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Lecture 1: Measurable space, measure and probability

Random experiment: uncertainty in outcomes
): sample space or outcome space; a set containing all possible outcomes

Definition 1.1. Let F be a collection of subsets of a sample space 2. F is called a o-field
(or o-algebra) if and only if it has the following properties.

(i) The empty set ) € F.

(i) If A € F, then the complement A € F.

(iii) If A; € F,i=1,2,..., then their union UA; € F.

F is a set of sets

Two trivial examples: F contains () and € only and F contains all subsets of 2
Why do we need to consider other o-field?

F={0,A, A¢,Q}, where A C Q

C = a collection (set) of subsets of )

o(C): the smallest o-field containing C (called the o-field generated by C)
o(C) = C if C itself is a o-field

I'={F:Fisao-field on Q and C C F}

O’(C) = ﬁ]:grf

o({A}) = o({A, A7}) = o({4,Q}) = o ({4, 0}) = {0, A, A%, Q}

RF: the k-dimensional Euclidean space (R' = R is the real line)
BE: the Borel o-field on RF; B* = o(0), O is the collection of all open sets
C e B, Bo ={CNB:B e B*} is the Borel o-field on C

Measure: length, area, volume...

Definition 1.2. Let (€2, F) be a measurable space. A set function v defined on F is called
a measure if and only if it has the following properties.

(i) 0 <v(A) < oo for any A € F.

(i) v(0) = 0.

(i) If A; € F,i=1,2,..., and A;’s are disjoint, i.e., A; N A; = 0 for any ¢ # j, then

(U] =3oma)

i=1

(Q, F) a measurable space; (£2, F, ) a measure space

If v(Q2) = 1, then v is a probability measure (we usually use notation P instead of v)



A measure v may take oo as its value

(1) Forany z € R, co + =00, zo0o = o0 if x >0, xoo = —o0 if 2 < 0, and 0 0o = 0;
(2) 00+ 00 = o0;

(3) 00 = oo for any a > 0;

(4) 0o — 00 or 0o/ is not defined

Examples:

v(A) =

o AeF A0
0 A=0.

Counting measure. Let {2 be a sample space, F the collection of all subsets, and v(A) the
number of elements in A € F (v(A) = oo if A contains infinitely many elements). Then v is
a measure on F and is called the counting measure.

Lebesgue measure. There is a unique measure m on (R, B) that satisfies m([a,b]) = b —a
for every finite interval [a,b], —oo < a < b < oo. This is called the Lebesgue measure. If we
restrict m to the measurable space ([0, 1], Byo,1j), then m is a probability measure.

Proposition 1.1. Let (2, F,v) be a measure space.
(i) (Monotonicity). If A C B, then v(A) < v(B).
(ii) (Subadditivity). For any sequence Ay, A, ...,

v (OO Ai> < il/(A,)

(iii) (Continuity). If Ay C Ay C A3 C -+ (or Ay D Ay D A3 D --- and v(A4;) < 00), then

v < lim An) = lim v (A,),

n—oo n—oo

where

=1 i=1

Let P be a probability measure. The cumulative distribution function (c.d.f.) of P is defined
to be
F(s) = P((~c0,2]), #€R

Proposition 1.2. (i) Let I be a c.d.f. on R. Then

(a) F(—o0) = lim,—, o F(z) = 0;

(b) F(o0) =lim, o F(z) = 1;

(c) F is nondecreasing, i.e., Fl(x) < F(y) if z < y;

(d) F is right continuous, i.e., lim, ., ,~, F(y) = F(x).
(ii) Suppose that a real-valued function F' on R satisfies (a)-(d) in part (i). Then F' is the
c.d.f. of a unique probability measure on (R, B).



Lecture 2: Product measure, measurable function and distribution

Product space

T =A1,...,k}, k is finite or co

I';, 2 € Z, are sets

[Liez Ti =Ty x -« x Ty ={(ay,...,ax) : a; € I';,i € T}
RXxR=R?>®, RxRxR=R>

Let (2, F;), i € Z, be measurable spaces

[I;cz Fi is not necessarily a o-field

0 (ITiez Fi) is called the product o-field on the product space [T;er §2;

(ITiez i, 0 (ITiez Fi)) is denoted by [T;ez(2, Fi)

Example: [,—;__x(R,B) = (R*, BY)

.....

Product measure

Consider a rectangle [ay, bi] X [ag, ba] C R?. The usual area of [ay,b;] X [ag, bo] is

(b1 — a1)(bg — az) = m([ay, bi])m([az, ba])

Is m([aq, b1])m([az, bo]) the same as the value of a measure defined on the product o-field?

A measure v on (2, F) is said to be o-finite if and only if there exists a sequence {A;, Ao, ...}
such that UA; = Q and v(A;) < oo for all ¢

Any finite measure (such as a probability measure) is clearly o-finite

The Lebesgue measure on R is o-finite, since R = UA,, with A, = (-n,n),n=1,2, ...

The counting measure in is o-finite if and only if 2 is countable

Proposition 1.3 (Product measure theorem). Let (£, F;,v;), i = 1,...,k, be measure
spaces with o-finite measures, where £ > 2 is an integer. Then there exists a unique o-finite
measure on the product o-field o(F; X - - - X Fy), called the product measure and denoted by
V1 X -+ X Vg, such that

vp X o X (A X X Ag) = 1 (Ar) - ve(Ag)
forall A; € F,i=1,.. k.
Let P be a probability measure on (R*, B¥). The c.d.f. (or joint c.d.f.) of P is defined by
F(z1,...,x) = P((—o00,m1] X -+ X (=00, 2%]), 2, €R

There is a one-to-one correspondence between probability measures and joint c.d.f.’s on RF

If F(xq,...,xx) is a joint c.d.f., then

Fi(z) = ~ lim F(xy, ., @i 1, 2,201, ..., Ty

is a c.d.f. and is called the ¢th marginal c.d.f.



Marginal c.d.f.’s are determined by their joint c.d.f.
But a joint c.d.f. cannot be determined by £ marginal c.d.f.’s.
If
F(xlv a3 flfk) = Fl(xl) e Fk(xk)7 (xh ,I’k) S Rkv

then the probability measure corresponding to F'is the product measure P; X

P; being the probability measure corresponding to F;
Measurable function

f+ a function from Q2 to A (often A = R¥)
Inverse image of B C A under f:

[7(B)={feBt={weQ: f(w) € B}.

The inverse function f~! need not exist for f~1(B) to be defined.
F1(BE) = (S~ (B))* for any B C A,

Y UB;)) =Uf~Y(B;) for any B; C A, i=1,2,...

Let C be a collection of subsets of A. Define f~1(C) = {f~1(C) : C € C}

-+ X P, with

Definition 1.3. Let (2, F) and (A,G) be measurable spaces and f a function from €
to A. The function f is called a measurable function from (2, F) to (A,G) if and only if

fYGg)c F.

If f is measurable from (2, F) to (A,G), then f~!(G) is a sub-o-field of F (verify). It is

called the o-field generated by f and is denoted by o(f).

If f is measurable from (2, F) to (R, B), it is called a Borel function or a random variable
A random vector (X7, ..., X,,) is measurable from (2, F) to (R", B") (each X; is a random

variable)

Examples
If F is the collection of all subsets of 2, then any function f is measurable
Indicator function for A C §:

1 weA
[A(w){
0 wé¢A.

For any B C R,

0 0€B,1¢ B
A 0¢B/1eB
A 0eB,1¢B
Q 0e B,1€B.

Then, o(l4) = {0, A, A%, Q} and I, is Borel iff A € F
o(f) is much simpler than F

I,'(B) =




Simple function
k
p(w) =D ails,(w),
i=1

where Aq, ..., A, are measurable sets on 2 and aq, ..., a, are real numbers. Let A4, ..., A, be
a partition of €2, i.e., A;’s are disjoint and A; U ---U Ay = 2. Then the simple function ¢
with distinct a;’s exactly characterizes this partition and o(¢) = o({Aq, ..., Ar}).

Proposition 1.4. Let (2, F) be a measurable space.

(i) f is Borel if and only if f~*(a,00) € F for all a € R.

(ii) If f and g are Borel, then so are fg and af + bg, where a and b are real numbers; also,
f/g is Borel provided g(w) # 0 for any w € €.

(iii) If fi, fo,... are Borel, then so are sup,, f,, inf, f,, limsup,, f,, and liminf, f,. Further-
more, the set

A= {w € lim fn(w) exists}

is an event and the function

lim, o folw) weA
h(w) =
{ filw) wi A
is Borel.
(iv) Suppose that f is measurable from (€2, F) to (A,G) and g is measurable from (A, G) to
(A, H). Then the composite function g o f is measurable from (Q, F) to (A, H).

(v) Let ©Q be a Borel set in RP. If f is a continuous function from 2 to R?, then f is
measurable.

Distribution (law)
Let (2, F,v) be a measure space and f be a measurable function from (2, F) to (A, G). The

induced measure by f, denoted by v o f~!, is a measure on G defined as

vof(B)=v(feB)=v(f(B), Beg

If v = P is a probability measure and X is a random variable or a random vector, then
P o X~1is called the law or the distribution of X and is denoted by Px.
The c.d.f. of Px is also called the c.d.f. or joint c.d.f. of X and is denoted by Fx.

Examples 1.3 and 1.4



Lecture 3: Integration

Integration is a type of “average”.

Definition 1.4
(a) The integral of a nonnegative simple function ¢ w.r.t. v is defined as

/gpdu = éaiu(A,-).

(b) Let f be a nonnegative Borel function and let Sy be the collection of all nonnegative
simple functions satisfying ¢(w) < f(w) for any w € Q. The integral of f w.r.t. v is defined

- /fduzsup{/apdl/:apeé’f}.

(Hence, for any Borel function f > 0, there exists a sequence of simple functions @1, ¢o, ...
such that 0 < ¢; < f for all ¢ and lim,, ., [ p,dv = [ fdv.)
(c) Let f be a Borel function,

fi(w) = max{f(w),0}

be the positive part of f, and

f-(w) = max{—f(w),0}

be the negative part of f. (Note that f, and f_ are nonnegative Borel functions, f(w) =
fi(w) = f-(w), and | f(w)| = f+(w)+ f-(w).) We say that [ fdv exists if and only if at least
one of [ fidv and [ f_dv is finite, in which case

/fdu:/f+du—/f_dz/.

When both [ fidv and [ f_dv are finite, we say that f is integrable. Let A be a measurable
set and I4 be its indicator function. The integral of f over A is defined as

/Ade:/IAfdl/.

A Borel function f is integrable if and only if | f| is integrable.

For convenience, we define the integral of a measurable function f from (Q, F,v) to (R, B),
where R = RU{—00,00}, B=o(BU {{c},{—0}}). Let A, ={f =oc} and A_ = {f =
—oo}. If v(Ay) = 0, we define [ fidv to be [ I fidv; otherwise [ fidy = co. [ f_dv is
similarly defined. If at least one of [ f.dv and [ f_dv is finite, then [ fdv = [ fodv— [ f_dv
is well defined.



Notation for integrals

Jfdv = o fdv =] f(w)dv= [ fw)dv(w) = [ f(w)v(dw).

In probability and statistics, [ XdP = EX = E(X) and is called the expectation or expected
value of X.

If F is the c.d.f. of P on (RF, B¥), [ f(2)dP = [ f(x)dF(z) = [ fdF.

Example 1.5. Let 2 be a countable set, F be all subsets of ), and v be the counting
measure For any Borel function f,

[ fiv =¥ f(w).

weN

Example 1.6. If 2 = R and v is the Lebesgue measure, then the Lebesgue integral of f
over an interval [a, b] is written as [, ;; f(x)dx = % f(z)dz, which agrees with the Riemann
integral in calculus when the latter is well defined. However, there are functions for which
the Lebesgue integrals are defined but not the Riemann integrals.

Properties

Proposition 1.5 (Linearity of integrals). Let (£2, F,v) be a measure space and f and g be
Borel functions.

(i) If [ fdv exists and a € R, then [(af)dv exists and is equal to a [ fdv.

(ii) If both [ fdv and [ gdv exist and [ fdv + [ gdv is well defined, then [(f + g)dv exists
and is equal to [ fdv + [ gdv.

A statement holds a.e. v (or simply a.e.) if it holds for all w in N¢ with ¥(N) =0. If vis a
probability, then a.e. may be replaced by a.s.

Proposition 1.6. Let (2, F,v) be a measure space and f and g be Borel.

(i) If f < g a.e., then [ fdv < [ gdv, provided that the integrals exist.

(ii) If f > 0 a.e. and [ fdv =0, then f =0 a.e.

Proof. (i) Exercise.

(i) Let A = {f > 0} and A, = {f > n"'}, n =1,2,.... Then A, C A for any n and
lim, 0o An = UA,, = A (why?). By Proposition 1.1(iii), lim, . ¥(A,) = v(A). Using part
(i) and Proposition 1.5, we obtain that

n~'v(A,) = /n_IIAndl/ < /f]AndV < /fdl/ =0
for any n. Hence v(A) =0 and f =0 a.e.

Consequences:

|J fdv| < | fldv

If f>0a.e.,then [ fdv >0

If f=ga.e.,then [ fdv= [gdv.



Lecture 4: Convergence theorems, change of variable, and Fubini’s theorem

{fn:n=1,2,...}: asequence of Borel functions. Can we exchange the limit and integration,
ie.,

[ i o= Jin [ fudo?

Example 1.7. Consider (R,B) and the Lebesgue measure. Define f,(z) = nljg,-1(z),
n =1,2,.... Then lim,,_., f,(x) = 0 for all z but x = 0. Since the Lebesgue measure of a
single point set is 0, lim,, .o, fu(z) = 0 a.e. and [lim,, .., f,(x)dxr = 0. On the other hand,
[ fu(x)dx =1 for any n and, hence, lim,, ., [ fn(x)dx = 1.

Sufficient conditions

Theorem 1.1. Let fi, f, ... be a sequence of Borel functions on (€, F,v).

(i) (Fatou’s lemma). If f,, > 0, then [liminf, f,dv <liminf, [ f,dv.

(ii) (Dominated convergence theorem). If lim, ., f, = f a.e. and there exists an integrable
function g such that |f,| < g a.e., then [lim, . fodv =1lim, . [ fu.dv.

(iii) (Monotone convergence theorem). If 0 < f; < fo < --- and lim,,_ f, = f a.e., then
Jlim, o frdv =1lim, o [ fudv.

Proof. (See the textbook).

Note

(a) To apply each part of the theorem, you need to check the conditions.

(b) If the conditions are not satisfied, you cannot apply the theorem, but it does not imply
that you cannot exchange the limit and integration.

Example: Let f,(r) = 2, v € Q@ =[0,1], n = 1,2, ... Then lim, f,(z) = 1. To apply the

DCT, note that 0 < f,,(z) < 1. To apply the MCT, note that 0 < f,,(z) < f,11(x). Hence,
lim, [ fu(z)dz = [lim, f,(z)dz = [dz = 1.

Example 1.8 (Interchange of differentiation and integration). Let (£, F,v) be a measure
space and, for any fixed § € R, let f(w, @) be a Borel function on €. Suppose that df(w, 8)/00
exists a.e. for § € (a,b) C R and that |0f(w,0)/00| < g(w) a.e., where g is an integrable
function on 2. Then, for each 6 € (a,b), Of(w,8)/00 is integrable and, by Theorem 1.1(ii),

%/f(w,@)duz/af(g;’ e)du.

Theorem 1.2 (Change of variables). Let f be measurable from (2, F,v) to (A, G) and g be
Borel on (A, G). Then

|gofiv= [ gawe s,

i.e., if either integral exists, then so does the other, and the two are the same.

For Riemann integrals, [g(y)dy = [ g(f(x))f (z)dz, y = f(x).

For a random variable X on (Q, F, P), EX = [ XdP = [, xdPx, Px = Po X!
Let Y be a random vector from  to R¥ and ¢ be Borel from R* to R.

1



Eg(Y) = fp 2dPyy) = Jr 9(y)dPy
Example: Y = (X1, Xs) and g(Y) = X; + Xs.

E(Xl —|—X2) = EX1 + EX2 (Why7) = f LL’dPXl + fRLL’dPXQ.

We need to handle two integrals involving Px, and Px,. On the other hand,

E(X;+ Xs) = [z ®dPx, tx,, which involves one integral w.r.t. Px, x,. Unless we have some
knowledge about the joint c.d.f. of (X;, X5), it is not easy to obtain Px, . x,.

Iterated integration on a product space

Theorem 1.3 (Fubini’s theorem). Let v; be a o-finite measure on (£;, F;), i = 1,2, and let
f be a Borel function on [J% (£, F;) whose integral w.r.t. v; x v, exists. Then

glwr) = | florw)dng

exists a.e. o and defines a Borel function on 2, whose integral w.r.t. vy exists, and

/leﬂ2 flwi,we)dyy X vy = /Q2 [/Ql f(wl,wz)dyl} vy,

Note: If f > 0, then [ fdv, x v, always exists. Extensions to [T*_, (Q;, F;) is straightforward.

Fubini’s theorem is very useful in

(1) evaluating multi-dimensional integrals (exchanging the order of integrals);

(2) proving a function is measurable;

(3) proving some results by relating a one dimensional integral to a multi-dimensional integral

Example: Exercise 47
Let X and Y be random variables such that the joint c.d.f. of (X,Y) is Fx(z)Fy(y), where
Fx and Fy are marginal c.d.f.’s. Let Z = X + Y. Show that

Fy(z) = / Fy(z — 2)dFx(z).
Note that
Fu(z) = / . AFx(@)dFy ()

-/ ( /y . dFy(y)) dFy(z)
— / Fy(z — 2)dFy(z),

where the second equality follows from Fubini’s theorem.

Example 1.9. Let ; = Qy = {0,1,2,...}, and v; = v, be the counting measure. A function
f on € x Qy defines a double sequence. If [ fdiy X vy exists, then

/fdyl x = iif(z?i) = iif(i,j)
i=0j=0 j=01i=0

(by Theorem 1.3 and Example 1.5). Thus, a double series can be summed in either order, if
it is well defined.

Proof of Fubini’s theorem



Lecture 5: Radon-Nikodym derivative

Let (2, F,v) be a measure space and f be a nonnegative Borel function. Note that
AMA) = / fdv, AeF
A

is a measure satisfying

v(A) =0 implies A(A)=0.
(we say A is absolutely continuous w.r.t. v and write A < v).
Comupting A(A) can be done through integration w.r.t. a well-known measure
A < v is also almost sufficient.

Theorem 1.4 (Radon-Nikodym theorem). Let v and A be two measures on (2, F) and v
be o-finite. If A < v, then there exists a nonnegative Borel function f on {2 such that

AA) = /A fdv, AeF.

Furthermore, f is unique a.e. v, i.e., if A\(A) = [, gdv for any A € F, then f =g a.e. v.

The function f is called the Radon-Nikodym derivative or density of A w.r.t. v and is denoted
by d\/dv.

Consequence: If f is Borel on (2, F) and [, fdv =0 for any A € F, then f =0 a.e.

If [ fdv =1 foran f > 0 a.e. v, then X is a probability measure and f is called its probability
density function (p.d.f.) w.r.t. v. For any probability measure P on (R*, B¥) corresponding
to a c.d.f. F' or a random vector X, if P has a p.d.f. f w.r.t. a measure v, then f is also
called the p.d.f. of F or X w.r.t. v.

Example 1.10 (Discrete c.d.f. and p.d.f.). Let a; < as < --- be a sequence of real numbers

and let p,, n = 1,2, ..., be a sequence of positive numbers such that >>>°, p, = 1. Then

F(ZL’) . Zzﬂ:lpi a, <x < Qpt+1, N = 1,2,
0 —0 < x<a.

is a stepwise c.d.f. It has a jump of size p, at each a, and is flat between a, and a,1,
n=1,2,.... Such a c.d.f. is called a discrete c.d.f. The corresponding probability measure is

i:a; €A

where F = the set of all subsets (power set).
Let v be the counting measure on the power set. Then

P(A) :/Afdu: S fla), AcQ,

a;€EA

1



where f(a;) = p;, i = 1,2,.... That is, f is the p.d.f. of P or F w.r.t. v. Hence, any discrete
c.d.f. has a p.d.f. w.r.t. counting measure. A p.d.f. w.r.t. counting measure is called a discrete
p.d.f.

Example 1.11. Let F be a c.d.f. Assume that F' is differentiable in the usual sense in
calculus. Let f be the derivative of F'. From calculus,
F@)= [ flydy, zeR.
Let P be the probability measure corresponding to F'.
Then P(A) = [, fdm for any A € B, where m is the Lebesgue measure on R.
f is the p.d.f. of P or F' w.r.t. Lebesgue measure.
Radon-Nikodym derivative is the same as the usual derivative in calculus.

A continuous c.d.f. may not have a p.d.f. w.r.t. Lebesgue measure.

A necessary and sufficient condition for a c.d.f. F' having a p.d.f. w.r.t. Lebesgue measure is
that F'is absolute continuous in the sense that for any € > 0, there exists a 6 > 0 such that
for each finite collection of disjoint bounded open intervals (a;, b;), >-(b; — a;) < ¢ implies
S[F(b;) — Fl(a;)] <e.

Absolute continuity is weaker than differentiability, but is stronger than continuity.

Note that every c.d.f. is differentiable a.e. Lebesgue measure (Chung, 1974, Chapter 1).

A p.d.f. w.r.t. Lebesgue measure is called a Lebesgue p.d.f.

