textbook/stathome.html



11: Bibliography 222

11 Bibliography

Abelson, R. P. (1995). Statistics As Principled Argument, Lawrence
Erlbaum, Hillsdale, New Jersey.
Altman, D. G. & Bland, J. M. (1995). Absence of evidence is not evi-

dence of absence. British Medical Journal 311: 485.
Altman, D. G. & Bland, J. M. (1996). Comparing several groups using

analysis of variance. British Medical Journal 312: 1472-1473.
Altman, D. G. & Bland, J. M. (1997). Statistics notes. Units of analysis.

British Medical Journal 314: 1874.
Altman, D. G. & Bland, J. M. (1998). Generalisation and extrapolation.

British Medical Journal 317: 409-410.
Altman, D. G. & Bland, J. M. (1999a). How to randomise. British Medi-

cal Journal 319: 703-704.
Altman, D. G. & Bland, J. M. (1999b). Statistics notes. Treatment allo-

cation in controlled trials: why randomise? British Medical Journal
318: 1209.

Altman, D. G. & Bland, J. M. (2003). Interaction revisited: the differ-
ence between two estimates. British Medical Journal 326: 219.

Altman, D. G. & Matthews, J. N. (1996). Statistics notes. Interaction 1:
Heterogeneity of effects. British Medical Journal 313: 486.

Altman, D. G. & Schulz, K. F. (2001). Statistics notes: Concealing
treatment allocation in randomised trials. British Medical Journal
323: 446-447.

Bland, J. M. & Altman, D. G. (1986). Statistical methods for assessing
agreement between two methods of clinical measurement. Lancet i:
307-310.

Bland, J. M. & Altman, D. G. (1994a). Correlation, regression, and
repeated data. British Medical Journal 308: 896.

Bland, J. M. & Altman, D. G. (1994b). Matching. British Medical Jour-
nal 309: 1128.

Bland, J. M. & Altman, D. G. (1994c). One and two sided tests of sig-
nificance. British Medical Journal 309: 248.

Bland, J. M. & Altman, D. G. (1994d). Regression towards the mean.
British Medical Journal 308: 1499.

Bland, J. M. & Altman, D. G. (1994e). Some examples of regression
towards the mean. British Medical Journal 309: 780.

Bland, J. M. & Altman, D. G. (1995a). Calculating correlation coeffi-
cients with repeated observations: Part 1--Correlation within sub-
jects. British Medical Journal 310: 446.

Bland, J. M. & Altman, D. G. (1995b). Calculating correlation coeffi-
cients with repeated observations: Part 2--Correlation between sub-
jects. British Medical Journal 310: 633.

Bland, J. M. & Altman, D. G. (1995c). Multiple significance tests: the
Bonferroni method. British Medical Journal 310: 170.

Bland, J. M. & Altman, D. G. (1996a). Transformations, means, and
confidence intervals. British Medical Journal 312: 1079.

Bland, J. M. & Altman, D. G. (1996b). Transforming data. British Medi-
cal Journal 312: 770.

Bland, J. M. & Altman, D. G. (1996c). The use of transformation when
comparing two means. British Medical Journal 312: 1153.

Box, G. E. P. (1954). Some theorems on quadratic forms applied in the
study of analysis of variance problems: II. Effect of inequality of
variance and of correlation of errors in the two-way classification.
Annals of Mathematical Statistics 25: 484-498.

Boyd, O., Mackay, C. J., Lamb, G., Bland, J. M., Grounds, R. M. &
Bennett, E. D. (1993). Comparison of clinical information gained
from routine blood-gas analysis and from gastric tonometry for in-
tramural pH. Lancet 341: 142-146.

Cardinal, R. N., Parkinson, J. A., Djafari Marbini, H., Toner, A. J.,
Bussey, T. J., Robbins, T. W. & Everitt, B. J. (2003). Role of the
anterior cingulate cortex in the control over behaviour by Pavlovian
conditioned stimuli in rats. Behavioral Neuroscience 117: 566-587.