Proposition 1.7 (Calculus with Radon-Nikodym derivatives). Let v be a o-finite measure
on a measure space (€2, F). All other measures discussed in (i)-(iii) are defined on (€2, F).
(i) If A is a measure, A < v, and f > 0, then

fd\ = f@dz/.
/ /du

(Notice how the dv’s “cancel” on the right-hand side.)
(i) If \;, i = 1,2, are measures and \; < v, then \; + Ay < v and

A+ X)) dA d)

2 = I + T a.e. v.
(iii) (Chain rule). If 7 is a measure, A is a o-finite measure, and 7 < A < v, then
dr  drd\
= g e

In particular, if A < v and v < A (in which case X\ and v are equivalent), then

dx  (dv\7 \
- =\ a.e. v or \.
(iv) Let (€, F;,v;) be a measure space and v; be o-finite, i = 1,2. Let \; be a o-finite
measure on (;, F;) and \; < v, i = 1,2. Then \; X A\g < 11 X 15 and

d(>\1 X >\2) d)\l d)\g

d(vy X 1) (Wi, wp) = d—m(wl)d—w(wz) a.e. vy X s,



Lecture 6: p.d.f. and transformation

Example 1.12. Let X be a random variable on (2, F, P) whose c.d.f. Fx has a Lebesgue
p.df. fx and Fx(c) < 1, where ¢ is a fixed constant. Let Y = min{X, c}, i.e.; Y is the
smaller of X and c. Note that Y™!((—o0,z]) = Q if 2 > cand Y ((—o0, 2]) = X ((c0, z])
if x < c. Hence Y is a random variable and the c.d.f. of Y is

1 T >c
FY(x){

Fx(z) z<ec

This c.d.f. is discontinuous at ¢, since Fx(c) < 1. Thus, it does not have a Lebesgue p.d.f. It
is not discrete either. Does Py, the probability measure corresponding to Fy, have a p.d.f.
w.r.t. some measure? Define a probability measure on (R, B), called point mass at ¢, by

1 ceA
d.(A) = . /A AeB
C )

Then Py < m + 9., where m is the Lebesgue measure, and the p.d.f. of Py is

0 T >c

dPy
=9 1-Fx(c) z=c

dim+ 30
fx(z) x <c.

Example 1.14. Let X be a random variable with c.d.f. F'x and Lebesgue p.d.f. fx, and let
Y = X2 Since Y !((—o0, z]) is empty if z < 0 and equals Y 1([0, z]) = X ' ([—/z, /7 ]) if
x >0, the c.d.f. of Y is

Fy(r) = PoY ((~o0,1])

= PoX7Y([-va V7))
Fx(VE) — Fx(~V/7)

if x > 0 and Fy(z) =0 if x < 0. Clearly, the Lebesgue p.d.f. of Fy is

fr () fx(VE) + fx(=vV) (0,00 ().

1
Nz
In particular, if

1
fx(@) = —z=e",

V2r

which is the Lebesgue p.d.f. of the standard normal distribution N (0, 1), then

1 -z
fr(z) = \/ﬁe /2[(0700)(95%

—_



which is the Lebesgue p.d.f. for the chi-square distribution x? (Table 1.2). This is actually
an important result in statistics.

Proposition 1.8. Let X be a random k-vector with a Lebesgue p.d.f. fx and let Y = g(X),
where g is a Borel function from (R¥, B¥) to (R¥, B¥). Let A, ..., A, be disjoint sets in B*
such that R* — (A; U---U A,,) has Lebesgue measure 0 and g on A; is one-to-one with a
nonvanishing Jacobian, i.e., the determinant Det(0g(z)/0z) # 0 on A;, j = 1,...,m. Then
Y has the following Lebesgue p.d.f.:

Fole) = 3 [Det (9h, (x)/01) | Fx (hy(x))

j=1
where h; is the inverse function of g on A;, 7 =1,...,m.

In Example 1.14, A; = (—00,0), Ay = (0,0), g(z) = 2%, hi(x) = —\/z, ho(x) = /7, and
|dhy(x)/dz] = 1/(2V/7).

Example 1.15. Let X = (X3, X5) be a random 2-vector having a joint Lebesgue p.d.f. fx.
Consider first the transformation g(x) = (21, 1 + 22). Using Proposition 1.8, one can show
that the joint p.d.f. of g(X) is

fg(X)(Ilay) = fX(Il'l,y - Il),

where y = x1 + x2 (note that the Jacobian equals 1). The marginal p.d.f. of Y = X; + X,
is then

fry) = /fx(ifl,y — x1)dzy.

In particular, if X; and X5 are independent, then

fry) = /fX1 (1) fx, (y — 21)d7.

Next, consider the transformation h(zy,zs) = (z1/72,2), assuming that X5 # 0 a.s. Using
Proposition 1.8, one can show that the joint p.d.f. of h(X) is

Trnx) (2, 2) = |22 fx (2202, 72),
where z = x1/x9. The marginal p.d.f. of Z = X;/X, is
f(2) = [ 1ol fx(zz, 22)das.

In particular, if X; and X5 are independent, then

12(2) = [ |l fx, (222) e (22) .

Example 1.16 (t-distribution and F-distribution). Let X; and X, be independent random
variables having the chi-square distributions x2 and x2, (Table 1.2), respectively. The p.d.f.
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OfZ:Xl/XQ is

22 0,000 (2) % (ni+nz)/2-1
_ ni+n —(142)z2/2
fZ(Z) T 9(ni+n2) /21"(n1/2)r(n2/2)/0 Lo € dxs
[(ny 4 ng)/2] Zm/2-1

= T 2T (ne)2) (1 5 2z oo ()

Using Proposition 1.8, one can show that the p.d.f. of Y = (X;/n1)/(Xa/ns) = (na/nq)Z is
the p.d.f. of the F-distribution F,,, ,, given in Table 1.2.

Let U; be a random variable having the standard normal distribution N(0,1) and U, a
random variable having the chi-square distribution x2. Using the same argument, one can

show that if U; and U, are independent, then the distribution of 7' = U;/4/Us/n is the
t-distribution t,, given in Table 1.2.

Noncentral chi-square distribution

Let Xi,..., X,, be independent random variables and X; = N(u;,0%), i = 1,....,n. The
distribution of Y = (X? + -+ + X?2)/o? is called the noncentral chi-square distribution and
denoted by x2(8), where 6 = (u? + - -+ + u2)/o? is the noncentrality parameter.

X2(8) with 6 = 0 is called a central chi-square distribution.

It can be shown (exercise) that Y has the following Lebesgue p.d.f.:

o—9/2 Z

5/2

.f2]+n l’)

where f;,(z) is the Lebesgue p.d.f. of the chi-square distribution 3.

If Yy, ..., Y, are independent random variables and Y; has the noncentral chi-square distribu-
tion Xii(éi)a t=1,...,k, then Y = Y] 4+ --- + Y} has the noncentral chi-square distribution
Xovy oty (01 - 4 O).

Noncentral t-distribution and F-distribution (in discussion)

Theorem 1.5. (Cochran’s theorem). Suppose that X = N, (y, I,,) and
X' X=X"A X+ -+ X"AX,

where I,, is the n X n identity matrix and A; is an n X n symmetric matrix with rank n,,
1=1,...,k. A necessary and sufficient condition that X" A;X has the noncentral chi-square
distribution x? (6;), 7 = 1, ..., k, and X" A;X’s are independent is n = ny + - - - +ny, in which
case 0; = pT A;p and 8 + -+ -+ O = p" p.



Lecture 7: Moments, inequalities, m.g.f. and ch.f.

If EX* is finite, where k is a positive integer, EX* is called the kth moment of X or Py.
If £|X|* < oo for some real number a, E|X|* is called the ath absolute moment of X or Px.
If u = EX and E(X — p)* are finite for a positive integer k, E(X — u)* is called the kth
central moment of X or Px.

Variance: E(X — EX)?

X = (X1, Xp), EX = (BX1, ..., EXy)

M = (M), EM = (EM;;)

Covariance matrix: Var(X) = FE(X — EX)(X — EX)”

The (7, 7)th element of Var(X), ¢ # j, is E(X; — EX;)(X; — EXj), which is called the
covariance of X; and X; and is denoted by Cov(X;, X;).

Var(X) is nonnegative definite

[COV(XZ‘, Xj)]2 < Var(Xi)Var(Xj), 1 #]

If Cov(X;, X;) =0, then X; and X, are uncorrelated

Independence implies uncorrelation, not converse

IfY =c™X, c € R, and X is a random k-vector, EY = ¢"EX and Var(Y) = ¢"Var(X)c.

Three useful inequalities

Cauchy-Schwartz inequality: [F(XY)]? < EX?EY? for random variables X and Y
Jensen’s inequality: f(EFX) < Ef(X) for a random vector X and convex function f (f” > 0)
Chebyshev’s inequality: Let X be a random variable and ¢ a nonnegative and nondecreasing
function on [0, co) satisfying ¢(—t) = ¢(t). Then, for each constant ¢ > 0,

PP (X2 0 < [ p(X)dP < Ep(X)

Example 1.18. If X is a nonconstant positive random variable with finite mean, then
(EX)' < E(X™') and FE(logX) < log(EX),

since t~! and —logt are convex functions on (0,00). Let f and g be positive integrable
functions on a measure space with a o-finite measure v. If [ fdv > [ gdv > 0, we want to

show that
/flog <§> dv > 0.

Let h = f/ [ fdv. Then h is a p.d.f. wr.t. v. Let Y = g/f be a random variable defined
on the probability space with P being the probability with p.d.f. h. By Jensen’s inequality,

Elog(g/f) <log(E(g/[)). Note that

log(E(g/f)) = log </fhdy> log (;?d ) <0

Elog(g/f) = /log( )hdu-/log( )fdu//fdu

1
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Moment generating and characteristic functions
Definition 1.5. Let X be a random k-vector.
(i) The moment generating function (m.g.f.) of X or Py is defined as

Vx(t) = Be™™, te R~
(ii) The characteristic function (ch.f.) of X or Px is defined as

ox(t) = BeVX = Elcos(t” X)] + V=1 E[sin(t" X)], teRF

If the m.g.f. is finite in a neighborhood of 0 € R¥, then ¢x(t) can be obtained by replacing
tin wx(t) by \/—1t
If Y = A"X 4 ¢, where A is a k X m matrix and ¢ € R™, it follows from Definition 1.5 that

Yy (u) = e "y (Au) and gy (u) = eV ox(Au), ueR™
X = (X, ..., X) with m.g.f. ¢x finite in a neighborhood of 0

- AR LA
O D

|
(r1,e7k) e Tk

P, = E(XT - X0

Special case of k = 1:

uxt) = 3 25
i=0 v
Consequently,
N e rit g (1) NG B d@bfx(t)
E(Xl o Xk ) - at71‘1 L. atZk =0 E(X ) - w (0) - dti =0
Ipx(®)| Pox ()| .
ot li=o BX, oo™ li—o BXXT)

If 0 < 9x(t) < oo, then kx(t) = log¥x(t) is called the cumulant generating function of X
or PX.

If ¥ x is not finite and E|X{" - -- X;*| < oo for some nonnegative integers r1, ..., ry, then

Tt (¢)
o Ot

= (CDOEIREQ - X

0o x (t) B Pox (t)
ot limo V-1EX, otot™

= —B(XX7),  6(0) = (-1 B

t=0




Example: a random variable X has finite E(X*) for k = 1,2... but ¢x(t) = 0o, t # 0
P,: the probability measure for N(0,n) with p.d.f. f,, n=1,2,...

P =% ,2""P, is a probability measure with Lebesgue p.d.f. >°°, 27" f, (Exercise 35)
Let X be a random variable having distribution P.

It follows from Fubini’s theorem that X has finite moments of any order; for even k,

E(X*) = /a:de - / S 2hedp, =0 2_"/xden =S 2 (k—1)(k—3) - 1n*/? < 00
n=1 n=1 n=1

and E(X*) =0 for odd k.
By Fubini’s theorem,

Ux(t) = [e=dp =Y 27 [eap, = 3 277 o0 140
n=1 n=1

Since the ch.f. of N(0,n) is e—”t2/2’

bx(t) = /e\/—_ltxdp _ Z 2—n/6\/—_1txdpn _ Z 9—ne—nt?/2 _ (261&2/2 _ 1)—1
n=1 n=1
(Fubini’s theorem)

Hence, the moments of X can be obtained by differentiating ¢x
For example, ¢y (0) = 0 and ¢/ (0) = —2, which shows that FX =0 and FX? = 2.

Theorem 1.6. (Uniqueness). Let X and Y be random k-vectors.
(1) If ¢X(t) = ¢y(t) for all t € Rk, then PX = Py.
(ii) If ¥ x (t) = ¥y (t) < oo for all ¢t in a neighborhood of 0, then Py = Py.

Another useful result: For independent X and Y,
Uxay(t) = Ux(Oy(t) and  dxiv(t) = ox (v (t), teR"

Example 1.20. Let X;, © = 1,...,k, be independent random variables and X; have the
gamma distribution I'(a;,v) (Table 1.2), ¢ = 1,....,k. From Table 1.2, X; has the m.g.f.
Ux,(t) = (1 —yt)™ ™, t < ~v7', i =1,...,k Then, the mgf of Y = Xj + --- + X, is
equal to ¥y (t) = (1 — yt)~(@t+ex) ¢ < ~=1 From Table 1.2, the gamma distribution
I'(aq + -+ + ag,7y) has the m.g.f. ¢y (t) and, hence, is the distribution of Y (by Theorem
1.6).

A random vector X is symmetric about 0 iff X and —X have the same distribution
Show that: X is symmetric about 0 if and only if its ch.f. ¢x is real-valued.

If X and —X have the same distribution, then by Theorem 1.6, ¢x(t) = ¢_x(t).

But ¢_x(t) = ¢x(—t). Then ¢x(t) = px(—1).

Note that sin(—t"X) = —sin(t"X) and cos(t" X) = cos(—t"X)

Hence E[sin(t"X)] = 0 and, thus, ¢x is real-valued.

Conversely, if ¢x is real-valued, then ¢x(t) = Efcos(t"X)] and ¢_x(t) = ¢x(—t) = ox(t).
By Theorem 1.6, X and —X must have the same distribution.



Lecture 8: Conditional expectation

Conditional probability P(B|A) = P(AN B)/P(A) for events A and B with P(A) >0
P(X € BlY € A)
P(X € BlY =y)?

Definition 1.6. Let X be an integrable random variable on (€, F, P).
(i) Let A be a sub-o-field of F. The conditional expectation of X given A, denoted by
E(X]A), is the a.s.-unique random variable satisfying the following two conditions:

(a) E(X]A) is measurable from (2, 4) to (R, B);

(b) [4 E(X|A)dP = [, XdP for any A € A.
(Note that the existence of E(X|.A) follows from Theorem 1.4.)
(ii) Let B € F. The conditional probability of B given A is defined to be P(B|A) = E(Ig|A).
(iii) Let Y be measurable from (§2, F, P) to (A,G). The conditional expectation of X given
Y is defined to be E(X|Y) = E[X|o(Y)].

o(Y) contains “the information in Y
E(X|Y) is the “expectation” of X given the information provided by Y

Lemma 1.2. Let Y be measurable from (€2, F) to (A,G) and Z a function from (2, F) to
RF. Then Z is measurable from (€, 0(Y)) to (RF, B¥) if and only if there is a measurable
function h from (A, G) to (R*, B¥) such that Z = hoY.

The function h in E(X|Y) = hoY is a Borel function on (A, G).
Let y € A. We define
E(X]Y =y) = h(y)

to be the conditional expectation of X given Y = y.
Note that h(y) is a function on A, whereas hoY = E(X|Y) is a function on €.

For a random vector X, E(X|A) is defined as the vector of conditional expectations of
components of X.

Example 1.21. Let X be an integrable random variable on (2, F, P), A;, As, ... be disjoint
events on ({2, F, P) such that UA; = Q and P(A;) > 0 for all ¢, and let aq, as, ... be distinct
real numbers. Define Y = a1, + a2la, + - --. We now show that

< [, XdP
EX|)Y)=) —/———14,.
We need to verify (a) and (b) in Definition 1.6 with A = o(Y).
Since o(Y) = o({A1, As, ...}), it is clear that the function on the right-hand side is measurable
on (2,0(Y)).
For any B € B, Y ! (B) = U;.q.epA;. Using properties of integrals, we obtain that



/Y oy YP= 3 / XdP

i:a;€EB

Z Ja X Pp (A N Y—I(B))

P(A,-)
_ / [

This verifies (b) and thus the result.
Let h be a Borel function on R satisfying h(a;) = [,, XdP/P(A;).
Then E(X|Y)=hoY and E(X|Y =y) = h(y).

fA XdP
(4:)

IA]dP.

Proposition 1.9. Let X be a random n-vector and Y a random m-vector. Suppose that
(X,Y) has a joint p.d.f. f(z,y) w.r.t. v x A\, where v and A are o-finite measures on (R", B")
and (R™, B™), respectively. Let g(x,y) be a Borel function on R"*™ for which E|g(X,Y)| <

oo. Then
J9(z,Y)f(z,Y)dv(z)

J f (2, Y )dv(x)

Proof. Denote the right-hand side by h(Y'). By Fubini’s theorem, h is Borel. Then, by
Lemma 1.2, A(Y") is Borel on (©2,0(Y)). Also, by Fubini’s theorem, fy(y) = [ f(z,y)dv(zx)
is the p.d.f. of Y w.r.t. A\. For B € B™,

/Yl(B) h(Y)dP = /h( )dPy
—/ [o(e,9)f(y)duiz >fy(y)dk(y)

Elg(X,Y)|Y] =

ff T,y dV( )
—/ flx,y)dv x A

R"xB (LL’ y)dPXY

_/ g(X,Y)dP,

where the first and the last equalities follow from Theorem 1.2, the second and the next to
last equalities follow from the definition of A and p.d.f.’s, and the third equality follows from
Theorem 1.3 (Fubini’s theorem).

(X,Y): arandom vector with a joint p.d.f. f(z,y) w.rt. v x A
The conditional p.d.f. of X given Y = y: fxy (xly) = f(z,y)/fv(y)
fr(y) = | f(x,y)dv(x) is the marginal p.d.f. of Y w.r.t. A.

For each fixed y with fy(y) > 0, fxyy(z|y) is a p.d.f. wr.t. v.
Then Proposition 1.9 states that

Elg(X,V)IV] = [ 9@, ¥) fxr(zlY )av(z)

i.e., the conditional expectation of g(X,Y") given Y is equal to the expectation of g(X,Y)
w.r.t. the conditional p.d.f. of X given Y.



Properties

Proposition 1.10. Let X, Y, X, X5, ... be integrable random variables on (2, F, P) and
A be a sub-o-field of F.

(i) If X = c a.s.,, c € R, then E(X|A) = ¢ a.s.

(i) If X <Y as., then F(X|A) < E(Y]A) as.

(iii) fa € R and b 6 R, then E(aX 4 bY |A) = aE(X|A) + bE(Y]A) a.

(iv) E[E(X|A)] =

(v) E[E (X|A)|Ao] = E(X|Ao) = E[E(X|Ap)|A] a.s., where Ay is a sub-o-field of A.

(vi) If o(Y) C A and E|XY| < 0o, then E(XY|A) = YE(X|A) a.s.

(vii) If X and Y are independent and F|g(X,Y’)| < oo for a Borel function g, then
Elg(X,Y)|Y =y] = Elg(X,y)] as. Py.

(viii) If EX? < oo, then [E(X|A)]* < E(X?A) as.

(ix) (Fatou’s lemma). If X,, > 0 for any n, then E (liminf, X,|A) < liminf, £(X,|A) a.s.
(x) (Dominated convergence theorem). Suppose that | X, | < Y for any n and X,, —,, X.
Then E(X,|A) —.s E(X]A).

Example 1.22. Let X be a random variable on (Q, F, P) with EX? < oo and let Y be
a measurable function from (€, F, P) to (A,G). One may wish to predict the value of X
based on an observed value of Y. Let g(Y') be a predictor, i.e., g € X = {all Borel functions

g with E[g(Y)]? < oo}. Each predictor is assessed by the “mean squared prediction error”
E[X — g(Y)]?. We now show that E(X|Y) is the best predictor of X in the sense that

E[X — E(X|Y)]* = min E[X — g(Y)]*.
g
First, Proposition 1.10(viii) implies F(X|Y) € X. Next, for any g € N,

E[X —g(Y)=E[X — E(X|Y) + E(X]Y) — g(Y)]*

— E[X — E(X|Y)? + E[E(X]Y) — g(Y)]?
+2B{[X — B(X|Y)][E(X|Y) — g(Y)]}
= E[X — E(X|Y)* + E[E(X|Y) — g(Y)]?

+2E{E{[X — E(XIY)|[EX]Y) —g(YV)I[Y }}
=E[X - E(X|Y)* + E[E(X]Y) — g(Y)]?
+2E{[E(X]Y) - g(V)E[X — E(X[Y)[Y]}
=E[X - E(X|Y)* + E[E(X]Y) — g(Y)]?
> E[X — E(X|Y)%,

where the third equality follows from Proposition 1.10(iv), the fourth equality follows from
Proposition 1.10(vi), and the last equality follows from Proposition 1.10(i), (iii), and (vi).



Lecture 9: Independence, conditional independence, conditional distribution

Definition 1.7. Let (2, F, P) be a probability space.
(i) Let C be a collection of subsets in F. Events in C are said to be independent if and only
if for any positive integer n and distinct events Aj,...,A, in C,

(ii) Collections C; C F, i € T (an index set that can be uncountable), are said to be
independent if and only if events in any collection of the form {A; € C; : i € I} are
independent.
(iii) Random elements X;, i € Z, are said to be independent if and only if o(X;), i € Z, are
independent.

A useful result for checking the independence of o-fields.

Lemma 1.3. Let C;, ¢ € Z, be independent collections of events. Suppose that each C; has
the property that if A € C; and B € C;, then ANB € C;. Then o(C;), i € Z, are independent.

Random variables X;, i =1, ..., k, are independent according to Definition 1.7 if and only if
F(X1 ..... Xk)(l’l,...,l'k) :Fxl(l’l)"'FXk(l’k), (ZL’l,...,ZL'k) ERk
Take C; = {(a,b] :a € R,be R}, i=1,...,k

If X and Y are independent random vectors, then so are g(X) and h(Y") for Borel functions
g and h.

Two events A and B are independent if and only if P(B|A) = P(B), which means that A
provides no information about the probability of the occurrence of B.

Proposition 1.11. Let X be a random variable with E|X| < oo and let Y; be random
ki-vectors, 1 = 1,2. Suppose that (X,Y]) and Y; are independent. Then

E[X|(V1,Y2)] = E(X|V3) as.

Proof. First, F(X|Y7) is Borel on (2, 0(Y1,Y3)), since o(Y7) C o(Y1,Y3). Next, we need to
show that for any Borel set B € BF1+k2,

/ XdP = E(X|Y:)dP. (1)
(Y1,Y2)~1(B) (Y1,Y2)~1(B)
If B= B; x By, where B; € B* then (Y1,Y5)"Y(B) = Y; }(B;) NY; *(B) and

B(XY, dP:/J, Toor . B(X|V:)dP
/1/11(31)01/21(32) (X3) Y (B1) 1Y, (B2) (X[¥1)

= [ Ly BXR)AP [ 1y 1, dP
= [ Ly XAP [ Iy 2P

_ / Iy Iy () X AP

- / XdP,
Y, 1 (B1)NY, H(B2)

1



where the second and the next to last equalities follow the independence of (X, Y]) and Y5,
and the third equality follows from the fact that F(X|Y7) is the conditional expectation of
X given Y;. This shows that (1) holds for B = B; X By. We can show that the collection
H = {B C RM** . B satisfies (1) } is a o-field. Since we have already shown that
B x B C H, BM1F2 = o(BF x B*) C H and thus the result follows.

The result in Proposition 1.11 still holds if X is replaced by h(X) for any Borel h and, hence,
P(A|Y1,Ys) = P(AlY7) as. for any A € 0(X), (2)

if (X,Y7) and Y5 are independent.
We say that given Y, X and Y, are conditionally independent if and only if (2) holds.

Proposition 1.11 can be stated as: if Y3 and (X, Y}) are independent, then given Y7, X and
Y, are conditionally independent.

Conditional distribution

For random vectors X and Y, is P[X~!}(B)|Y = y| a probability measure for given y?
The the following theorem shows that there exists a version of conditional probability such
that P[X~1(B)|Y = y] is a probability measure for any fixed y.

Theorem 1.7. (i) (Existence of conditional distributions). Let X be a random n-vector
on a probability space (£, F, P) and A be a sub-o-field of F. Then there exists a function
P(B,w) on B" x Q2 such that (a) P(B,w) = P[X'(B)|A] a.s. for any fixed B € B", and (b)
P(-,w) is a probability measure on (R", B") for any fixed w € (.

Let Y be measurable from (€2, F,P) to (A,G). Then there exists Px|y(Bly) such that
(a) Pxyy(Bly) = P[X"}(B)|Y = y] a.s. Py for any fixed B € B", and (b) Pxyy(-]y) is a
probability measure on (R"™, B") for any fixed y € A.

Furthermore, if E|g(X,Y)| < co with a Borel function g, then

Elg(X, V)Y =y] = Blg(X.9)[Y = o] = | gla.y)aPyy(aly) as. Py.

(i) Let (A, G, P1) be a probability space. Suppose that P, is a function from 5" x A to R and
satisfies (a) Py(-,y) is a probability measure on (R",B") for any y € A, and (b) P»(B,") is
Borel for any B € B". Then there is a unique probability measure P on (R" x A, o(B" x G))
such that, for B € B" and C' € G,

P(BxC) = [ PyB.y)dPy). 3)

Furthermore, if (A,G) = (R™,B™), and X (z,y) = = and Y (z,y) = y define the coordinate
random vectors, then Py = Py, Pxy(-ly) = P»(-,y), and the probability measure in (3) is
the joint distribution of (X, Y’), which has the following joint c.d.f.:

F(z,y) = / Py ((—00,4]|2)dPy(2), =€ R"yeR™ (4)

(_Oo7y]

where (—o0, a] denotes (—oo, a;| X -+ X (—o0, ag] for a = (ay, ..., ax).
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For a fixed y, Px|y=y = Pxy(-|y) is called the conditional distribution of X given Y = y.

Two-stage experiment theorem:

If Y € R™ is selected in stage 1 of an experiment according to its marginal distribution
Py = P;, and X is chosen afterward according to a distribution P,(-,y), then the combined
two-stage experiment produces a jointly distributed pair (X,Y) with distribution Pxy)
given by (3) and Px|y—y = P2(-,¥).

This provides a way of generating dependent random variables.

Example 1.23. A market survey is conducted to study whether a new product is preferred
over the product currently available in the market (old product). The survey is conducted
by mail. Questionnaires are sent along with the sample products (both new and old) to
N customers randomly selected from a population, where N is a positive integer. Each
customer is asked to fill out the questionnaire and return it. Responses from customers are
either 1 (new is better than old) or 0 (otherwise). Some customers, however, do not return
the questionnaires. Let X be the number of ones in the returned questionnaires. What is
the distribution of X7

If every customer returns the questionnaire, then (from elementary probability) X has the
binomial distribution Bi(p, N) in Table 1.1 (assuming that the population is large enough
so that customers respond independently), where p € (0,1) is the overall rate of customers
who prefer the new product. Now, let Y be the number of customers who respond. Then
Y is random. Suppose that customers respond independently with the same probability
m € (0,1). Then Py is the binomial distribution Bi(w, N). Given Y = y (an integer between
0 and N), Px|y—, is the binomial distribution Bi(p,y) if y > 1 and the point mass at 0
if y = 0. Using (4) and the fact that binomial distributions have p.d.f.’s w.r.t. counting
measure, we obtain that the joint c.d.f. of (X,Y) is

F(x,y)= kz: Pxpy—p((—00, 1) (Z) (1 — )Nk

=3 S (B ()t

k=0 ;=0

for x = 0,1,...,y, y = 0,1,..., N. The marginal c.d.f. Fx(z) = F(z,00) = F(x,N). The
p.d.f. of X w.r.t. counting measure is

o) =3 (D= () - mp

k=x

! N[ NEE AN
-(Mera-mr=> (TG (22)
- @[) (mp)" (1 — mp)™ ="

forx =0,1,..., N. It turns out that the marginal distribution of X is the binomial distribu-
tion Bi(mp, N).




Lecture 10: Markov chains

An important example of dependent sequence of random variables in statistical application

A sequence of random vectors {X,, : n = 1,2, ...} is a Markov chain or Markov process if and
only if
P(B|Xy,...,X,) = P(B|X,) as., Beo(X,11), n=2,3,.... (1)

Xn+1 (tomorrow) is conditionally independent of (X7, ..., X,,_1) (the past), given X,, (today).
(X1, ..., X,,_1) is not necessarily independent of (X, X, 41).
A sequence of independent random vectors forms a Markov chain

Example 1.24 (First-order autoregressive processes). Let €1, €9, ... be independent random
variables defined on a probability space, X; = ¢, and X,,;1 = pX,,+e,41,n = 1,2, ..., where
p is a constant in R. Then {X,,} is called a first-order autoregressive process. We now show
that for any B € Band n=1,2, ...,
P(X,+1 € B| Xy, ..., X,) =P,

En+1

(B - an) = P(Xn+1 € B‘Xn) a.8.,

where B —y = {x € R : v +y € B}, which implies that {X,,} is a Markov chain. For any
yEeR,

Pepi(B=y) = Plenss +y € B) = [ In(w+y)dP, ,(x)

and, by Fubini’s theorem, P. (B —y) is Borel. Hence, P, , (B—pX,) is Borel w.r.t. o(X,)
and, thus, is Borel w.r.t. o(Xy,...,X,). Let B, € B, j = 1,...,n, and A = ﬁ;‘lej_l(Bj).
Since €,11 + pX, = X,11 and g, is independent of (X, ..., X,,), it follows from Theorem
1.2 and Fubini’s theorem that

.....

= dP(X@nH)(l', t)

z;€Bj,5=1,....n,xn11€B

where X and x denote (Xi,..., X,,) and (1, ..., z,), respectively, and z,4; denotes px, + t.
Using this and the argument in the end of the proof for Proposition 1.11, we obtain P(X, 11 €
B|X1,....,X,) = P. (B —pX,) as. The proof for P., . (B — pX,) = P(X,41 € B|X,) as.

En+41
is similar and simpler.

n+1(



Characterizations of Markov chains

Proposition 1.12. A sequence of random vectors {X,,} is a Markov chain if and only if
one of the following three conditions holds.
(a) For any n = 2,3, ... and any integrable h(X,.1) with a Borel function h,

Elh(Xp1)| X1, o, Xp] = E[h(X011)| X0] as.
(b) For any n =1,2,... and B € (X401, Xn12, --+)5
P(B|Xi, ... X,) = P(B|X,) as.

(“the past and the future are conditionally independent given the present”)
(c¢) For any n =2,3,..., A€ o(Xy,...,X,,), and B € 0(Xp41, Xni2, ),

P(AN B|X,) = P(A|X,)P(B|X,) as.

Proof. (i) It is clear that (a) implies (1). If A is a simple function, then (1) and Proposition
1.10(iii) imply (a). If h is nonnegative, then there are nonnegative simple functions h; <
hy < --- < hsuch that h; — h. Then (1) together with Proposition 1.10(iii) and (x) imply
(a). Since h = hy — h_, we conclude that (1) implies (a).

(ii) It is also clear that (b) implies (1). We now show that (1) implies (b). Note that
0(Xns1, Xny2y ) = J(U;?‘;la(XnH,...,XnH)) (Exercise 19). Hence, it suffices to show
that P(B|X;,...,X,) = P(B|X,) as. for B € 0(X,11,..., X4;) for any j = 1,2,.... We
use induction. The result for 7 = 1 follows from (1). Suppose that the result holds for
any B € o0(X,41,..., Xny;). To show the result for any B € o(X,i1,..., Xptjt1), it is
enough (why?) to show that for any By € o(X,4;11) and any By € o(Xpi1, ..., Xntj),
P(B1NBs| Xy, ..., X,) = P(B1N By| X,,) a.s. From the proof in (i), the induction assumption
implies

Eh( X1, oo, Xntj) | Xq, oo, Xi] = Eh(Xong1, o X)) | X0 (2)

for any Borel function h. The result follows from

E(Ip, 15| X1, ooes X)) = E[E(Ip Iy | X1s s Xoos )| X1, oo Xo]
g, E(Ip, | X1, ..., Xntj)| X1, -, Xi)
U, E(Ig, | Xpnti)| X1, ... X

U5, E(1p,| Xpn15)| Xn)

Up, E(Ip, | Xn, -y Xnt) | X5]
(E(Ip, 15, X, ooy Xt )| X

where the first and last equalities follow from Proposition 1.10(v), the second and sixth
equalities follow from Proposition 1.10(vi), the third and fifth equalities follow from (1), and
the fourth equality follows from (2).



(iii) Let A € 0(X1, ..., X,,) and B € (X411, Xyao, ...). If (b) holds, then

E(IaIp|X,)=E[E(I4I| X, ..., X,)| X,]
EI4E(I| X1, ...y Xn)| Xo]
E[I4E(I3]X,)| X,
E(14]X,)E(I|X5,),

which is (c).

Assume that (c) holds. Let A; € 0(X,,), A2 € 0(X1,..., X,—1), and B € 0(Xp41, Xpi2,-..)-
Then

[, BUs|X)aP= [ L,B(1s|X.)dP
A1NAsg
= [, EllaB(I5|X,)|X,14P
= [ E(1a,|X,)E(IB|X,)dP

= | E(I.15|X,)d
P(A1 N A, N B).

Since disjoint unions of events of the form A; N A, as specified above generate o( X7, ..., X,,),
this shows that E(I5|X,) = E(Ip| X1, ..., X,) a.s., which is (b).



Lecture 11: Convergence modes and stochastic orders

c=(c,....ct) ERE, ||, = (2?21 ;| > 0.
If r > 1, then ||c||, is the L,-distance between 0 and c.
When r =2, ||c]| = [|¢|l2 = Ve

Definition 1.8. Let X, X, X5, ... be random k-vectors defined on a probability space.
(i) We say that the sequence {X,,} converges to X almost surely (a.s.) and write X,, —,, X
if and only if lim,, ., X,, = X a.s.
(ii) We say that {X,} converges to X in probability and write X,, —, X if and only if, for
every fixed € > 0,

Jim P (]| X, — X[| > ¢) =0.

(iii) We say that {X,,} converges to X in L, (or in rth moment) and write X,, —, X if and
only if

lim BJLX, — X[ =0
where r > 0 is a fixed constant.
(iv) Let F, F,, n = 1,2,..., be c.d.f.’s on R* and P, P,, n = 1,..., be their corresponding
probability measures. We say that {F,,} converges to F' weakly (or {P,} converges to P
weakly) and write F,, —,, F' (or P, —,, P) if and only if, for each continuity point = of F,

lim F,(z) = F(z).

n—~o0

We say that { X} converges to X in distribution (or in law) and write X,, —4 X if and only
if FXn —w Fx.

—as., —p, —L,.. How close is between X, and X as n — oo?
Fx, — Fx: X, and X may not be close (they may be on different spaces)

Example 1.26. Let 0, = 1 +n~! and X,, be a random variable having the exponential
distribution E(0,6,) (Table 1.2), n = 1,2,.... Let X be a random variable having the
exponential distribution £(0,1). For any x > 0, as n — o0,

Fx, () =1—e%" o1 —¢e® = Fyx(x)
Since Fx,(z) =0 = Fx(x) for x <0, we have shown that X,, —4 X.

Xy —p X7

Need further information about the random variables X and X,,.

We consider two cases in which different answers can be obtained.
First, suppose that X,, = 6, X (then X, has the given c.d.f.).

X, — X = (0, —1)X = n~'X, which has the c.d.f. (1 — e )]}y ().

P(X,—X|>¢)=e"—0

for any € > 0. (In fact, by Theorem 1.8(v), X,, =45 X)
Since E|X,, — X|P =n"PEX? < oo for any p > 0, X,, —, X for any p > 0.

1



Next, suppose that X,, and X are independent random variables.
Since p.d.fs for X,, and —X are 0, e=%/%" [y o) () and €*I(_ (), respectively, we have

P(|X,—X|<e¢e) = /_ /Hgle_x/e”ey_xl(ovoo)(x)I(_OO@)(y)dzdy,

which converges to (by the dominated convergence theorem)

/_l / e e " 110,00) (2) [ —oo ) (y)dxdy =1 — ™.

Thus, P (| X, — X| > €) — e > 0 for any € > 0 and, therefore, X,, —, X does not hold.

Proposition 1.16 (Pdlya’s theorem). If F,, —,, F and F is continuous on R¥, then

lim sup |F,(x) — F(z)| = 0.

0 peRE

Lemma 1.4. For random k-vectors X, Xy, Xs,... on a probability space, X,, —., X if and
only if for every € > 0,

Jim P ( 0 {10 - x| > e}) 0. 1)
Proof. Let A; = U2, N, {[| X — X[ <ji7'} =12, ...
Then -

) Ay = {w Jim Xa(w) = X())

j=1

By Proposition 1.1(iii),

peay = Jiy P ( A 00— x1<573) = 1= (O (1% - X1 > 57

n—oo
m=n m=n

(1) holds for every € > 0 if and only if P(A;) = 1 for every j, i.e., P(N32,4;) =1

P 2 P A) =1-P(U 4) 2 1- 3 P(A)

j=1

Lemma 1.5. (Borel-Cantelli lemma). Let A,, be a sequence of events in a probability space
and limsup,, A, = N5, UX_ A,,.

(i) If >0°, P(A,) < oo, then P(limsup,, A,,) = 0.

(ii) If Ay, As, ... are pairwise independent and 7, P(A,) = oo, then P(limsup, 4,) = 1.
Proof. (i) By Proposition 1.1,

P<limsupAn> :P<ﬂ U Am> :Jgp(U Am> < lim > P(4,) =0

n—oo n=1m=n

if %0 P(A,) < oo.



(ii) We prove the case of independent A,,’s.

POmaonzig&P<U/%>:1—£$f%ﬁ]A;>:1—£%]1Pu@)

n—00 m—n

n+k n+k n+k n+k
I Peas) = 10 - P < 1T est-Pian) = exp{— 5 P(Am>}

m=n m=n m=n

(1—t <e ' =exp{t}). Letting k — oo,

[T Ptz = i 1T Peas) <o {- = Plan} o

See Chung (1974, pp. 76-78) for the pairwise independence A,,’s.
The notion of O(-), o( - ), and stochastic O(-) and o( -)

In calculus, two sequences of real numbers, {a,} and {b,}, satisfy a, = O(b,) if and only if
la,| < c|b,]| for all n and a constant ¢
a, = o(b,) if and only if a, /b, — 0 as n — oo

Definition 1.9. Let X, X, ... be random vectors and Y7, Ys, ... be random variables defined
on a common probability space.

(i) X,, = O(Y,) as. if and only if P(||X,|| = O(|Y.])) = 1.

(i) X, = o(Y,) a.s. if and only if X,,/Y,, —4.. 0.

(ili) X,, = O,(Y,) if and only if, for any ¢ > 0, there is a constant C. > 0 such that
sup,, P([[Xu|| = Cc|Yy]) <e.

(iv) X,, = 0,(Y,) if and only if X,,/Y,, —, 0.

Since a,, = O(1) means that {a,} is bounded, {X,} is said to be bounded in probability if
X, = 0,(1).

0p(Yy) implies X,, = O,(Y,,)

0,(Y,) and Y,, = O,(Z,,) implies X,, = O,(Z,)

0,(Y,) does not imply Y,, = O,(X,,)

If X, = 0,(Z,), then X,.Y, = O,(Y,Zy).

If X, =0,(Z,) and Y,, = O,(Z,), then X,, + Y, = O,(Z,).

The same conclusion can be obtained if O,(-) and o,(-) are replaced by O(-) a.s. and o( - )
a.s., respectively.

If X,, —4 X for a random variable X, then X,, = O,(1)

If E|X,| = O(ay), then X,, = Op(a,), where a, € (0, 00).

If X, =45 X, then sup, | X,| = O,(1).

X
X
X



Lecture 12: Relationship among convergence modes and uniform integrability

Theorem 1.8. Let X, X, X5, ... be random k-vectors.

(i) If X;, =4, X, then X, —, X. (The converse is not true.)

(ii) If X,, =, X for an r > 0, then X,, —, X. (The converse is not true.)
(iii) If X, —, X, then X,, —, X. (The converse is not true.)

(iv) (Skorohod’s theorem). If X, —, X, then there are random vectors Y, Y}, Y, ... defined
on a common probability space such that Py = Px, Py, = Px,,n=1,2,...;and Y, =, Y.

(A useful result; a conditional converse of (i)-(iii).)

(v) If, for every € > 0, >0° , P(||X,, — X|| > €) < oo, then X, —,, X.
(A conditional converse of (i): P(||X,, — X|| > €) tends to 0 fast enough.)
(

vi) If X, =, X, then there is a subsequence {X, ,j = 1,2,...} such that X,,, —,, X as

j — oo. (A partial converse of (i).)

(vii) If X,, —4 X and P(X = ¢) = 1, where ¢ € R is a constant vector, then X,, —, c. (A

conditional converse of (i).)
(viii) Suppose that X,, —4 X. Then, for any r > 0,

Tim BX, |7 = X7 < o0
if and only if {||X,||"} is uniformly integrable in the sense that

Jim sup  (||Xa71g1x, 1,50 = 0.

(A conditional converse of (ii).)

Discussion on uniform integrability
If there is only one random vector, then (2) is

Jim B (| X[} Iyxg>0) = 0.

which is equivalent to the integrability of || X||” (dominated convergence theorem).

Sufficient conditions for uniform integrability:

sup B|| X, [/ < oo forad >0

This is because

IIXn|If>

Ewaw&man»@é&w?E@&M”MWW7f
1
: r+d
< lim 5 sup B (|1 [17+)
=0

Exercises 117-120.

(1)



Proof of Theorem 1.8. (i) The result follows from Lemma 1.4.
(ii) The result follows from Chebyshev’s inequality with ¢(t) = |¢]".
(iii) Assume k£ = 1. (The general case is proved in the textbook.)
Let x be a continuity point of F'x and € > 0 be given. Then

Fx(z —¢)=P(X <z —¢)
<PX,<z)+P(X<z-¢X,>1)
<Fy,(z)+P(|X,— X|>¢).

Letting n — 0o, we obtain that
Fx(x —¢) <liminf Fy, (x).
n
Switching X,, and X in the previous argument, we can show that

Fx(z 4 €) > limsup Fy, (x).

Since € is arbitrary and Fy is continuous at z, Fx(x) = lim,,_,» Fx, (7).

(iv) The proof of this part can be found in Billingsley (1986, pp. 399-402).

(v) Let A, = {||X, — X|| > €}. The result follows from Lemma 1.4, Lemma 1.5(i), and
Proposition 1.1(iii).

(vi) X,, =, X means lim,,_,o P(||X,, — X|| > ¢) = 0 for every € > 0.

That is, for every € > 0, P(||X,, — X|| > €¢) < € for n > n, (n, is an integer depending on ¢).
For every j = 1,2, ..., there is a positive integer n; such that

P(||X,, — X]|| >277) <279,

For any € > 0, there is a k, such that for j > k., P(||X,, — X|| > €) < P(||X,,, — X| > 277).
Since 332, 277 =1, it follows from the result in (v) that X, —,, X as j — occ.

(vii) The proof for this part is left as an exercise.

(viii) First, by part (iv), we may assume that X,, —,, X (why?).

Proof of (2) implies (1)

Note that (2) (the uniform integrability of {||X, ||/ }) implies that sup,, E|/X,||I < oo (why?)
By Fatou’s lemma (Theorem 1.1(i)), E|| X || < liminf,, E||X,]||] < occ.

Hence, (1) follows if we can show that

lim sup || X[} < E||X][. (3)

For any € > 0 and ¢t > 0, let 4, = {||X,, — X||; <€} and B, = {|| X,||, > t}. Then

Bl Xall; = E(1Xal[ Lagns,) + B Xl Lagnsg) + E([Xal[71a,)
< E(| Xl 1s,) +1"P(AL) + E| X014, [[7-

For v <1, [[Xnla,[[; < ([[Xn = X7+ [ X[I7) 14, and

El[Xnla, |7 < BI(1Xn — X7+ X7 La,] < € + EJX][

2



For » > 1, an application of Minkowski’s inequality leads to

Bl XL |l = E| (X0 — X)L, + X1a|I}
<E(Xn = X)La llr + 11X L, 1]
<{[BI(Xn = X)L ) + (B X Lo, 117}
<{e+[EIX]1]"}".