Cohen, J. (1988). Statistical power analysis for the behavioral sciences.
First edition, Academic Press, New York.

Day, S. J. & Altman, D. G. (2000). Statistics notes: blinding in clinical
trials and other studies. British Medical Journal 321: 504.

Field, A. P. (1998). A bluffer's guide to sphericity. Newsletter of the
Mathematical, Statistical and computing section of the British Psy-
chological Society 6: 13-22.

Frank, H. & Althoen, S. C. (1994). Statistics: Concepts and Applica-
tions, Cambridge, Cambridge University Press.

Greenhouse, S. W. & Geisser, S. (1959). On methods in the analysis of
profile data. Psychometrika 24: 95-112.

Howell, D. C. (1997). Statistical Methods for Psychology. Fourth edi-
tion, Wadsworth, Belmont, California.

Huynh, H. & Feldt, L. S. (1970). Conditions under which mean square
ratios in repeated measures designs have exact F-distributions.
Journal of the American Statistical Association 65: 1582-1589.

Keppel, G. (1982). Design and analysis: a researcher's handbook. Sec-
ond edition, Englewood Cliffs: Prentice-Hall, London.

Keppel, G. (1991). Design and analysis: a researcher's handbook. Third
edition, Prentice-Hall, London.

Levene, H. (1960). Robust tests for the equality of variance. In Contri-
butions to probability and statistics (Oklin, I., ed.). Stanford Uni-
versity Press, Palo Alto, California.

Lilliefors, H. W. (1967). On the Kolmogorov-Smirnov test for normality
with mean and variance unknown. Journal of the American Statisti-
cal Association 62: 399-402.

Matthews, J. N. & Altman, D. G. (1996a). Interaction 3: How to exam-
ine heterogeneity. British Medical Journal 313: 862.

Matthews, J. N. & Altman, D. G. (1996b). Statistics notes. Interaction 2:
Compare effect sizes not P values. British Medical Journal 313:
808.

Mauchly, J. W. (1940). Significance test for sphericity of a normal n-
variate distribution. Annals of Mathematical Statistics 11: 204-209.

Myers, J. L. & Well, A. D. (1995). Research Design and Statistical
Analysis, Lawrence Erlbaum, Hillsdale, New Jersey.

Prescott, C. E., Kabzems, R. & Zabek, L. M. (1999). Effects of fertiliza-
tion on decomposition rate of Populus tremuloides foliar litter in a
boreal forest. Canadian Journal of Forest Research 29: 393-397.

Press, W. H., Teukolsky, S. A., Vetterling, W. T. & Flannery, B. P.
(1992). Numerical Recipes in C. Second edition, Cambridge Uni-
versity Press, Cambridge, UK.

Satterthwaite, F. E. (1946). An approximate distribution of estimates of
variance components. Biometrics Bulletin 2: 110–114.

Shapiro, S. S. & Wilk, M. B. (1965). An analysis of variance test for
normality (complete samples). Biometrika 52: 591-611.

SPSS (2001). SPSS 11.0 Syntax Reference Guide (spssbase.pdf).
StatSoft (2002). Electronic Statistics Textbook

(http://www.statsoft.com/textbook/stathome.html),
Tulsa, OK.

Tangren, J. (2002). A Field Guide To Experimental Designs
(http://www.tfrec.wsu.edu/ANOVA/, 2004). Wash-
ington State University, Tree Fruit Research and Extension Center.

Vickers, A. J. & Altman, D. G. (2001). Statistics notes: Analysing con-
trolled trials with baseline and follow up measurements. British
Medical Journal 323: 1123-1124.

Winer, B. J. (1971). Statistical principles in experimental design. Sec-
ond edition, McGraw-Hill, New York.

Winer, B. J., Brown, D. R. & Michels, K. M. (1991). Statistical Princi-
ples in Experimental Design, McGraw-Hill, New York, NY.