In any case, since € is arbitrary, limsup,, E|| X, 14, ]| < E||X||;. This result and the previ-
ously established inequality imply that

lim sup F|| X, ||, <limsup E(

[ Xallids,) 4+t lim P(A7)
+limsup E|| X, 14, ||}
<sup E(|XullF g, 50) + BIXI

since P(AS) — 0. Since {|| X, ||’} is uniformly integrable, letting ¢ — oo we obtain (3).

Proof of (1) impies (2)
Let & = || Xo|[7Ige — [[X|[11g:. Then &, —4,. 0 and |&,| < ¢ 4 || X7, which is integrable.
By the dominated convergence theorem, E¢, — 0; this and (1) imply that

E([[Xull-1s,) — E(I X[ 15,) — 0.

From the definition of B,, B, C {|| X, — X, > t/2} U {||X||, > t/2}.
Since E||X||I < oo, it follows from the dominated convergence theorem that

lim B (|| X 1y x, x|, >t/21) =0

n— 00

Hence
limsup E(|[ X, |7 1p,) < limsup E(|| X1 15,) < E([|X |5 1x),>t/2))-

Letting ¢ — oo, it follows from the dominated convergence theorem that

i timsup B(|1X, 7 7s,) < Jim B(IX I Tgix,502) = 0

This proves (2).



Lecture 13: Weak convergence

A sequence {P,} of probability measures on (RF, B¥) is tight if for every ¢ > 0, there is a
compact set C' C R* such that inf, B,(C) > 1 —e.

If {X,} is a sequence of random k-vectors, then the tightness of { Py, } is the same as the
boundedness of {||X,||} in probability (||.X,|| = O,(1)).

Proposition 1.17. Let {P,} be a sequence of probability measures on (RF, BF).

(i) Tightness of { P,} is a necessary and sufficient condition that for every subsequence {P,,}
there exists a further subsequence {P,,} C {P,,} and a probability measure P on (R*, B¥)
such that P, —, P as j — oc.

(ii) If {P,} is tight and if each subsequence that converges weakly at all converges to the
same probability measure P, then P, —, P.

The proof can be found in Billingsley (1986, pp. 392-395).

The following result gives some useful sufficient and necessary conditions for convergence in
distribution.

Theorem 1.9. Let X, X, Xy,... be random k-vectors.
(i) X,, —4 X is equivalent to any one of the following conditions:

(a) E[h(X,)] = E[h(X)] for every bounded continuous function h;
b) lim sup,, Px, (C) < Px(C) for any closed set C C RF;
c) liminf, Px, (O) > Px(O) for any open set O C RE.
(ii) (Lévy-Cramér continuity theorem). Let ¢x,dx,, Px,,... be the ch.f’s of X, Xy, Xs, ...,
respectively. X,, —4 X if and only if lim,_,o ¢x, (1) = ¢x(t) for all t € RE.
(iii) (Cramér-Wold device). X,, —4 X if and only if ¢ X,, —4 ¢" X for every ¢ € RF.
Proof. (i) First, we show X, —, X implies (a). By Theorem 1.8(iv) (Skorohod’s theorem),
there exists a sequence of random vectors {Y,,} and a random vector Y such that Py, = Py,
for all n, Py = Px and Y,, —,, Y. For bounded continuous h, h(Y,,) —.s h(Y) and, by the
dominated convergence theorem, E[h(Y,,)] — E[h(Y)]. Then (a) follows from E[h(X,)] =
E[h(Y,,)] for all n and Eh(X)] = E[h(Y)].

Next, we show (a) implies (b). Let C' be a closed set and fo(x) = inf{||lz — y| : y € C}.
Then f¢ is continuous. For j = 1,2,..., define ¢;(t) = I_w o + (1 — jt)L;-1). Then
h;(z) = ¢;(fc(x)) is continuous and bounded, h; > h;i1, j =1,2,..., and hj(x) = Io(x) as
j — oo. Hence limsup, Px,(C) < lim, o E [ ( n)] = E[h;(X)] for each j (by (a)). By
the dominated convergence theorem, E[h;(X)] = E[lo(X)] = Px(C). This proves (b).
(b

o~~~

~

For any open set O, O° is closed. Hence, (b) is equivalent to (c¢). Now, we show (b
and (c) imply X,, —4 X. For z = (:rl,...,:rk) € R¥, let (—oo,z] = (—oc,xq] X -+
(—o0, k] and (—o00,x) = (—00,27) X -+ X (—00,2,). From (b) and (c¢), Px((—o0,))
liminf, Px, ((—o0,z)) < liminf, Fy, (z) < limsup, Fx, () = limsup, Px, ((—o0,z])
Px((—oc,z]) = Fx(x). If x is a continuity point of F, then Px((—o00,z)) = Fx(x). This
proves X, —4 X and completes the proof of (i).

(ii) From (a) of part (i), X, —4 X implies ¢y, (t) = ¢x(t), since eV "% = cos(t"z) +
Vv —1sin(t"x) and cos(t"x) and sin(¢"x) are bounded continuous functions for any fixed ¢.

ININ X
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Suppose now that k& = 1 and that ¢x, (t) = ¢x(t) for every t € R.
We want to show that {Px, } is tight. By Fubini’s theorem,

L oo [ [ [0
[ ) dPy. (x)

o0 sin ux
[ (s-
1

> 9 (1 - _> 1Py (2)
J{|z|>2u-1} |uz|

> Py, ((—oo, —2u YU (2u oo))

oo ux

for any u > 0. Since ¢ is continuous at 0 and ¢x (0) = 1, for any € > 0 there is a u > 0 such
that u=' [" [1 — ¢x(t)]dt < €/2. Since ¢x, — ¢x, by the dominated convergence theorem,
sup, {u""' [*,[1 — ¢x, (t)]dt} < e. Hence,

inf Py, ([~2u™',2u™"]) > 1 - sup {l f 1 - qﬁXn(t)]dt} >1—¢

u

i.e., {Px,} is tight.

Let {Px, } be any subsequence that converges to a probability measure P.
By the first part of the proof, qﬁxn]_ — ¢, which is the ch.f. of P.

By the convergence of ¢x,, ¢ = ¢x. By the uniqueness theorem, P = Px.
By Proposition 1.17(ii), X,, —4 X.

Consider now the case where k£ > 2 and ¢x, — ¢x.

Let Y,,; be the jth component of X,, and Y; be the jth component of X.

Then ¢y, — ¢y, for each j.

By the proof for the case of k =1, Y,; —,Y;.

By Proposition 1.17(i), { Py,,} is tight, j = 1,..., k. This implies that { Py, } is tight (why?).
Then the proof for X,, —4 X is the same as that for the case of k = 1.

(iii) Note that ¢.rx, (u) = ¢x, (uc) and ¢ x(u) = ¢x(uc) for any u € R and any ¢ € R*.
Hence, convergence of ¢x, to ¢x is equivalent to convergence of ¢.-x, to ¢.x for every
c € R*. Then the result follows from part (ii).

Example 1.28. Let Xi,..., X,, be independent random variables having a common c.d.f.
and T,, = X; +---+ X,,, n = 1,2,.... Suppose that F|X;| < oc. It follows from a result in
calculus that the ch.f. of X, satisfies

Ox, (1) = ¢x,(0) + V1t + o([t])
as |t| = 0, where gy = EX;. Then, the ch.f. of T),/n is

o ()] = [ e ()]

n n
for any t € R, as n — oo. Since (1 + ¢,/n)" — € for any complex sequence {¢,} satisfying
cn, — ¢, we obtain that ¢, /() — eV~ which is the ch.f. of the distribution degenerated

n

¢Tn/n (t) =

:[H

2



at u (i.e., the point mass probability measure at p). By Theorem 1.9(ii), 7,,/n —4 p. From
Theorem 1.8(vii), this also shows that T, /n —, p.

Similarly, = 0 and 02 = Var(X,) < oo imply

st )

n n

for any ¢+ € R, which implies that ¢, , m(t) — e~ ?""/2 the ch.f. of N(0,0%). Hence
T,/v/n —q N(0,0%). If u # 0, a transformation of ¥; = X; — u leads to (T}, — nu)/\/n —4
N(0,0?).

Suppose now that X, ..., X,, are random k-vectors and y = EX; and ¥ = Var(X}) are finite.
For any fixed ¢ € RF, it follows from the previous discussion that (¢"T,, — nc”u)//n —q
N(0,c¢™>¢). From Theorem 1.9(iii) and a property of the normal distribution (Exercise 81),
we conclude that (T, — nu)/\/n —4 Ni(0,%).

Example 1.29. Let X, ..., X, be independent random variables having a common Lebesgue
p.d.f. f(z) = (1 —cosz)/(rz?). Then the ch.f. of X; is max{1 — [t],0} (Exercise 73) and the
chtf of T,,/n= (X1 + -+ X,)/nis

t n
(max{1|—,0}> — e It teR.
n

Since e " is the ch.f. of the Cauchy distribution C(0,1) (Table 1.2), we conclude that
T./n —q X, where X has the Cauchy distribution C(0,1).

Does this result contradict the first result in Example 1.287
Other examples are given in Exercises 135-140.

The following result can be used to check whether X,, —; X when X has a p.d.f. f and X,,
has a p.d.f. f,.

Proposition 1.18 (Scheffé’s theorem). Let {f,} be a sequence of p.d.f.’s on R¥ w.r.t. a
measure v. Suppose that lim, . fn(2) = f(x) a.e. v and f(x) is a p.d.f. w.rt. v. Then

limy, o0 [ [ fn(2) = f(2)]dv = 0.
Proof. Let g,(z) = [f(2) — fu(2)/ {553 (x), n =1,2,.... Then

/|fn($) — f(z)|dv = 2/_qn(x)dy.

Since 0 < g,(z) < f(x) for all z and g, — 0 a.e. v, the result follows from the dominated
convergence theorem.

As an example, consider the Lebesgue p.d.f. f,, of the t-distribution ¢, (Table 1.2), n = 1,2,....
One can show (exercise) that f, — f, where f is the standard normal p.d.f. This is an
important result in statistics.



Lecture 14: Convergence of transformations, Slutsky’s theorem and J-method

Transformation is an important tool in statistics.

If X,, converges to X in some sense, is g(X,,) converges to g(X) in the same sense?

The following result (continuous mapping theorem) provides an answer to this question in
many problems.

Theorem 1.10. Let X, X, X, ... be random k-vectors defined on a probability space and
g be a measurable function from (RF, BF) to (R, B'). Suppose that g is continuous a.s. Pkx.
Then

(i) Xn —ra.. X implies g(Xy,) —a.s g(X);

(ii) X,, —, X implies g(X,,) =, g(X);

(iii) X,, —¢ X implies g(X,,) —q 9(X).

Proof. (i) can be established using a result in calculus.

(iii) follows from Theorem 1.9(i): for any bounded and continuous h, E[h(g(X,))] —
E[h(g(X))], since h o g is bounded and continuous.

To show (ii), we consider the special case of X = ¢ (a constant).

From the continuity of g, for any € > 0, there is a §. > 0 such that ||g(x) —g(c)|| < € whenever
|z — ¢|| < 6. Hence,

{w: lg(Xn(w)) = 9(@)] < e} C{w: [[Xn(w) —¢l| < dc}

and
P([lg(Xn) = g(c)|| = €) < P(|| Xy —cl| = ).

Hence ¢g(X,) —, g(c) follows from X, —, c.
Is the previous arguement still valid when ¢ is replaced by the random vector X in the
general case? If not, how do we fix the proof?

Example 1.30. (i) Let X;, X5, ... be random variables. If X, —; X, where X has the
N(0,1) distribution, then X? —, Y, where Y has the chi-square distribution x}.

(ii) Let (X,,Y,) be random 2-vectors satisfying (X,,,Y,,) —4 (X,Y), where X and Y are
independent random variables having the N(0,1) distribution, then X,,/Y,, —4 X/Y, which
has the Cauchy distribution C'(0,1).

(iii) Under the conditions in part (ii), max{X,,Y,} —4 max{X Y}, which has the c.d.f.
[@(2)]* (®(z) is the c.d.f. of N(0,1)).

In Example 1.30(ii) and (iii), the condition that (X,,Y,) —4 (X,Y’) cannot be relaxed to
X, =4 X and Y, —, Y (exercise); i.e., we need the convergence of the joint c.d.f. of (X,,,Y,).
This is different when —4 is replaced by —, or —,. The following result, which plays an
important role in probability and statistics, establishes the convergence in distribution of
X, +Y, or X,,Y,, when no information regarding the joint c.d.f. of (X, Y},) is provided.



Theorem 1.11 (Slutsky’s theorem). Let X, X, Xs, ..., Y7,Y5, ... be random variables on a
probability space. Suppose that X, —4 X and Y,, —, ¢, where ¢ is a constant. Then

(i) Xp+ Y, =4 X +¢

(ii) Yo X, —q cX;

(iii) X,/ Y, —q X/cif ¢ # 0.

Proof. We prove (i) only. The proofs of (ii) and (iii) are left as exercises.

Let t € R and € > 0 be fixed constants. Then

Fx, 4y, (t)=P(X, + Y, <1)
PU{X,+ Y, <t}n{|Y,—c| <e})+ P(|Y, — | >¢)
P(X,<t—c+e)+P(|Y,—¢c|>¢)

IN N

and, similarly,
Fx,.v,(t) > P(X,,<t—c—¢€)— P(|Y,—c| >e).

Ift—c,t—c+e and t — ¢ — € are continuity points of F'x, then it follows from the previous
two inequalities and the hypotheses of the theorem that

Fx(t = c—¢) <liminf Fx, 1y, (t) < limsup Fx, v, (£) < Fx(t — ¢+ ).

Since € can be arbitrary (why?),

lim FX +Y, ( ) :Fx(t*(,’)

n— 00

The result follows from Fy.(t) = Fx(t — ¢).
An application of Theorem 1.11 is given in the proof of the following important result.

Theorem 1.12. Let Xy, X5, ... and Y be random k-vectors satisfying
an (X, —¢) =4 Y, (1)

where ¢ € R¥ and {a,} is a sequence of positive numbers with lim,, . a, = oc. Let g be a
function from R¥ to R.
(i) If g is differentiable at ¢, then

anlg(Xn) = g(c)] —a [Vg(c)]"Y, (2)

where Vg(z) denotes the k-vector of partial derivatives of g at .

(ii) Suppose that g has continuous partial derivatives of order m > 1 in a neighborhood of
¢, with all the partial derivatives of order j, 1 < 57 < m — 1, vanishing at ¢, but with the
mth-order partial derivatives not all vanishing at ¢. Then

m

k k
X e @

1
m! asz T=c

a, [9(Xn) — g(c

where Yj is the jth component of V.



Proof. We prove (i) only. The proof of (ii) is similar. Let

Zn = an[g(Xn) — g(c)] — an[Vg(e)]"(Xn — ¢).
If we can show that Z, = 0,(1), then by (1), Theorem 1.9(iii), and Theorem 1.11(i), result
(2) holds.

The differentiability of g at ¢ implies that for any € > 0, there is a d. > 0 such that
l9(2) —g(e) = [Vg(O)] (& — ¢)| < ellz — ¢ (4)
whenever ||z — ¢|| < d.. Let n > 0 be fixed. By (4),
P(1Zn| > m) < P X0 —cll = 6c) + Plan|| Xn — ¢l > n/e).

Since a,, — oo, (1) and Theorem 1.11(ii) imply X,, —, ¢. By Theorem 1.10(iii), (1) implies
an||Xn — ¢f| =4 [|Y|]. Without loss of generality, we can assume that n/e is a continuity
point of F”y”. Then

limsup P(|Z] = 1) < lim P(| X, — ] > 5,)
+ lim P(a,|X, — ¢ > n/e)
= P(IY] = n/e).

The proof is complete since € can be arbitrary.

In statistics, we often need a nondegenerated limiting distribution of a,[g(X,,) — g(c)] so that
probabilities involving a,[g(X,) — ¢g(c)] can be approximated by the c.d.f. of [Vg(c)]"Y, if
(2) holds. Hence, result (2) is not useful for this purpose if Vg(¢) = 0, and in such cases
result (3) may be applied.

A useful method in statistics, called the delta-method, is based on the following corollary of
Theorem 1.12.

Corollary 1.1. Assume the conditions of Theorem 1.12. If Y has the N, (0, X) distribution,
then

anlg(Xn) — g(c)] =4 N (0,[Vg(c)]"EVg(c)) .

Example 1.31. Let {X,} be a sequence of random variables satisfying \/n(X,, — ¢) —4
N(0,1). Consider the function g(x) = x?. If ¢ # 0, then an application of Corollary 1.1
gives that /n(X? — ¢*) —4 N(0,4¢?). If ¢ = 0, the first-order derivative of g at 0 is 0
but the second-order derivative of ¢ = 2. Hence, an application of result (3) gives that
nX? —4 [N(0,1)]?, which has the chi-square distribution x? (Example 1.14). The last result
can also be obtained by applying Theorem 1.10(iii).



Lecture 15: The law of large numbers

The law of large numbers concerns the limiting behavior of a sum of random variables.
The weak law of large numbers (WLLN) refers to convergence in probability.
Te strong law of large numbers (SLLN) refers to a.s. convergence.

Lemma 1.6. (Kronecker’s lemma). Let z,, € R, a, € R, 0 < a, < apy1, n = 1,2, ..., and
a, — oo. If the series >°° | r,, /a, converges, then a ' >"  x; — 0.

Our first result gives the WLLN and SLLN for a sequence of independent and identically
distributed (i.i.d.) random variables.

Theorem 1.13. Let X;, X5, ... be i.i.d. random variables.
(i) (The WLLN). A necessary and sufficient condition for the existence of a sequence of real
numbers {a,} for which

1 n
—ZXZ'—CL”—M,O (1)
=

is that nP(|X;| > n) — 0, in which case we may take a,, = E(X Ijx,<n}).
(ii) (The SLLN). A necessary and sufficient condition for the existence of a constant ¢ for
which

—ZX —as C (2)

i=1
is that E|X;| < oo, in which case ¢ = EX; and
1 n
=Y ¢(Xi — EXy) =4, 0 (3)
n i=1

for any bounded sequence of real numbers {c¢;}.

Proof. (i) We prove the sufficiency. The proof of necessity can be found in Petrov (1975).
Consider a sequence of random variables obtained by truncating X;’s at n: Y,,; = X;I{x;/<n}-
Let T, =X1+---+X,and Z,=Y,1 +---+Y,,. Then

n

P(T, # Z,) Z ) =nP(|X1| > n) = 0. (4)

For any € > 0, it follows from Chebyshev’s inequality that

Z, — EBEZ
ot

n

e) < Var(Z,)  Var(Y,) < EY?

- — )
€2n? e2n e2n

where the last equality follows from the fact that Y,,;, 7 = 1,...,n, are i.i.d.
From integration by parts, we obtain that

EY? 1 2 [m
Pl _ _/ w2dFy, (z) = _/ eP(IXy| > @)dz — nP(|X1| > n),
n n J[o,n] n Jo

which converges to 0 since nP(|.X;| > n) — 0 (why?). This proves that (Z, — EZ,)/n —, 0,
which together with (4) and the fact that EY,; = E(X,I{x,|<n}) imply the result.

1



(ii) The proof for sufficiency is given in the textbook.
We prove the necessity. Suppose that (2) holds for some ¢ € R. Then

XTZ Tn n_l Tnfl C
NP ES ¥ SR )
n n n n—1 n

From Exercise 114, X,,/n — . 0 and the i.i.d. assumption on X,,’s imply

S P(X > ) = 3 P(X,| > n) < o6,

n=1 n=1
which implies E|X;| < oc (Exercise 54). From the proved sufficiency, ¢ = FX;.

If £|X;| < oo, then a, in (1) converges to FX; and result (1) is actually established in
Example 1.28 in a much simpler way.

On the other hand, if F|X;| < oo, then the stronger result (2) can be obtained.

Some results for the case of E|X;| = 0o can be found in Exercise 148 and Theorem 5.4.3 in
Chung (1974).

The next result is for sequences of independent but not necessarily identically distributed
random variables.

Theorem 1.14. Let X, X, ... be independent random variables with finite expectations.
(i) (The SLLN). If there is a constant p € [1, 2] such that

= BIXG[P
Y —— <, (5)
‘ P
=1
then |
- Z(Xl - EXZ) —a.s. 0. (6)
N iz

(ii)) (The WLLN). If there is a constant p € [1, 2] such that

.1
nlggoﬁ;E\XAp =0, (7)
then .
1
"=

Proof. See the textbook.

Note that (5) implies (7) (Lemma 1.6).

The result in Theorem 1.14(i) is called Kolmogorov’'s SLLN when p = 2 and is due to
Marcinkiewicz and Zygmund when 1 < p < 2.

An obvious sufficient condition for (5) with p € (1,2] is sup,, F|X,[? < oc.

The WLLN and SLLN have many applications in probability and statistics.



Example 1.32. Let f and g be continuous functions on [0, 1] satisfying 0 < f(z) < Cyg(x)
for all z, where C' > 0 is a constant. We now show that

| LS S R fla)da
nlgrc}o/ / / gz dxldx2 o = fol g(x)dx (9)

(assuming that [} g(z)dz # 0). Let X;, X5, ... be i.i.d. random variables having the uni-
form distribution on [0,1]. By Theorem 1.2, E[ (X))] = [y f(x)dr < oo and E[g(X,)] =
) g(z)dx < co. By the SLLN (Theorem 1.13(11)),

LS~ F(X) —an BLF(X)).

" iz

and the same result holds when f is replaced by g. By Theorem 1.10(i),
S A L B
iy 9(Xi) " Elg(Xy)]

Since the random variable on the left-hand side of (10) is bounded by C, result (9) follows
from the dominated convergence theorem and the fact that the left-hand side of (9) is the
expectation of the random variable on the left-hand side of (10).

(10)

Example: Let T, = >, X;, where X,’s are independent random variables satisfying
P(X, = +n’) = 0.5 and § > 0 is a constant.

We want to show that T,,/n —, 0. when 6 < 0.5.

When 6 < 0.5,
) EXQ oo n26
n o__ <

By the Kolmogorov strong law of large numbers, T,,/n —, . 0.

Example (Exercise 165): Let Xj, X5, ... be independent random variables. Suppose that
"(X; — EXj)/o, —4 N(0,1), where 07 = Var(X}_, X;).

We want to show that n=' Y7, (X; — EX;) —, 0 if and only if 6,,/n — 0.

If o,/n — 0, then by Slutsky s theorem,

— > (X; —FEXj)=——) (X, — EX;) =4 0.

Assume now oy, /n does not converge to 0 but n=' X7, (X; — EX;) —, 0. Without loss of

generality, assume that o,/n — ¢ € (0, 00]. By Slutsky’s theorem,
1 n
— S (X; - EXj) = —= (X, — BX;) = 0.

This contradicts the fact that 37, (X; — EX;)/0n, —4 N(0,1). Hence, n=' 37_, (X; — EX})
does not converge to 0 in probability.



Lecture 16: The central limit theorem

The WLLN and SLLN may not be useful in approximating the distributions of (normalized)
sums of independent random variables.

We need to use the central limit theorem (CLT), which plays a fundamental role in statistical
asymptotic theory.

Theorem 1.15 (Lindeberg’s CLT). Let {X,,;,j =1, ..., k, } be independent random variables
with 0 < 02 = Var(Zlean) <oo,n=1,2,...,and k, — oo as n — oc. If

kn

1
; ZE |:(an — Ean)QI{\anfE'anbean}] — 0 for any € > 0, (1)
n j:l
then
1 &n
— > (X — EXyj) —a N(0,1). (2)

Proof. Considering (X,; — EX,;)/0,, without loss of generality we may assume EX,; =0
and o2 = 1 in this proof.

Let t € R be given. From the inequality |eV =1 — (1 4/~ 1tz — t?2?/2)| < min{|tz|?, [tz|*},
the ch.f. of X,,; satisfies

ox,, () — (1 - 1°02,/2) ‘ < B (min{[t X, %, [tX,,]}) (3)
where o7, = Var(X,,;). For any € > 0, the right-hand side of (3) is bounded by

E([tX0;* L 1x,,1<) + E (X5 "I x,1501)
which is bounded by
3 2 2 2
eftf o + B (X0 1x,,124)-
Summing over j and using condition (1), we obtain that

kn

>

J=1

ox,, (1) = (1= 1202,/2) | = 0. (4)

By condition (1), maxj<, 02
Hence

;i < € + max;<y, E(XZ]-]{\anbe}) — €2 for arbitrary € > 0.

2

g .
lim max —~ = 0. (5)
n—00 j<k, U%

2

(Note that o = 1 is assumed for convenience.) This implies that 1 — t?0;, are all between

0 and 1 for large enough n. Using the inequality
a1 — by b | <Y Jag — by
7=1

1



for any complex numbers a;’s and b;’s with |a;| < 1 and |b;) < 1, j = 1,...,m, we obtain
that

kn kn
[Te o TL (1 #ot,2) | < Do le o (1 ol 2) |
7=1 7=1 7j=1

which is bounded by #* Z] 1 on; < tPmaxjop, on — 0, since e — 11—z < 27/2if |z] < 3
and Z] y0p; = 0p = 1. Also,

n] lj(l_tZQ )‘

is bounded by the quantity on the left-hand side of (4) and, hence, converges to 0 by (4).

Thus,
kn

Haﬁxm H T 4 o(1) = e 4 o(1).

This shows that the ch.f. of Zjianj converges to the ch.f. of N(0,1) for every ¢t. By
Theorem 1.9(ii), the result follows.

Condition (1) is called Lindeberg’s condition.

From the proof, Lindeberg’s condition implies (5), which is called Feller’s condition.
Feller’s condition (5) means that all terms in the sum 02 = Y%, o, are uniformly negligible
as n — oo.

If Feller’s condition is assumed, then Lindeberg’s condition is not only sufficient but also
necessary for result (2), which is the well-known Lindeberg-Feller CLT.

A proof can be found in Billingsley (1986, pp. 373-375).

Note that neither Lindeberg’s condition nor Feller’s condition is necessary for result (2)

(Exercise 158).

A sufficient condition for Lindeberg’s condition is the following Liapounov’s condition, which
is somewhat easier to verify:

ZE|XW EX,;[*** =0 for some § > 0. (6)

7=1

02+5

Example 1.33. Let X, X5, ... be independent random variables. Suppose that X; has the
binomial distribution Bi(p;, 1), i = 1,2,..., and that o2 = >, Var(X;) = 3", pi(1 — pi) —
oo as n — oc. For each i, EX; = p; and E|X; — EX;> = (1—p;)%pi +p} (1 —p;i) < 2pi(1—py).
Hence YI' | E|X; — EX;|* < 202, i.e., Liapounov’s condition (6) holds with § = 1. Thus, by
Theorem 1.15,

1 n

— Z(XZ- —pi) —aq N(0,1). (7)

It can be shown (exercise) that the condition o, — oc is also necessary for result (7).



Useful corollaries of Theorem 1.15 (and Theorem 1.9(iii))

Corollary 1.2 (Multivariate CLT). Let Xj, ..., X,, be i.i.d. random k-vectors with a finite
¥ = Var(X;). Then

Corollary 1.3. Let X,,; € R™,1=1,..., k,, be independent random vectors with m; < m
(a fixed integer), n = 1,2,..., k,, = 00 as n — oo, and inf; ,, A_[Var(X,,;)] > 0, where A_[A]
is the smallest eigenvalue of A. Let ¢,; € R™ be vectors such that

. 2 2
Jfim (m ol 35 el ) -0

(i) Suppose that sup, , E||Xp;]|**? < oo for some § > 0. Then

1/2

écgi(xm— /{ZVM o Xm} —a N(0,1). (8)

(ii) Suppose that whenever m; =m;, 1<i<j<k,, n=1,2,..., X;; and X,,; have the same
distribution with Fl|X,;||* < co. Then (8) holds.

Proving Corollary 1.3 is a good exercise.
Applications of these corollaries can be found in later chapters.

More results on the CLT can be found, for example, in Serfling (1980) and Shorack and
Wellner (1986).

Let Y, be a sequence of random variables, {u,} and {0, } be sequences of real numbers such
that o, > 0 for all n, and (Y,, — p,)/0n —4 N(0,1). Then, by Proposition 1.16,

Jim sup |Fiy,—p,)/0. (2) = ®(2)]| =0, (9)
where @ is the c.d.f. of N(0,1).
This implies that for any sequence of real numbers {c, }, lim,, o [P(Yy, < ¢,) —®(=52)[ = 0,
i.e., P(Y, < ¢,) can be approximated by ®(=—#*), regardless of whether {c,} has a limit.
Since ®(=£2) is the c.d.f. of N(py,02), Y, is said to be asymptotically distributed as N (py,, 02)
or simply gzsymptotically normal.
For example, >, ¢y Xni in Corollary 1.3 is asymptotically normal.
This can be extended to random vectors.
For example, 3.7 ; X; in Corollary 1.2 is asymptotically distributed as Ny (nEX;,nY).



Lecture 17: Populations, samples, models, and statistics

One or a series of random experiments is performed.

Some data from the experiment(s) are collected.

Planning experiments and collecting data (not discussed in the textbook).

Data analysis: extract information from the data, interpret the results, and draw some
conclusions.

A descriptive data analysis: summary measures of the data, such as the mean, median,
range, standard deviation, etc., and some graphical displays, such as the histogram and
box-and-whisker diagram, etc.

It is simple and requires almost no assumptions, but may not allow us to gain enough insight
into the problem.

We focus on more sophisticated methods of analyzing data: statistical inference and decision
theory.

The data set is a realization of a random element defined on a probability space (2, F, P)
P is called the population.

The data set or the random element that produces the data is called a sample from P.
The size of the data set is called the sample size.

A population P is known if and only if P(A) is a known value for every event A € F.

In a statistical problem, the population P is at least partially unknown.

We would like to deduce some properties of P based on the available sample.

Examples 2.1-2.3

A statistical model (a set of assumptions) on the population P in a given problem is often
postulated to make the analysis possible or easy.

Although testing the correctness of postulated models is part of statistical inference and
decision theory, postulated models are often based on knowledge of the problem under con-
sideration.

Definition 2.1. A set of probability measures Py on (€2, F) indexed by a parameter § € ©
is said to be a parametric family if and only if © C R? for some fixed positive integer d and
each Py is a known probability measure when 6 is known. The set O is called the parameter
space and d is called its dimension.

Parametric model: the population P is in a parametric family P = {F, : § € ©}
P ={P,;: 0 € O} is identifiable if and only if 6; # 6, and 0; € © imply Py, # P, .
In most cases an identifiable parametric family can be obtained through reparameterization.

A family of populations P is dominated by v (a o-finite measure) if P < v for all P € P
P can be identified by the family of densities {2 : P € P} or {£% : § € O}.

Parametric methods: methods designed for parametric models



Example (The k-dimensional normal family).
P={Nu(pt,X): peRF ¥ e M},

where M, is a collection of k£ x k symmetric positive definite matrices.
This family is dominated by the Lebesgue measure on RF.
When k=1,P ={N(u,0?): peR, 0>>0}.

Nonparametric family: P is not parametric according to Definition 2.1.
A nonparametric model: the population P is in a given nonparametric family.

Examples of nonparametric family on (R*, B¥):

(1) The joint c.d.f.’s are continuous.

(2) The joint c.d.f.’s have finite moments of order < a fixed integer.
(3) The joint c.d.f.’s have p.d.f.’s (e.g., Lebesgue p.d.f.’s).

(4) k =1 and the c.d.f.’s are symmetric.

(5) The family of all probability measures on (R¥, B¥).

Nonparametric methods: methods designed for nonparametric models
Semi-parametric models and methods
Statistics and their distributions

Our data set is a realization of a sample (random vector) X from an unknown population P
Statistic 7(X): A measurable function 7" of X; T'(X) is a known value whenever X is known.
Statistical analyses are based on various statistics, for various purposes.

X itself is a statistic, but it is a trivial statistic.

The range of a nontrivial statistic 7(X) is usually simpler than that of X.

For example, X may be a random n-vector and T'(X) may be a random p-vector with a p
much smaller than n.

o(T(X)) C 0(X) and the two o-fields are the same if and only if 7" is one-to-one.

Usually o(7T'(X)) simplifies 0(X), i.e., a statistic provides a “reduction” of the o-field.

The “information” within the statistic 7'(X) concerning the unknown distribution of X is
contained in the o-field o(T'(X)).

S is any other statistic for which o(S(X)) = o(T'(X)).

Then, by Lemma 1.2, S is a measurable function of 7', and 7" is a measurable function of S.
Thus, once the value of S (or T') is known, so is the value of T (or S).

It is not the particular values of a statistic that contain the information, but the generated
o-field of the statistic.

Values of a statistic may be important for other reasons.

A statistic T'(X) is a random element.

If the distribution of X is unknown, then the distribution of 7" may also be unknown,
although 7" is a known function.

Finding the form of the distribution of 7" is one of the major problems in statistical inference
and decision theory.



Since T is a transformation of X, tools we learn in Chapter 1 for transformations may be
useful in finding the distribution or an approximation to the distribution of 7'(X).

Example 2.8. Let Xi,..., X, be i.i.d. random variables having a common distribution P
and X = (Xy,..., X,,).

The sample mean X =n~' 3" | X; and sample variance S? = (n —1)"' ", (X; — X)? are
two commonly used statistics.

Can we find the joint or the marginal distributions of X and S?%?

It depends on how much we know about P.

Moments of X and S?

If P has a finite mean p, then EX = p.

If Pe{P): 0 €0}, then EX = [xdPy = p(f) for some function pu(-).

Even if the form of p is known, u(0) is still unknown when € is unknown.

If P has a finite variance o2, then Var(X) = o?/n, which equals 0%(#)/n for some function
o?(+) if P is in a parametric family.

With a finite 02 = Var(X,), we can also obtain that ES* = o2.

With a finite E|X;|?, we can obtain E(X)? and Cov(X, S?).

With a finite E|X,|*, we can obtain Var(S?) (exercise).

The distribution of X

If P is in a parametric family, we can often find the distribution of X.

See Example 1.20 and some exercises in §1.6.

For example, X is N(u,0?/n) if P is N(u,0?);

nX has the gamma distribution I'(n, §) if P is the exponential distribution E(0, §).

If P is not in a parametric family, then it is usually hard to find the exact form of the
distribution of X.

One can use the CLT to obtain an approximation to the distribution of X.

Applying Corollary 1.2 (for the case of k = 1), we obtain that /n(X — u) —4 N(0,0?),
where ;1 and o2 are the mean and variance of P, respectively, and are assumed to be finite.
The distribution of X can be approximated by N(u,o?%/n)

The distribution of S?

If Pis N(u,0?), then (n—1)S?/0? has the chi-square distribution 2 , (see Example 2.18).
An approximate distribution for S? can be obtained from the approximate joint distribution
of X and S? discussed next.

Joint distribution of X and S?

If Pis N(u,0?), then X and S? are independent (Example 2.18).

Hence, the joint distribution of (X, S?) is the product of the marginal distributions of X
and S? given in the previous discussion.

Without the normality assumption, an approximate joint distribution can be obtained.
Assume that = EX;, 0? = Var(X;), and E|X;|* are finite.

Let V; = (X; — p, (X; — p)?),i=1,...,n.



Y1, ..., Y, are i.i.d. random 2-vectors with EY; = (0, 0?) and variance-covariance matrix

O'2 E(Xl—lj)3
E(Xy —p)’ E(X)—p)t—o

Y

Note that Y = n 'S V; = (X — 41, 5?), where §? = n~ ' Y0 (X, — )2
Applying the CLT (Corollary 1.2) to Y;’s, we obtain that

V(X — p, S* — 0%) =4 Ny(0,%).

Since
n

5% =

S~ (X~ p)?]

and X —,, p (the SLLN), an application of Slutsky’s theorem leads to

n—1

V(X 1, S 0?) =4 Na(0,5).

Example 2.9 (Order statistics). Let X = (X}, ..., X,,) with i.i.d. random components.

Let X(;) be the ith smallest value of X, ..., X,.

The statistics X(y), ..., X() are called the order statistics.

Order statistics is a set of very useful statistics in addition to the sample mean and variance.
Suppose that X; has a c.d.f. F' having a Lebesgue p.d.f. f.

Then the joint Lebesgue p.d.f. of X(yy,..., X(,,) is

nlf(z1)f(x2) - flrn) o1 <x2<---<xp
g(x1, 29y oy y) =
0 otherwise.

The joint Lebesgue p.d.f. of X;) and X(;), 1 <i<j < mn,is
nl[F (@) F(y)—F (@) " [1-F)]" 7 f(z)f(y)

(=G —i=1)!(n—7)!

0 otherwise

T <y
gij(z,y) =
and the Lebesgue p.d.f. of X(; is

n!

(@) = Gyl Pl 1= PP ).




Lecture 18: Exponential and location-scale families

Two important types of parametric families

Definition 2.2 (Exponential families). A parametric family {P : § € ©} dominated by a
o-finite measure v on (2, F) is called an ezponential family if and only if

dPy
dv

where exp{xz} = e*, T is a random p-vector with a fixed positive integer p, 7 is a function
from © to RP, h is a nonnegative Borel function on (€2, F), and

£(0) = 1og { || exp{[n(0)"T () }h(w)dv(w) ]

(w) = exp{{n(O)]"T'(w) — £(O)}h(w), we, (1)

In Definition 2.2, T" and h are functions of w only, whereas 1 and & are functions of 6 only.
The representation (1) of an exponential family is not unique.

n(0) = Dn(f) with a p x p nonsingular matrix D gives another representation (with 7T
replaced by T = (D7) ~'T).

A change of the measure that dominates the family also changes the representation.

If we define A(A) = [, hdv for any A € F, then we obtain an exponential family with

densities
dPy

7 (w) = exp{[n(0)"T(w) — £(0)}. (2)

In an exponential family, consider the reparameterization n = n(f) and
fo(w) =exp{n"T'(w) = C(n)}h(w), weEQ, (3)
where ((n) = log { Jo exp{n"T (w) } h(w)dv(w)}.

This is the canonical form for the family (not unique).

The new parameter 7 is called the natural parameter.

The new parameter space = = {n(f) : € O}, a subset of R?, is called the natural parameter
space.

An exponential family in canonical form is called a natural exponential family.

If there is an open set contained in the natural parameter space of an exponential family,
then the family is said to be of full rank.

Example 2.6. The normal family {N(u,0?) : u € R,o > 0} is an exponential family, since
the Lebesgue p.d.f. of N(u,0?) can be written as

Hence, T'(z) = (x, —2?), n(0) = (i. L.), 0 = (1, 02), £(0) = 45 +log o, and h(z) = 1//2.

202

Let n = (m,m) = ( L ) Then = = R x (0,00) and we can obtain a natural exponential

g2 202

family of full rank with ((n) = n?/(4ny) + log(1/y/2n,).

1



A subfamily of the previous normal family, {N(u, u?) : p € R, i # 0}, is also an exponential
family with the natural parameter n = (%, #) and natural parameter space = = {(z,y) :
y=2x? x €R, y >0} This exponential family is not of full rank.

For an exponential family, (2) implies that there is a nonzero measure A such that

dPy
dA
We can use this fact to show that a family of distributions is not an exponential family.
Consider the family of uniform distributions, i.e., Py is U(0, ) with an unknown 6 € (0, c0).
If {Py:60 ¢ (0,00)} is an exponential family, then (4) holds with a nonzero measure A.
For any ¢ > 0, there is a § < t such that Py([t,oc)) = 0, which with (4) implies that
A([t, 00)) = 0.
Also, for any t < 0, Py((—o0,t]) = 0, which with (4) implies that A((—oo,t]) = 0.
Since t is arbitrary, A = 0.
This contradiction implies that {Py : § € (0,00)} cannot be an exponential family.

(w)>0 for all w and 6. (4)

Which of the parametric families from Tables 1.1 and 1.2 are exponential families?
An important exponential family containing multivariate discrete distributions.

Example 2.7 (The multinomial family). Consider an experiment having & + 1 possible
outcomes with p; as the probability for the ith outcome, i = 0,1, ..., k, Zf:o pi=1. Inn
independent trials of this experiment, let X; be the number of trials resulting in the ith
outcome, i = 0,1, ..., k. Then the joint p.d.f. (w.r.t. counting measure) of (X, X1, ..., Xj) is

n!

fa(l‘()al‘la 1I‘k) = T 'pgopgfl te 'pzkIB(l‘Oaxla -"7xk)a
2!

:,EU!:,EI! .t
where B = {(7¢, 71, ..., 7%) : x;'s are integers > 0, ¥F 2, =n} and 6 = (po,p1, ..., px). The
distribution of (Xg, X1, ..., X ) is called the multinomial distribution, which is an extension of
the binomial distribution. In fact, the marginal c.d.f. of each X is the binomial distribution
{fs: 6 € ©} is the multinomial family, where © = {§ € R*"': 0 <p; < 1,55 p; = 1}.
Let x = (x9, %1, ..., k), n = (logpo,logps, ....logpe), and h(z) = [n!/(xelx ! 2 )] (2).
Then

fo(xo, 21, ..., xp) = exp {n"x} h(z), 2 RF (5)

Hence, the multinomial family is a natural exponential family with natural parameter 7.
However, representation (5) does not provide an exponential family of full rank, since there
is no open set of R¥*! contained in the natural parameter space.

A reparameterization leads to an exponential family with full rank.

Using the fact that % , X; = n and ©F_  p; = 1, we obtain that

fﬂ(‘rﬂaxla Jxk) = €XDp {77:33* - C(U*)} h(flf), T e Rk+17 (6)

where =, = (21, ..., 2¢), 7« = (log(p1/po), ---, log(pr/po)), and {(n.) = —nlogpe.
The 7,-parameter space is R*.
Hence, the family of densities given by (6) is a natural exponential family of full rank.

2



If X;1,....,X,, are independent random vectors with p.d.f.’s in exponential families, then the
p.d.f. of (Xi,..., X},) is again in an exponential family.

The following result summarizes some other useful properties of exponential families.

Its proof can be found in Lehmann (1986).

Theorem 2.1. Let P be a natural exponential family given by (3).
(i) Let T'=(Y,U) and n = (¥, ¢), where Y and ) have the same dimension.
Then, Y has the p.d.f.

foy) = exp{d7y — ((n)}

w.r.t. a o-finite measure depending on .

In particular, 7" has a p.d.f. in a natural exponential family.

Furthermore, the conditional distribution of Y given U = wu has the p.d.f. (w.r.t. a o-finite
measure depending on u)

fﬁ,u (y) = exp{ﬁTy - Cu(’&)}a

which is in a natural exponential family indexed by v.
(ii) If 7 is an interior point of the natural parameter space, then the m.g.f. v, of Py, 0T !
is finite in a neighborhood of 0 and is given by

Uno () = exp{Cno +1) = C(mo) }-

Furthermore, if f is a Borel function satisfying [ |f|dP,, < oo, then the function

| Fl@) expln T(w)}h(w)dv(w)

is infinitely often differentiable in a neighborhood of 1y, and the derivatives may be computed
by differentiation under the integral sign.

Example 2.5. Let Py be the binomial distribution Bi(f, n) with parameter 6, where n is a
fixed positive integer. Then {Py : 6§ € (0,1)} is an exponential family, since the p.d.f. of P,
w.r.t. the counting measure is

(T(x) =z, n(0) =log %, () = —nlog(1 = 0), and h(z) = (!)Ij01,..ny(x)). If we let
n = log 1%00, then Z = R and the family with p.d.f.’s

is a natural exponential family of full rank.
Using Theorem 2.1(ii) and the result in Example 2.5, we obtain that the m.g.f. of the binomial
distribution Bi(f,n) is

Uy (t) = exp{nlog(1+€"") — nlog(1 + ")}
(14 emet\"
S\ 1+en

=(1—0+0e")".
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Definition 2.3 (Location-scale families). Let P be a known probability measure on (R*, B),
Y C R¥, and M, be a collection of k x k symmetric positive definite matrices. The family

{P(#’Z) cpeEV, X e Mk} (7)
is called a location-scale family (on R*), where
Puxy(B) =P (X "*(B-p), BeB,

STVHB —p) = {22 (x—p): x € B} C RF, and X7/2 is the inverse of the “square root”
matrix ¥'/? satisfying ©1/?2%1/2 = 3. The parameters p and ¥.'/? are called the location and
scale parameters, respectively.

The following are some important examples of location-scale families.

The family {Py, 1,y : pn€ RE}Y is a location family, where Iy is the k x k identity matrix.
The family {Poyx): X € M} is a scale family.

In some cases, we consider a location-scale family of the form {P, ,27,): p € RE, 0 > 0}.
If Xy,..., X} are i.i.d. with a common distribution in the location-scale family {P(W,z) D E
R,o > 0}, then the joint distribution of the vector (X7, ..., X}) is in the location-scale family
{Puoery: p€V,0>0}withV={(z,...,2) e RF: z € R}.

A location-scale family can be generated as follows.
Let X be a random k-vector having a distribution P.
Then the distribution of X'2X + p is P, x).

On the other hand, if X is a random k-vector whose distribution is in the location-scale
family (7), then the distribution DX + ¢ is also in the same family, provided that Duy+c¢ € V
and DXD"™ € M,.

Let F' be the c.d.f. of P.
Then the c.d.f. of P, 5)is F (2*1/2@ — ,u)), z € R

If F has a Lebesgue p.d.f. f, then the Lebesgue p.d.f. of P, 5 is Det(X""/2) f (2*1/2 (x — u)),
r € RF (Proposition 1.8).

Many families of distributions in Table 1.2 (§1.3.1) are location, scale, or location-scale
families.

For example, the family of exponential distributions E(a,f) is a location-scale family on R
with location parameter a and scale parameter 6;

the family of uniform distributions U(0, ) is a scale family on R with a scale parameter 6.
The k-dimensional normal family is a location-scale family on R*.



Lecture 19: Sufficient statistics and factorization theorem

A statistic 7'(X) provides a reduction of the o-field o(X)

Does such a reduction results in any loss of information concerning the unknown population?
If a statistic T'(X) is fully as informative as the original sample X, then statistical analyses
can be done using 7'(X) that is simpler than X.

The next concept describes what we mean by fully informative.

Definition 2.4 (Sufficiency). Let X be a sample from an unknown population P € P,
where P is a family of populations. A statistic 7'(X) is said to be sufficient for P € P (or
for # € © when P = {Py : 6 € ©} is a parametric family) if and only if the conditional
distribution of X given T is known (does not depend on P or #).

Once we observe X and compute a sufficient statistic 7'(X), the original data X do not
contain any further information concerning the unknown population P (since its conditional
distribution is unrelated to P) and can be discarded.

A sufficient statistic T'(X) contains all information about P contained in X and provides a
reduction of the data if 7" is not one-to-one.

The concept of sufficiency depends on the given family P.
If T is sufficient for P € P, then T is also sufficient for P € Py, C P but not necessarily
sufficient for P € P; D P.

Example 2.10. Suppose that X = (X;,..., X},,) and X;, ..., X,, are i.i.d. from the binomial
distribution with the p.d.f. (w.r.t. the counting measure)

fo(z) =07 (1= 0)" *Ip(2), z€R, 6€(0,1).

For any realization x of X, x is a sequence of n ones and zeros.
Consider the statistic T(X) = Y7 ; X;, which is the number of ones in X.
T contains all information about ), since # is the probability of an occurrence of a one in z.
Given 7' = t (the number of ones in x), what is left in the data set z is the redundant
information about the positions of ¢ ones.
Compute the conditional distribution of X given T = ¢.
P(T =1) = ()01 — 0)" "Lyos....ap (1)
Let x; be the 1th component of x.
Ift #3502, then P(X =2, T =t)=0. If t =37, x;, then
P(X=x2,T=t)= H P(X;=x;)=0'(1-0)"" H Io1y(x;).

i=1 =1
Let By = {(x1,...,x,) : ©; =0,1, X, 2; =t}. Then
P X =xT=t 1
P(X =a|T=1)= X =2 )——fMW)

P(T=t (1)

is a known p.d.f. This shows that T'(X) is sufficient for § € (0, 1), according to Definition
2.4 with the family {f, : 6 € (0,1)}.




Finding a sufficient statistic by means of the definition is not convenient

It involves guessing a statistic T that might be sufficient and computing the conditional
distribution of X given 7" = t.

For families of populations having p.d.f.’s, a simple way of finding sufficient statistics is to
use the factorization theorem.

Lemma 2.1. If a family P is dominated by a o-finite measure, then P is dominated by a
probability measure ) = Y72, ¢; P;, where ¢;’s are nonnegative constants with »>>°, ¢; =1
and P, € P.

Proof. See the textbook.

Theorem 2.2 (The factorization theorem). Suppose that X is a sample from P € P and
P is a family of probability measures on (R", B") dominated by a o-finite measure v. Then
T(X) is sufficient for P € P if and only if there are nonnegative Borel functions A (which
does not depend on P) on (R",B") and g, (which depends on P) on the range of T such

that
dP

— (@) = g,(T'(x))h(z). (1)

Proof. (i) Suppose that T is sufficient for P € P.

For any A € B", P(A|T) does not depend on P.

Let () be the probability measure in Lemma 2.1.

By Fubini’s theorem and the result in Exercise 35 of §1.6,

'M8

QANB)=) ¢jPj(ANB)

7j=1

SO

¢ [, PAIT)aP,
f; P(AIT)AP

P(AIT)dQ

1

<.
Il

Il Il
QU\ ‘\

for any B € o(T). Hence, P(A|T) = Eq(I4|T) a.s. Q, where Eg(I4|T) denotes the condi-
tional expectation of I4 given T w.r.t. Q.
Let g, (T") be the Radon-Nikodym derivative dP/d( on the space (R",0(T), Q). Then

— / P(A|T)dP

= [ Bq(14IT)g,(T)dQ

= [ EalLug, (T)IT]dQ

_/ gP _dV

for any A € B". Hence, (1) holds with h = dQ/dv.
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(ii) Suppose that (1) holds. Then

0=/ gy =9 T) as. Q, 2
dQ du/i_zlp dv 9r( )/i_zlgpi( ) as. @ (2)

where the second equality follows from the result in Exercise 35 of §1.6.
Let A€ o(X)and P € P,
The sufficiency of T follows from

P(A|T) = Eo(I4|T) as. P, (3)

where Eg(I4|T) is given in part (i) of the proof.

This is because Eq(14|T) does not vary with P € P, and result (3) and Theorem 1.7 imply
that the conditional distribution of X given T is determined by Eq(I4|T), A € o(X).

By the definition of conditional probability, (3) follows from

/B 14dP = /B Eo(I4|T)dP (4)

for any B € o(T).
By (2), dP/dQ is a Borel function of 7T'.
Then the right-hand side of (4) is equal to

dP dP dP
Eo(I4T) :/E I—‘T d :/I—d,
/B QUalT) 310 = |, Q("‘dQ ) ©= [, a0
which equals the left-hand side of (4).

This proves (4) for any B € o(7') and completes the proof.

If P is an exponential family, then Theorem 2.2 can be applied with

90(t) = exp{[n(0)]"t — £(0)},

i.e., T is a sufficient statistic for § € ©.

In Example 2.10 the joint distribution of X is in an exponential family with 7'(X) = > ; X.
Hence, we can conclude that T is sufficient for # € (0, 1) without computing the conditional
distribution of X given 7.



Example 2.11 (Truncation families). Let ¢(z) be a positive Borel function on (R, B) such
that [”¢(z)dz < co for any @ and b, o0 < a < b < co. Let § = (a,b), © = {(a,b) € R? :
a < b}, and

fo(z) = c(0)p(x) I(ap) (),

-1

where ¢(0) = [f; ¢(T)dT] . Then {fy : 6 € O}, called a truncation family, is a parametric
family dominated by the Lebesgue measure on R. Let Xy, ..., X,, be i.i.d. random variables
having the p.d.f. f5. Then the joint p.d.f. of X = (X1,..., X,,) is

n n

LT fo(zs) = [e(0)]" La.00) (#(1)) I—o0 ) (2(m)) TT O(3), (5)

i=1 i=1

where z(;) is the 7th smallest value of xy,...,2,. Let T(X) = (X, X)), go(t1,t2) =
[e(0)]™ (a,00) (t1) I (0o ) (t2), and h(z) = TI7-; #(x;). By (5) and Theorem 2.2, T'(X) is suf-
ficient for 6 € ©.

Example 2.12 (Order statistics). Let X = (Xi,...,X,,) and Xi,..., X, be i.i.d. random
variables having a distribution P € P, where P is the family of distributions on R having
Lebesgue p.d.f.’s. Let X(y),..., X(,) be the order statistics given in Example 2.9. Note that
the joint p.d.f. of X is

fl@) - flan) = flaw) - flam).
Hence, T(X) = (Xq)y, ..., X(n)) is sufficient for P € P. The order statistics can be shown to

be sufficient even when P is not dominated by any o-finite measure, but Theorem 2.2 is not
applicable (see Exercise 31 in §2.6).



Lecture 20: Minimal sufficiency

There are many sufficient statistics for a given family P.

In fact, X (the whole data set) is sufficient.

If T is a sufficient statistic and 7" = ¢(S), where 1 is measurable and S is another statistic,
then S is sufficient.

This is obvious from Theorem 2.2 if the population has a p.d.f., but it can be proved directly
from Definition 2.4 (Exercise 25).

For instance, if Xi,..., X, are iid with P(X; = 1) = # and P(X; = 0) = 1 — 6, then
(X, X, Yo 01 X;) is sufficient for 6, where m is any fixed integer between 1 and n.

If T is sufficient and 7' = ¢(.S) with a measurable 1 that is not one-to-one, then o(7T") C o(S)
and T is more useful than S, since T provides a further reduction of the data (or o-field)
without loss of information.

Is there a sufficient statistic that provides “maximal” reduction of the data?

If a statement holds except for outcomes in an event A satisfying P(A) = 0 for all P € P,
then we say that the statement holds a.s. P.

Definition 2.5 (Minimal sufficiency). Let T" be a sufficient statistic for P € P. T is called
a minimal sufficient statistic if and only if, for any other statistic S sufficient for P € P,
there is a measurable function ¢ such that 7" = ¢(S) a.s. P.

If both T and S are minimal sufficient statistics, then by definition there is a one-to-one
measurable function ¢ such that 7= (S) a.s. P.

Hence, the minimal sufficient statistic is unique in the sense that two statistics that are
one-to-one measurable functions of each other can be treated as one statistic.

Example 2.13. Let Xy, ..., X, be i.i.d. random variables from P, the uniform distribution
U(#,0+1), 0 € R. Suppose that n > 1. The joint Lebesgue p.d.f. of (X7, ..., X},) is

n

fﬂ(x) - H ](0,€+1)(xi) - ](:r(n)fl,aj(l))(g); T = (:Ela an) € Rn:

i=1

where z(; denotes the ith smallest value of xy,...,z,. By Theorem 2.2, T' = (X(1), X)) is
sufficient for #. Note that

xy =sup{f: fo(x) >0} and x4,y =1+inf{f: fy(x) > 0}.

If S(X) is a statistic sufficient for 6, then by Theorem 2.2, there are Borel functions h and
gg such that fy(z) = go(S(z))h(z). For z with h(z) > 0,

w1y =sup{l : go(S(x)) >0} and  w(,) =14 inf{: go(S(x)) > 0}.

Hence, there is a measurable function ¢ such that 7'(z) = ¢(S(x)) when h(x) > 0. Since
h > 0 a.s. P, we conclude that T is minimal sufficient.

Minimal sufficient statistics exist under weak assumptions, e.g., P contains distributions on
RF dominated by a o-finite measure (Bahadur, 1957).



Useful tools for finding minimal sufficient statistics.

Theorem 2.3. Let P be a family of distributions on R*.

(i) Suppose that Py C P and a.s. Py implies a.s. P. If T' is sufficient for P € P and minimal
sufficient for P € Py, then T is minimal sufficient for P € P.

(ii) Suppose that P contains p.d.f.’s fy, f1, fa2, ..., w.r.t. a o-finite measure. Let fy(z) =
Yo cifi(x), where ¢; > 0 for all ¢ and }°;¢; = 1, and let T;(X) = fi(z)/fo(z) when
Joolz) > 0,4 =0,1,2,.... Then T(X) = (Ty,T1,T5,...) is minimal sufficient for P € P.
Furthermore, if {z : f;(z) > 0} C {z : fo(x) > 0} for all i, then we may replace fo by fy, in
which case T'(X) = (11,15, ...) is minimal sufficient for P € P.

(iii) Suppose that P contains p.d.f.’s f, w.r.t. a o-finite measure and that there exists a
sufficient statistic 7'(X) such that, for any possible values z and y of X, f,(z) = f,(y)¢(z, y)
for all P implies T'(x) = T(y), where ¢ is a measurable function. Then 7'(X) is minimal
sufficient for P € P.

Proof. (i) If S is sufficient for P € P, then it is also sufficient for P € Py and, therefore,
T = (S) a.s. Py holds for a measurable function ). The result follows from the assumption
that a.s. Py implies a.s. P.

(ii) Note that fo > 0 a.s. P. Let ¢;(T) = T;, i = 0,1,2,.... Then fi(x) = g;(T(2)) foo(x)
a.s. P. By Theorem 2.2, T is sufficient for P € P. Suppose that S(X) is another sufficient
statistic. By Theorem 2.2, there are Borel functions h and g; such that f;(z) = §;(S(x))h(z),
i = 0,1,2,.... Then Ti(x) = gi(S(v))/ 3720 ¢;g;(S(z)) for x’s satisfying f.(v) > 0. By
Definition 2.5, 7" is minimal sufficient for P € P. The proof for the case where f is
replaced by fy is the same.

(iii) From Bahadur (1957), there exists a minimal sufficient statistic S(X'). The result follows
if we can show that T(X) = ¢(S(X)) a.s. P for a measurable function ¢. By Theorem
2.2, there are Borel functions g, and h such that f.(z) = ¢,(S(z))h(x) for all P. Let
A ={xz: h(x) =0}. Then P(A) =0 for all P. For z and y such that S(z) = S(y), 2 ¢ A
and y & A,

fo(2) =g, (S(x))h(x)
=9, (S(W)h(x)h(y)/h(y)
= Io(y)h(x)/h(y)

for all P. Hence T(x) = T(y). This shows that there is a function ¢ such that T(z) =
¥(S(x)) except for € A. It remains to show that ¢ is measurable. Since S is minimal
sufficient, g(7(X)) = S(X) a.s. P for a measurable function g. Hence g is one-to-one and
¢ = g~'. The measurability of ¢ follows from Theorem 3.9 in Parthasarathy (1967).
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Example 2.14. Let P = {fy: 0 € O} be an exponential family with p.d.f.’s

Jo(x) = exp{[n(0)]"T (x) — £(0)}h(x)

Suppose that there exists ©y = {6y, 0, ...,6,} C © such that the vectors n; = n(6;) — n(6o),
i = 1,...,p, are linearly independent in R?. (This is true if the family is of full rank.) We
have shown that 7'(X) is sufficient for § € ©. We now show that 7" is in fact minimal
sufficient for § € ©. Let Py = {fy : 0 € Og}. Note that the set {x : fy(x) > 0} does not
depend on 6. It follows from Theorem 2.3(ii) with fo, = fy, that

S(X) = (eXp{n{T(f) - fl}a ) eXP{U;T(f) - fp})

is minimal sufficient for 6 € O, where &; = £(0;) —&£(6y). Since 7;’s are linearly independent,
there is a one-to-one measurable function ¢ such that 7'(X) = ¢/(S(X)) a.s. Py. Hence, T is
minimal sufficient for § € ©,. It is easy to see that a.s. Py implies a.s. P. Thus, by Theorem
2.3(i), T is minimal sufficient for 6 € ©.

The results in Examples 2.13 and 2.14 can also be proved by using Theorem 2.3(iii).

The sufficiency (and minimal sufficiency) depends on the postulated family P of populations
(statistical models).

It may not be a useful concept if the proposed statistical model is wrong or at least one has
some doubts about the correctness of the proposed model.

From the examples in this section and some exercises in §2.6, one can find that for a wide
variety of models, statistics such as the sample mean X, the sample variance S2, (Xay, X))
in Example 2.11, and the order statistics in Example 2.9 are sufficient.

Thus, using these statistics for data reduction and summarization does not lose any infor-
mation when the true model is one of those models but we do not know exactly which model
is correct.

A minimal statistic is not always the “simplest sufficient statistic”.
For example, if X is minimal sufficent, then so is (X, exp{X}).



Lecture 21: Complete statistics

A statistic V(X)) is ancillary if its distribution does not depend on the population P

V(X) is first-order ancillary if E[V(X)] is independent of P.

A trivial ancillary statistic is the constant statistic V(X) =c € R.

If V(X) is a nontrivial ancillary statistic, then o(V (X)) C o(X) is a nontrivial o-field that
does not contain any information about P.

Hence, if S(X) is a statistic and V' (S(X)) is a nontrivial ancillary statistic, it indicates that
o(S(X)) contains a nontrivial o-field that does not contain any information about P and,
hence, the “data” S(X) may be further reduced.

A sufficient statistic T" appears to be most successful in reducing the data if no nonconstant
function of T is ancillary or even first-order ancillary.

Definition 2.6 (Completeness). A statistic 7'(X) is said to be complete for P € P if and
only if, for any Borel f, E[f(T)] = 0 for all P € P implies f = 0 a.s. P. T is said to be
boundedly complete if and only if the previous statement holds for any bounded Borel f.

A complete statistic is boundedly complete.

If T is complete (or boundedly complete) and S = (T for a measurable 1, then S is
complete (or boundedly complete).

Intuitively, a complete and sufficient statistic should be minimal sufficient (Exercise 48).

A minimal sufficient statistic is not necessarily complete; for example, the minimal sufficient
statistic (Xq), X(»)) in Example 2.13 is not complete (Exercise 47).

Finding a complete and sufficient statistic

Proposition 2.1. If P is in an exponential family of full rank with p.d.f.’s given by

folw) = exp{nT(x) — C(n)}h(z),

then T'(X) is complete and sufficient for n € =.
Proof. We have shown that T is sufficient. Suppose that there is a function f such that
E[f(T)] =0 for all n € Z. By Theorem 2.1(i),

/f(t) exp{n"t —((n)}dA=0 forallne =,
where A is a measure on (R?,B?). Let n be an interior point of =. Then
/ Fo(t)etdx = / Fo (D)t N for all n € N(n), (1)
where N(ng) = {n € R : ||n — no|| < €} for some € > 0. In particular,
/ Fo(t)emtdn = / F(t)etdN = .
If c=0, then f =0 a.e. \. If ¢ > 0, then ¢~ f(t)e"! and ¢ L f_(t)e"! are p.d.f.’s w.r.t. A
and (1) implies that their m.g.f.’s are the same in a neighborhood of 0. By Theorem 1.6(ii),

L (t)emt =cLf_(t)e®! ie., f=f, — f- =0ae. X Hence T is complete.
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Example 2.15. Suppose that X, ..., X,, are i.i.d. random variables having the N(u,c?)
distribution, € R, ¢ > 0. From Example 2.6, the joint p.d.f. of X7, ..., X}, is

(2m) "2 exp {m Ty + n2T> — n¢(n)},

where T = Y0, Xy, To = =37, X2, and n = (n1,1m0) = (;‘—z,ﬁ) Hence, the family
of distributions for X = (Xj,...,X,) is a natural exponential family of full rank (2 =

R x (0,00)). By Proposition 2.1, T(X) = (13,T») is complete and sufficient for n. Since
there is a one-to-one correspondence between n and 6§ = (u,0?), T is also complete and
sufficient for 6. It can be shown that any one-to-one measurable function of a complete and
sufficient statistic is also complete and sufficient (exercise). Thus, (X, S?) is complete and
sufficient for §, where X and S? are the sample mean and sample variance, respectively.

Example 2.16. Let X, ..., X, beii.d. random variables from P, the uniform distribution
U(0,0), & > 0. The largest order statistic, X, is complete and sufficient for 6 € (0, c0).
The sufficiency of X,y follows from the fact that the joint Lebesgue p.d.f. of X;,..., X}, is
0~ "I0,0)(x(n)). From Example 2.9, X,y has the Lebesgue p.d.f. (nz"~'/0")I g (z) on R.
Let f be a Borel function on [0, c0) such that E[f(X(,))] = 0 for all # > 0. Then

0
/ f(z)z"'dr =0 for all § > 0.
0

Let G(6) be the left-hand side of the previous equation. Applying the result of differentiation
of an integral (see, e.g., Royden (1968, §5.3)), we obtain that G’(0) = f(0)0"! a.e. m, where
m. is the Lebesgue measure on ([0, 00), Bjo,«)). Since G(#) = 0 for all > 0, f(6)6" ' =0
a.e. my and, hence, f(z) = 0 a.e. my. Therefore, X,y is complete and sufficient for 6 €
(0, 00).

Example 2.17. In Example 2.12, we showed that the order statistics T'(X) = (X, ..., X(n))
of i.i.d. random variables X1, ..., X,, is sufficient for P € P, where P is the family of distri-
butions on R having Lebesgue p.d.f.’s. We now show that 7'(X) is also complete for P € P.
Let Py be the family of Lebesgue p.d.f.’s of the form

f(x) =C(by,...,0,) exp{—xZ" + 012+ 0>+ + O,2"},

where 6, € R and C(6,,...,6,) is a normalizing constant such that [ f(z)dx = 1. Then
Py C P and Py is an exponential family of full rank. Note that the joint distribution of
X = (Xy,...,X,) is also in an exponential family of full rank. Thus, by Proposition 2.1,
U = (Uh,...,U,) is a complete statistic for P € Py, where U; = >, X7 Since a.s. P,
implies a.s. P, U(X) is also complete for P € P.

The result follows if we can show that there is a one-to-one correspondence between T'(X)
and U(X). Let Vi = X0, Xy, Vo = 20, XaXy, Vs = 2 X X Xpyoo, Vo = X0o-- X
From the identities

Up = ViUpy +VoUp_g — -+ (=)W Uy + (—=1D)FkV, = 0,



k = 1,...,n, there is a one-to-one correspondence between U(X) and V(X) = (V4,...,V,).
From the identity

(t— X)) (t=X,) =t" = Vit" L Vo™ — o (=1)"V,

there is a one-to-one correspondence between V' (X) and T(X). This completes the proof
and, hence, T'(X) is sufficient and complete for P € P. In fact, both U(X) and V(X)) are
sufficient and complete for P € P.

The relationship between an ancillary statistic and a complete and sufficient statistic is
characterized in the following result.

Theorem 2.4 (Basu’s theorem). Let V and T be two statistics of X from a population
P e P. If V is ancillary and T is boundedly complete and sufficient for P € P, then V and
T are independent w.r.t. any P € P.

Proof. Let B be an event on the range of V. Since V is ancillary, P(V~!(B)) is a constant.
Since T is sufficient, E[I5(V)|T] is a function of T' (independent of P). Since

E{E[Iz(V)|T] - P(V"}B))} =0 forall PcP,

P(V-YB)|IT) = E[Ig(V)|T] = P(V7Y(B)) a.s. P, by the bounded completeness of T Let
A be an event on the range of T. Then,

P(T™Y(A) NV=H(B))=E{E[L4(T)I5(V)|T]} = E{L(T)E[I5(V)|T]}

= E{Ly(T)P(V™Y(B))} = P(T~'(A))P(V"}(B)).
Hence T and V' are independent w.r.t. any P € P.
Basu’s theorem is useful in proving the independence of two statistics.

Example 2.18. Suppose that X, ..., X,, are i.i.d. random variables having the N(u,c?)
distribution, with ¢ € R and a known o > 0. It can be easily shown that the family
{N(p,0?) : p € R} is an exponential family of full rank with natural parameter n = u/o?.
By Proposition 2.1, the sample mean X is complete and sufficient for 1 (and p). Let S? be
the sample variance. Since S? = (n—1)"' 0" (Z; — Z)?, where Z; = X; — ju is N(0,0?) and
Z =n"'Y" | Z;, S? is an ancillary statistic (o2 is known). By Basu’s theorem, X and S?
are independent w.r.t. N(u,0?) with € R. Since o? is arbitrary, X and S? are independent
w.r.t. N(p,0?) for any u € R and o2 > 0.

Using the independence of X and S?, we now show that (n — 1)S?/0? has the chi-square
distribution x2_,. Note that

o i—1 o

From the properties of the normal distributions, n(X —u)?/0? has the chi-square distribution
x? with the m.g.f. (1 —2t)7"2 and X7, (X; — 11)?/0? has the chi-square distribution y2 with
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the m.g.f. (1—2t)""/2 ¢ < 1/2. By the independence of X and S?, the m.g.f. of (n —1)S?/0?
1s
(1—2t)"2/(1 —2t)7Y2 = (1 — 2t)~ =1/

for t < 1/2. This is the m.g.f. of the chi-square distribution x2_, and, therefore, the result
follows.



Lecture 22: Decision rules, loss, and risk

Statistical decision theory

X: a sample from a population P € P

Decision: an action we take after observing X

A: the set of allowable actions

(A, F4): the action space

X: the range of X

Decision rule: a measurable function (a statistic) 7" from (X, Fy) to (A, F4)
If X is observed, then we take the action T'(X) € A

Performance criterion: loss function L(P,a) from P x A to [0, 00) and is Borel for each P
If X =z is observed and our decision rule is 7', then our “loss” is L(P,T(z))

It is difficult to compare L(P,T}(X)) and L(P,T3(X)) for two decision rules, 77 and T, since
both of them are random.

Risk: Average (expected) loss defined as

Ro(P) = EIL(P.T(X))] = [ L(P.T())dPx(x).

If P is a parametric family indexed by 6, the loss and risk are denoted by L(6,a) and Rr(6)

For decision rules T7 and T3, T} is as good as Ts if and only if
Rr (P) < Rp,(P) forany P e P,

and is better than T if, in addition, Ry, (P) < Ry, (P) for at least one P € P.
Two decision rules 77 and Ty are equivalent if and only if Ry, (P) = Ry, (P) for all P € P.

Optimal rule: If T, is as good as any other rule in &, a class of allowable decision rules, then
T, is S-optimal (or optimal if & contains all possible rules).

Sometimes it is useful to consider randomized decision rules.

Randomized decision rule: a function § on X' x F4 such that, for every A € Fy4, 0(-, A) is a
Borel function and, for every x € X, §(x,-) is a probability measure on (A, Fy).

If X = z is observed, our have a distribution of actions: §(z,-).

A nonrandomized decision rule T" previously discussed can be viewed as a special randomized
decision rule with 6(z, {a}) = I{o3(T(2)), a € A, x € X.

To choose an action in A when a randomized rule 0 is used, we need to simulate a pseudo-
random element of A according to d(z, -).

Thus, an alternative way to describe a randomized rule is to specify the method of simulating
the action from A for each x € X.

For example, a randomized rule can be a discrete distribution §(z,-) assigning probability
p;(z) to a nonrandomized decision rule Tj(x), j = 1,2, ..., in which case the rule § can be



equivalently defined as a rule taking value 7};(x) with probability p;(z), i.e.,

T1(X)  with probability p;(X)
T(X) =
Tp(X)  with probability px(X)

The loss function for a randomized rule ¢ is defined as

L(P,8,x) = /A L(P, a)dd(z, a),

which reduces to the same loss function we discussed when ¢ is a nonrandomized rule.
The risk of a randomized rule § is then

Rs(P) = E[L(P,8,X)] = /X /A L(P,a)d8(z, a)dPyx ().

For T'(X) defined above,
L(Pv T7 JJ) = Z L(P7 TJ(I))pj(x>

and
Rr(P) = ;E[L(P, T3(X))p; (X))

J

Example 2.19. Let X = (Xq,...,X,,) be a vector of iid measurements for a parameter
0eR.

Action space: (A, F4) = (R, B).

A common loss function in this problem is the squared error loss L(P,a) = (6 — a)?, a € A.
Let T(X) = X, the sample mean.

The loss for X is (X — 6)2.

If the population has mean p and variance 0 < oo, then

2

Rx(P) =T,

is an increasing function of the population variance o2 and a decreasing function of the sam-
ple size n.
Consider another decision rule 73 (X) = (X + X@))/2.
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Ry, (P) does not have a simple explicit form if there is no further assumption on the popu-
lation P.

Suppose that P € P. Then, for some P, X (or Tj) is better than T} (or X) (exercise),
whereas for some P, neither X nor 7} is better than the other.

Consider a randomized rule:

X with probability p(X)
T1(X)  with probability 1 — p(X)

The loss for T5(X) is

(X = 0)*p(X) + [T1(X) = 07°[1 — p(X)]
and the risk of T is

Rr,(P) = E{(X — 0)’p(X) + [T1(X) — 0][1 — p(X)]}

In particular, if p(X) = 0.5, then

Rx(P)+ Rp (P
The problem in Example 2.19 is a special case of a general problem called estimation.
In an estimation problem, a decision rule T is called an estimator.
The following example describes another type of important problem called hypothesis testing.

Example 2.20. Let P be a family of distributions, Py C P, and Py = {P € P: P & Py}.
A hypothesis testing problem can be formulated as that of deciding which of the following
two statements is true:

Hy: PePy versus H,: PeP. (1)

Here, Hy is called the null hypothesis and H; is called the alternative hypothesis.

The action space for this problem contains only two elements, i.e., A = {0,1}, where 0 is
the action of accepting Hy and 1 is the action of rejecting Hj.

A decision rule is called a test.

Since a test T'(X) is a function from X to {0,1}, T(X) must have the form /o (X), where
C € Fx is called the rejection region or critical region for testing Hy versus Hj.

0-1 loss: L(P,a) = 0 if a correct decision is made and 1 if an incorrect decision is made, i.e.,
L(P,j)=0for P € P; and L(P,j) =1 otherwise, j =0, 1.

Under this loss, the risk is

P(I(X)=1)
P(T(X) =0)

P(XGC) PePy
P(X ¢C) PeP.

See Figure 2.2 on page 127 for an example of a graph of Rp(f) for some T and P in a
parametric family.



The 0-1 loss implies that the loss for two types of incorrect decisions (accepting Hy when
P € Py and rejecting Hy when P € Py) are the same.

In some cases, one might assume unequal losses: L(P,j) =0 for P € P;, L(P,0) = ¢y when
P e Py, and L(P,1) = ¢; when P € P,.

Admissibility

Definition 2.7. Let & be a class of decision rules (randomized or nonrandomized). A
decision rule 7' € & is called S-admissible (or admissible when & contains all possible rules)
if and only if there does not exist any S € & that is better than 7" (in terms of the risk).

If a decision rule T is inadmissible, then there exists a rule better than 7'.

Thus, T should not be used in principle.

However, an admissible decision rule is not necessarily good.

For example, in an estimation problem a silly estimator T'(X) = a constant may be admis-
sible.

If T, is S-optimal, then it is $-admissible.

If T, is S-optimal and Ty is S-admissible, then Ty is also S-optimal and is equivalent to 7.
If there are two G-admissible rules that are not equivalent, then there does not exist any
$-optimal rule.



Lecture 23: Sufficiency and Rao-Blackwell theorem,
unbiasedness and invariance

Suppose that we have a sufficient statistic T'(X) for P € P.

Intuitively, our decision rule should be a function of T'.

This is not true in general, but the following result indicates that this is true if randomized
decision rules are allowed.

Proposition 2.2. Suppose that A is a subset of R*. Let T(X) be a sufficient statistic for
P € P and let §g be a decision rule. Then

51(t7A> = E[50(X7 A)‘T = t]a

which is a randomized decision rule depending only on T, is equivalent to dy if Rs,(P) < 0o
for any P € P.

Proof. Note that d; is a decision rule since d; does not depend on the unknown P by the
sufficiency of T'. Then

Rs,(P)= L(P,a)dé (X, a)}

d)

U
:E{ { L(P,a)dsy(X, a)
{

PadéoXa)}

where the proof of the second equality is left to the reader.

Note that Proposition 2.2 does not imply that J; is inadmissible.
If §g is a nonrandomized rule,

01(t, A) = ElLa(00(X))|T = t] = P(d0(X) € AT = 1)

is still a randomized rule, unless do(X) = h(T(X)) a.s. P for some Borel function h (Exercise
75).
Hence, Proposition 2.2 does not apply to situations where randomized rules are not allowed.

The following result tells us when nonrandomized rules are all we need and when decision
rules that are not functions of sufficient statistics are inadmissible.

Theorem 2.5. Suppose that A is a convex subset of R and that for any P € P, L(P, a)
is a convex function of a.

(i) Let 0 be a randomized rule satisfying [, [|a||/dd(x, a) < oo for any z € X and let T3 (z) =
Jqadd(x,a). Then L(P,T\(x)) < L(P,d,x) (or L(P,T\(x)) <L(P,0o,z) if L is strictly convex
in a) for any z€ X and PeP.

(i) (Rao-Blackwell theorem). Let T be a sufficient statistic for P € P, Ty € R* be a
nonrandomized rule satisfying E||Ty|| < oo, and Ty = E[Ty(X)|T]. Then Rr, (P) < Ry, (P)
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for any P € P. If L is strictly convex in a and 7Tj is not a function of 7', then Tj is
inadmissible.

The proof of Theorem 2.5 is an application of Jensen’s inequality and is left to the reader.

The concept of admissibility helps us to eliminate some decision rules.

However, usually there are still too many rules left after the elimination of some rules ac-
cording to admissibility and sufficiency.

Although one is typically interested in a $-optimal rule, frequently it does not exist, if & is
either too large or too small.

Example 2.22. Let Xy, ..., X, be i.i.d. random variables from a population P € P that is
the family of populations having finite mean p and variance o2.

Consider the estimation of y (A = R) under the squared error loss.

It can be shown that if we let & be the class of all possible estimators, then there is no
S-optimal rule (exercise).

Next, let & be the class of all linear functions in X = (Xy,..., X,,), e, T(X) =X, ¢ X;
with known ¢; € R, i =1,...,n.

Then

Ry (P) = ii? (gci— 1)2—1—02;0?. (1)

We now show that there does not exist T, = Y- ; ¢f X; such that Ry, (P) < Ry(P) for any
PePand T e Sy.

If there is such a T, then (¢, ..., ¢}) is a minimum of the function of (¢q, ..., ¢,) on the right-
hand side of (1).

Then ¢, ..., ¢; must be the same and equal to u?/(c? + nu?), which depends on P.

Hence T is not a statistic.

This shows that there is no $;-optimal rule.

Consider now a subclass 3y C 3y with ¢;’s satistfying >, ¢; = 1.

From (1), Rp(P)=0*>1" , cF if T € 3.

Minimizing o2 327, ¢? subject to 3.7, ¢; = 1 leads to an optimal solution of ¢; = n™!.
Thus, the sample mean X is $y-optimal.

There may not be any optimal rule if we consider a small class of decision rules.

For example, if I3 contains all the rules in 5 except X, then one can show that there is no

$z-optimal rule.

Example 2.23. Assume that the sample X has the binomial distribution Bi(6,n) with an
unknown 6 € (0,1) and a fixed integer n > 1.

Consider the hypothesis testing problem described in Example 2.20 with Hy : 8 € (0, 6]
versus Hi : 6 € (0y,1), where 6y € (0,1) is a fixed value.

Suppose that we are only interested in the following class of nonrandomized decision rules:
S={T;:j=0,1,...,n — 1}, where T;(X) = Ij41,. n(X).

From Example 2.20, the risk function for 7; under the 0-1 loss is

Ry, (0) = P(X > 5)10,,)(0) + P(X < 7)1 (65,1)(0).



For any integers k and 7, 0 < k< j<n-—1,

—Pk<X<j)<0 0<0<6by

Ry (0) — Ry, (0) =
Plk<X<j7)>0 Oy <0 < 1.

J

Hence, neither T} nor T}, is better than the other.
This shows that every T} is $-admissible and, thus, there is no 3-optimal rule.

In view of the fact that an optimal rule often does not exist, statisticians adopt the following
two approaches to choose a decision rule.

The first approach is to define a class & of decision rules that have some desirable properties
(statistical and/or nonstatistical) and then try to find the best rule in .

In Example 2.22, for instance, any estimator T in 9 has the property that 7' is linear in X
and E[T(X)] = p.

In a general estimation problem, we can use the following concept.

Definition 2.8 (Unbiasedness). In an estimation problem, the bias of an estimator 7'(X) of
a real-valued parameter ¥ of the unknown population is defined to be br(P) = E[T(X)] — 9
(which is denoted by br(f) when P is in a parametric family indexed by 6). An estimator
T(X) is said to be unbiased for 9 if and only if by (P) = 0 for any P € P.

Thus, &5 in Example 2.22 is the class of unbiased estimators linear in X.
In Chapter 3, we discuss how to find a $-optimal estimator when < is the class of unbiased
estimators or unbiased estimators linear in X.

Another class of decision rules can be defined after we introduce the concept of invariance.

Definition 2.9 Let X be a sample from P € P.

(i) A class G of one-to-one transformations of X is called a group if and only if g; € G implies
gioge € Gand g; ' € G.

(i) We say that P is invariant under G if and only if g(Px) = Py(x) is a one-to-one trans-
formation from P onto P for each g € G.

(iii) A decision problem is said to be invariant if and only if P is invariant under G and the
loss L(P,a) is invariant in the sense that, for every g € G and every a € A, there exists
a unique g(a) € A such that L(Px,a) = L (Pg(x),g(a)). (Note that g(X) and g(a) are
different functions in general.)

(iv) A decision rule T'(z) is said to be invariant if and only if, for every g € G and every

re &, T(g(x)) = g(T(x)).

Invariance means that our decision is not affected by one-to-one transformations of data.
In a problem where the distribution of X is in a location-scale family P on RF, we often
consider location-scale transformations of data X of the form g(X) = AX + ¢, where ¢ €
C C RF and A € T, a class of invertible k x k matrices.

In §4.2 and §6.3, we discuss the problem of finding a $-optimal rule when & is a class of
invariant decision rules.



Lecture 24: Bayes rules, minimax rules, point estimators, and hypothesis tests

The second approach to finding a good decision rule is to consider some characteristic Ry of
Ry (P), for a given decision rule 7', and then minimize Ry over T' € .

The following are two popular ways to carry out this idea.

The first one is to consider an average of Ry (P) over P € P:

ro (1) = | Re(P)aIL(P),

where II is a known probability measure on (P, Fp) with an appropriate o-field Fp.
r,(II) is called the Bayes risk of T' w.r.t. 1.
If T, € S and 7, (II) <7, (II) for any T' € S, then T, is called a 3-Bayes rule (or Bayes rule
when < contains all possible rules) w.r.t. II.
The second method is to consider the worst situation, i.e., sup pep Rr(P).
If T, € S and
sup Rr, (P) < sup Rp(P)
PeP PeP
for any T' € S, then T, is called a S-minimaz rule (or minimax rule when & contains all
possible rules).
Bayes and minimax rules are discussed in Chapter 4.

Example 2.25. We usually try to find a Bayes rule or a minimax rule in a parametric
problem where P = P, for a § € RF.
Consider the special case of k =1 and L(6,a) = (6 — a)?, the squared error loss.
Note that
rp(I) = [ Bl —T(X)d1i(6).

which is equivalent to E[@ — T'(X)]?, where 0 is a random variable having the distribution
IT and, given 8 = 0, the conditional distribution of X is Fj.

Then, the problem can be viewed as a prediction problem for 8 using functions of X.
Using the result in Example 1.22, the best predictor is E(6|X), which is the 3-Bayes rule
w.r.t. IT with § being the class of rules T'(X) satisfying E[T(X)]? < oo for any 6.

As a more specific example, let X = (X1, ..., X,,) with i.i.d. components having the N (u, c?)
distribution with an unknown g = 6 € R and a known o2, and let IT be the N(uq,o?)
distribution with known p and o3.

Then the conditional distribution of 8 given X = z is N(u.(z),c?) with
o? nod and s 0p0°

o+ =
nog + o2 nog + o2 nog + o2

ps(@) =
The Bayes rule w.r.t. Il is E(0]|X) = u.(X).

In this special case we can show that the sample mean X is minimax.
For any decision rule 7',



where p,(X) is the Bayes rule given in (1) and ¢? is also given in (1).

Since this result is true for any 02 > 0 and ¢ — 0?/n as 02 — o0,

2
sup Rp(0) > — = sup Rx (6),
R n R

where the equality holds because the risk of X under the squared error loss is 0%/n and
independent of 6 = .
Thus, X is minimax.

A minimax rule in a general case may be difficult to obtain. It can be seen that if both u

and o2 are unknown in the previous discussion, then

sup  Rg(0) = oo, (2)
0eR % (0,00)

where 6 = (u,0?). )
Hence X cannot be minimax unless (2) holds with X replaced by any decision rule 7', in
which case minimaxity becomes meaningless.

Statistical inference: Point estimators, hypothesis tests, and confidence sets
Point estimators

Let T'(X) be an estimator of ¥ € R
Bias: br(P) = E[T(X)] -9
Mean squared error (mse):

mser(P) = E[T(X) — 9)? = [by(P)])* + Var(T(X)).
Bias and mse are two common criteria for the performance of point estimators.

Example 2.26. Let X, ..., X, beii.d. from an unknown c.d.f. F.
Suppose that the parameter of interest is ¢ = 1 — F'(¢) for a fixed ¢ > 0.

If F'is not in a parametric family, then a nonparametric estimator of F(t) is the empirical
c.d.f.

1 n
Fn(t) = — ZI(—OOﬂf] (XZ), teR.
=1

n .

2



Since I(—oo(X1), ..; [(—00,(Xy) are i.i.d. binary random variables with P(/(_s 4(X;) = 1) =
F(t), the random variable nF,,(t) has the binomial distribution Bi(F'(t),n).

Consequently, F,(t) is an unbiased estimator of F(t) and Var(F,(t)) = msep,)(P) =
F(t)[1 = F(t)]/n.

Since any linear combination of unbiased estimators is unbiased for the same linear combi-
nation of the parameters (by the linearity of expectations), an unbiased estimator of ¥ is
U(X) =1-— F,(t), which has the same variance and mse as F},(t).

The estimator U(X) = 1 — F,(t) can be improved in terms of the mse if there is further
information about F.

Suppose that F' is the c.d.f. of the exponential distribution £(0,#) with an unknown 6 > 0.
Then ¥ = e~*/?.

The sample mean X is sufficient for § > 0.

Since the squared error loss is strictly convex, an application of Theorem 2.5(ii) (Rao-
Blackwell theorem) shows that the estimator T'(X) = E[1 — F,,(¢)| X], which is also unbiased,
is better than U(X) in terms of the mse.

Figure 2.1 shows graphs of the mse’s of U(X) and T'(X), as functions of #, in the special
case of n =10, t = 2, and F(z) = (1 — /%) [y o) ().

Hypothesis tests

To test the hypotheses
Hy:PePy versus H;:P e Py,

there are two types of statistical errors we may commit: rejecting Hy when Hy is true (called
the type I error) and accepting Hy when Hj is wrong (called the type II error).
A test T a statistic from X to {0, 1}. Pprobabilities of making two types of errors:

and
1—ar(P)=P(T(X)=0) P e Py, (4)

which are denoted by ar(0) and 1 — ap(0) if P is in a parametric family indexed by 6.
Note that these are risks of 7" under the 0-1 loss in statistical decision theory.

Error probabilities in (3) and (4) cannot be minimized simultaneously.

Furthermore, these two error probabilities cannot be bounded simultaneously by a fixed
a € (0,1) when we have a sample of a fixed size.

A common approach to finding an “optimal” test is to assign a small bound « to one of the
error probabilities, say ar(P), P € Py, and then to attempt to minimize the other error
probability 1 — az(P), P € Py, subject to

sup ar(P) < a. (5)
PePy

The bound « is called the level of significance.
The left-hand side of (5) is called the size of the test 7.



The level of significance should be positive, otherwise no test satisfies (5) except the silly
test T(X) =0 a.s. P.

Example 2.28. Let Xi,...,X,, be i.i.d. from the N(u,oc?) distribution with an unknown
i € R and a known o2.

Consider the hypotheses Hy : p < pg versus Hy : > pg, where pg is a fixed constant.
Since the sample mean X is sufficient for u € R, it is reasonable to consider the following
class of tests: T.(X) = I(;00)(X), L., Hy is rejected (accepted) if X > ¢ (X < ¢), where
c € R is a fixed constant.

Let ® be the c.d.f. of N(0,1). Then, by the property of the normal distributions,

\/ﬁ(c—u))

o

an (1) = PT(X) = 1) =1 — @ (

Figure 2.2 provides an example of a graph of two types of error probabilities, with po = 0.
Since ®(t) is an increasing function of ¢,

sup ar,(p) =1

PePy g

<\/ﬁ(c - Mo))
In fact, it is also true that

sup 1 = ar ()] = @ (

V(e — Mo)> .

g

If we would like to use an « as the level of significance, then the most effective way is to
choose a ¢, (a test T, (X)) such that

a = sup ar,, (1),
PePy

in which case ¢, must satisfy

1_(1)(\/5(%—#0)) W

g

i.e., Co = 021_o/\/N + o, Where z, = ®1(a).
In Chapter 6, it is shown that for any test T'(X) satisfying (5),

l—ar(p) =1—ar, (1),  pw> po



Lecture 25: p-value, randomized tests, and confidence sets

The choice of a level of significance « is usually somewhat subjective.
In most applications there is no precise limit to the size of T" that can be tolerated.
Standard values, such as 0.10, 0.05, or 0.01, are often used for convenience.

For most tests satisfying
sup ar(P) < a. (1)
PePy
a small « leads to a “small” rejection region.
It is good practice to determine not only whether Hj is rejected or accepted for a given «
and a chosen test T,, but also the smallest possible level of significance at which Hy would
be rejected for the computed T, (x), i.e.,

& =inf{a € (0,1) : To(z) = 1}.

Such an &, which depends on x and the chosen test and is a statistic, is called the p-value
for the test T,,.

Example 2.29. Consider the problem in Example 2.28. Let us calculate the p-value for

T... Note that
a:1_®<w> >1_¢<M>

o g

if and only if # > ¢, (or T, () = 1). Hence

(L

) =inf{a € (0,1) : Tt (v) = 1} = &(x)

is the p-value for T, . It turns out that T¢, (x) = I (G(2)).

With the additional information provided by p-values, using p-values is typically more ap-
propriate than using fixed-level tests in a scientific problem.

However, a fixed level of significance is unavoidable when acceptance or rejection of Hy
implies an imminent concrete decision.

In Example 2.28, the equality in (1) can always be achieved by a suitable choice of c.

This is, however, not true in general.

We need to consider randomized tests.

Recall that a randomized decision rule is a probability measure d(x,-) on the action space
for any fixed .

Since the action space contains only two points, 0 and 1, for a hypothesis testing problem,
any randomized test 6(X, A) is equivalent to a statistic T'(X) € [0, 1] with T'(z) = §(z,{1})
and 1 —T(x) = §(z, {0}).

A nonrandomized test is obviously a special case where T'(x) does not take any value in
(0,1).



For any randomized test T'(X ), we define the type I error probability to be ar(P) = E[T(X)],
P € Py, and the type II error probability to be 1 — ap(P) = E[1 — T(X)], P € P.
For a class of randomized tests, we would like to minimize 1 — az(P) subject to (1).

Example 2.30. Assume that the sample X has the binomial distribution Bi(6,n) with an
unknown 6 € (0,1) and a fixed integer n > 1.

Consider the hypotheses Hy : 0 € (0,6y] versus H; : 6 € (6p,1), where 6, € (0,1) is a fixed
value.

Consider the following class of randomized tests:

1 X >
Tj,4(X) q X =]
0 X <7,

where j =0,1,...,n— 1 and ¢ € [0,1]. Then

ar,,(0) = P(X > j) +gP(X = j)  0<0<6b

and
1—aTj’q(9):P(X<j)+(1—q)P(X:j) Oy <60 <1.

It can be shown that for any o € (0, 1), there exist an integer j and ¢ € (0, 1) such that the
size of T} ; is .

Confidence sets

¥: a k-vector of unknown parameters related to the unknown population P € P
C(X) a Borel set (in the range of ¥) depending only on the sample X
If
: >1_
Igrel;)P(ﬁ cC(X))>1—aq, (2)

where « is a fixed constant in (0, 1), then C'(X) is called a confidence set for 9 with level of
significance 1 — a.

The left-hand side of (2) is called the confidence coefficient of C(X'), which is the highest
possible level of significance for C'(X).

A confidence set is a random element that covers the unknown 9 with certain probability.
If (2) holds, then the coverage probability of C'(X) is at least 1 — «, although C(z) either
covers or does not cover ¥ whence we observe X = z.

The concepts of level of significance and confidence coefficient are very similar to the level
of significance and size in hypothesis testing.

In fact, it is shown in Chapter 7 that some confidence sets are closely related to hypothesis
tests.

Consider a real-valued .

If C(X) = [9(X),J9(X)] for a pair of real-valued statistics ¥ and 9, then C'(X) is called a
confidence interval for 1.



If C(X) = (—o0,d(X)] (or [9(X), 00)), then J (or ¥) is called an upper (or a lower) confidence
bound for v.

A confidence set (or interval) is also called a set (or an interval) estimator of ¥, although it
is very different from a point estimator (discussed in §2.4.1).

Example 2.31. Let Xi,...,X,, be i.i.d. from the N(u,oc?) distribution with an unknown
i € R and a known o2.

Suppose that a confidence interval for ¥ = u is needed.

We only need to consider ¥(X) and 9J(X), since the sample mean X is sufficient.

Consider confidence intervals of the form [X — ¢, X + ¢], where ¢ € (0, 00) is fixed.

Note that

P(,ue[)_(—C,X—i-c]):P(\)_(—Mgc):1—2<I>(—\/ﬁc/a),

which is independent of p.

Hence, the confidence coefficient of [X —c, X +¢] is 1 —2® (—/nc/o), which is an increasing
function of ¢ and converges to 1 as ¢ — oo or 0 as ¢ — 0.

Thus, confidence coefficients are positive but less than 1 except for silly confidence intervals
(X, X] and (—o0, o).

We can choose a confidence interval with an arbitrarily large confidence coefficient, but the
chosen confidence interval may be so wide that it is practically useless.

If 02 is also unknown, then [X — ¢, X + c] has confidence coefficient 0 and, therefore, is not
a good inference procedure.

In such a case a different confidence interval for p with positive confidence coefficient can be
derived (Exercise 97 in §2.6).

This example tells us that a reasonable approach is to choose a level of significance 1 — a €
(0,1) (just like the level of significance in hypothesis testing) and a confidence interval or set
satisfying (2).

In Example 2.31, when o2 is known and c is chosen to be 0z1_4/2/v/n, where z, = ®~(a),
the confidence coefficient of the confidence interval [X — ¢, X + ¢| is ezactly 1 — a for any
fixed a € (0,1).

This is desirable since, for all confidence intervals satisfying (2), the one with the shortest
interval length is preferred.

For a general confidence interval [9(X),J(X)], its length is J(X) — 9(X), which may be
random.

We may consider the expected (or average) length E[J(X) — 9(X)].

The confidence coefficient and expected length are a pair of good measures of performance
of confidence intervals.

Like the two types of error probabilities of a test in hypothesis testing, however, we cannot
maximize the confidence coefficient and minimize the length (or expected length) simulta-
neously.

A common approach is to minimize the length (or expected length) subject to (2).

For an unbounded confidence interval, its length is oo.

3



Hence we have to define some other measures of performance. B
For an upper (or a lower) confidence bound, we may consider the distance J(X) — ¢ (or
¥ — (X)) or its expectation.

Example 2.32. Let X, ..., X, be i.i.d. from the N(u,o?) distribution with both € R and
0? > 0 unknown.

Let 6 = (1, 0?) and a € (0,1) be given.

Let X be the sample mean and S? be the sample variance.

Since (X, S?) is sufficient (Example 2.15), we focus on C'(X) that is a function of (X, S?).
From Example 2.18, X and S? are independent and (n — 1)S? /02 has the chi-square distri-
bution x2_,.

Since \/n(X — p)/o has the N(0,1) distribution,

X —

P(—éag—“géa> S p—
o/\/n

where ¢, = 7! (Hi V;_O‘) (verify).

Since the chi-square distribution x2_; is a known distribution, we can always find two con-

stants ¢;, and cs, such that

i 2
P(CmSMScM): 1—a.

2

o
Then < g2
P(—éaé _Mééa,claéuéc%u):l—a,
o/\/n o?

. X - p)? 52 52

— -1 -1

P(MSU2’MSU2SM>:1_Q_ (3)
cs, C2a Cla

The left-hand side of (3) defines a set in the range of § = (u, 0?) bounded by two straight
lines, 02 = (n — 1)S?/¢ia, i = 1,2, and a curve 0? = n(X — )2/ (see the shadowed part
of Figure 2.3).

This set is a confidence set for # with confidence coefficient 1 — «, since (3) holds for any 6.



Lecture 26: Asymptotic approach and consistency

Asymptotic approach

In decision theory and inference, a key to the success of finding a good decision rule or
inference procedure is being able to find some moments and/or distributions of various
statistics.

There are many cases in which we are not able to find exactly the moments or distributions
of given statistics, especially when the problem is complext.

When the sample size n is large, we may approximate the moments and distributions of
statistics that are impossible to derive, using the asymptotic tools discussed in §1.5.

In an asymptotic analysis, we consider a sample X = (X1,..., X,,) not for fixed n, but as
a member of a sequence corresponding to n = ng,ng + 1, ..., and obtain the limit of the
distribution of an appropriately normalized statistic or variable T,,(X) as n — oc.

The limiting distribution and its moments are used as approximations to the distribution
and moments of 7, (X) in the situation with a large but actually finite n.

This leads to some asymptotic statistical procedures and asymptotic criteria for assessing
their performances.

The asymptotic approach is not only applied to the situation where no exact method is avail-
able, but also used to provide an inference procedure simpler (e.g., in terms of computation)
than that produced by the exact approach (the approach considering a fixed n).

In addition to providing more theoretical results and/or simpler inference procedures, the
asymptotic approach requires less stringent mathematical assumptions than does the exact
approach.

The mathematical precision of the optimality results obtained in statistical decision theory
tends to obscure the fact that these results are approximations in view of the approximate
nature of the assumed models and loss functions.

As the sample size increases, the statistical properties become less dependent on the loss
functions and models.

A major weakness of the asymptotic approach is that typically no good estimates for the
precision of the approximations are available and, therefore, we cannot determine whether a
particular n in a problem is large enough to safely apply the asymptotic results.

To overcome this difficulty, asymptotic results are frequently used in combination with some
numerical /empirical studies for selected values of n to examine the finite sample performance
of asymptotic procedures.

Consistency

A reasonable point estimator is expected to perform better, at least on the average, if more
information about the unknown population is available.

With a fixed model assumption and sampling plan, more data (larger sample size n) provide
more information about the unknown population.

Thus, it is distasteful to use a point estimator 7;, which, if sampling were to continue indef-



initely, could possibly have a nonzero estimation error, although the estimation error of T,
for a fixed n may never equal 0.

Definition 2.10 (Consistency of point estimators). Let X = (X, ..., X,,) be a sample from
P € P and T,,(X) be a point estimator of 9 for every n.

(i) T, (X) is called consistent for ¥ if and only if 7,,(X) —, ¥ w.r.t. any P € P.

(ii) Let {a,} be a sequence of positive constants diverging to co. T,,(X) is called a,-consistent
for 9 if and only if a,[T,,(X) — V] = O,(1) w.r.t. any P € P.

(iii) 70, (X) is called strongly consistent for 9 if and only if T,,(X) —4s ¥ w.r.t. any P € P.
(iv) T,,(X) is called L,-consistent for 9 if and only if T,,(X) —. ¥ w.r.t. any P € P for
some fixed r > 0.

Consistency is actually a concept relating to a sequence of estimators, {T,,,n = ng,ng+1, ...},
but we usually just say “consistency of T,,” for simplicity.

Each of the four types of consistency in Definition 2.10 describes the convergence of T,,(X)
to ¥ in some sense, as n — 0.

In statistics, consistency according to Definition 2.10(i), which is sometimes called weak con-
sistency since it is implied by any of the other three types of consistency, is the most useful
concept of convergence of T, to v.

Lo-consistency is also called consistency in mse, which is the most useful type of L,-consistency.

Example 2.33. Let X, ..., X, beiid. from P € P.

If ¥ = p, which is the mean of P and is assumed to be finite, then by the SLLN (Theorem
1.13), the sample mean X is strongly consistent for p and, therefore, is also consistent for .
If we further assume that the variance of P is finite, then X is consistent in mse and is
\/n-consistent.

With the finite variance assumption, the sample variance S? is strongly consistent for the
variance of P, according to the SLLN.

Consider estimators of the form T,, = > | ¢,,; X;, where {c,;} is a double array of constants.
If P has a finite variance, then 7,, is consistent in mse if and only if >, ¢,; — 1 and
n 2
i=1 Gy — 0.

If we only assume the existence of the mean of P, then T, with ¢,; = ¢;/n satisfying
n~ '3, ¢; — 1 and sup, |¢;| < oo is strongly consistent (Theorem 1.13(ii)).

One or a combination of the law of large numbers, the CLT, Slutsky’s theorem (Theorem
1.11), and the continuous mapping theorem (Theorems 1.10 and 1.12) are typically applied
to establish consistency of point estimators.

In particular, Theorem 1.10 implies that if 7, is (strongly) consistent for ¥ and g is a
continuous function of 9, then ¢(7},) is (strongly) consistent for g(1J).

For example, in Example 2.33 the point estimator X? is strongly consistent for z2.

To show that X? is y/n-consistent under the assumption that P has a finite variance o2, we
can use the identity

V(X? = p?) = V(X — ) (X + p)
and the fact that X is y/n-consistent for g and X + pu = O,(1).
X2 may not be consistent in mse since we do not assume that P has a finite fourth moment.



Alternatively, we can use the fact that /n(X? — p?) —4 N(0,4p%0?) (by the CLT and
Theorem 1.12) to show the y/n-consistency of X?.

The following example shows another way to establish consistency of some point estimators.

Example 2.34. Let Xi,..., X, be ii.d. from an unknown P with a continuous c.d.f. F’
satisfying F'(6) = 1 for some # € R and F(z) < 1 for any = < 6.

Consider the largest order statistic X,).

For any € > 0, F/(f# —¢) < 1 and

P(| Xy = 0] > €) = P(X(n) <0 —¢€) = [F(0 —¢)]",

which imply (according to Theorem 1.8(v)) X,y —as. 0, i-e., X(y) is strongly consistent for

0.

If we assume that F)(f—), the ith-order left-hand derivative of F' at 6, exists and vanishes

for any ¢ < m and that F™+1)(f—) exists and is nonzero, where m is a nonnegative integer,

then

(_1)mF(m+1) (9_)
(m+1)!

This result and the fact that P (n[l — F(X@w)] > s) = (1—s/n)™ imply that (6—X,))™*! =
Op(n1), ie., X(yy is n™ D —consistent.

If m = 0, then X, is n-consistent, which is the most common situation.

If m =1, then X, is \/n-consistent.

The limiting distribution of n(m“)*l(X(n) — 0) can be derived as follows.

Let

1 - F(Xu) =

(9 — X(n))m+1 +o (|9 — X(n)|m+1) a.s.

(=1 (m 411 "
0= [y ]

For t < 0, by Slutsky’s theorem,

: X — 0 : 0— Xw]™
1 pl=2® < -1 pl|— > (_pymt+l
e (m(@ J) = (l R

= lim P (n[l — F(X@)] > (—t)™)

= Ji 1 oy

~(=tym

It can be seen from the previous examples that there are many consistent estimators.

Like the admissibility in statistical decision theory, consistency is a very essential requirement
in the sense that any inconsistent estimators should not be used, but a consistent estimator
is not necessarily good.

Thus, consistency should be used together with one or a few more criteria.



We discuss a situation in which finding a consistent estimator is crucial.
Suppose that an estimator 7T,, of ¢ satisfies

n|Th(X) — 0] —4 0y, (1)

where Y is a random variable with a known distribution, ¢ > 0 is an unknown parameter,
and {c,} is a sequence of constants. For example, in Example 2.33, /n(X — ) —q N(0, 0?);
in Example 2.34, (1) holds with ¢, = n(™*)™" and ¢ = [(—1)"(m + 1)!/Fm+D(g—)]m+D~"
If a consistent estimator &,, of o can be found, then, by Slutsky’s theorem,

el To(X) — ) /6 —a Y

and, thus, we may approximate the distribution of ¢,[T,,(X) — 9]/, by the known distribu-
tion of Y.



Lecture 27: Asymptotic bias, variance, and mse

Asymptotic bias

Unbiasedness as a criterion for point estimators is discussed in §2.3.2.

In some cases, however, there is no unbiased estimator.

Furthermore, having a “slight” bias in some cases may not be a bad idea.

Let T,,(X) be a point estimator of ¥ for every n.

If ET, exists for every n and lim,,_.., E(T,, — ) = 0 for any P € P, then T, is said to be
approximately unbiased.

There are many reasonable point estimators whose expectations are not well defined.
It is desirable to define a concept of asymptotic bias for point estimators whose expectations
are not well defined.

Definition 2.11. (i) Let £, &3, &, ... be random variables and {a,} be a sequence of positive
numbers satisfying a,, — oo or a, — a > 0. If a,§, —4 £ and FE|{| < oo, then E¢/a, is
called an asymptotic expectation of &,.

(ii) Let T, be a point estimator of ¥ for every n. An asymptotic expectation of T, — ¥, if
it exists, is called an asymptotic bias of 7}, and denoted by by, (P) (or by, (0) if P is in a
parametric family). If lim,, .., by, (P) = 0 for any P € P, then T, is said to be asymptotically
unbiased.

Like the consistency, the asymptotic expectation (or bias) is a concept relating to sequences
{&} and {E¢/an} (or {10} and {br, (P)}). i

The exact bias br, (P) is not necessarily the same as br, (P) when both of them exist.
Proposition 2.3 shows that the asymptotic expectation defined in Definition 2.11 is essentially
unique.

Proposition 2.3. Let {{,} be a sequence of random variables. Suppose that both E¢/a,
and En/b, are asymptotic expectations of &, defined according to Definition 2.11(i). Then,
one of the following three must hold: (a) E{ = En = 0; (b) E{ # 0, En =0, and b,/a,, — 0;
or B¢ =0, En+#0, and a, /b, — 0; (c) E{ #0, En # 0, and (E¢/a,)/(En/b,) — 1.

If T,, is a consistent estimator of ¥, then T,, = ¥ + 0,(1) and, by Definition 2.11(ii), T,, is
asymptotically unbiased, although 7T}, may not be approximately unbiased.
In Example 2.34, X(,) has the asymptotic bias bx,,(P) = h,(0)EY, which is of order

p—(m+)~"

When a, (T, —9) —4 Y with EY =0 (e.g., T, = X? and ¥ = p? in Example 2.33), a
more precise order of the asymptotic bias of 7,, may be obtained (for comparing different
estimators in terms of their asymptotic biases).

Suppose that there is a sequence of random variables {7, } such that

Ay —q Y and a’ (T, — 9 — ) —a W, (1)

n

where Y and W are random variables with finite means, £Y = 0 and EW # 0.
Then we may define a2 to be the order of by, (P) or define EW/a? to be the a2 order

1



asymptotic bias of T,.

However, 7, in (1) may not be unique.

Some regularity conditions have to be imposed so that the order of asymptotic bias of T,
can be uniquely defined.

We consider the case where X, ..., X,, are i.i.d. random k-vectors with finite ¥ = Var(X;).
Let X = n7!'Y", X;, and T;, = g(X), where g is a function on R* that is second-order
differentiable at = EX; € R*.

Consider T;, as an estimator of ¥ = g(p).

By Taylor’s expansion,

T, = [Vo(u)]" (X — ) + 5 (X = 0 Vo) (X —p) 0= ).

where Vg is the k-vector of partial derivatives of ¢ and V?¢ is the k& x k matrix of second-
order partial derivatives of g.
By the CLT and Theorem 1.10(iii),

B B ZT 2 Z
g(X — )" V2g(pu)(X = p) —q EV+(“)E,
where Zy. = Ni(0,%). Thus,

E[ZENV?g(u) Zs]  tr (Vig(u)X)

2n - 2n (2)

is the n~! order asymptotic bias of T,, = g(X), where tr(A) denotes the trace of the matrix
A.

Example 2.35. Let Xj, ..., X,, be i.i.d. binary random variables with P(X; = 1) = p, where
p € (0,1) is unknown.

Consider first the estimation of ¥ = p(1 — p).

Since Var(X) = p(1 — p)/n, the n~! order asymptotic bias of T}, = X (1 — X) according to
(2) with g(z) = (1 — x) is —p(1 — p)/n.

On the other hand, a direct computation shows E[X(1 — X)] = EX — EX?=p— (EX)? -

Var(X) = p(1 —p) —p(1 —p)/n.
Hence, the exact bias of T}, is the same as the n~! order asymptotic bias.

Consider next the estimation of ¥ = p~.

In this case, there is no unbiased estimator of p~' (Exercise 84 in §2.6).

Let T, = X"

Then, an n~! order asymptotic bias of T}, according to (2) with g(x) = 271 is (1 —p)/(p*n).
On the other hand, ET,, = oo for every n.

Asymptotic variance and mse

Like the bias, the mse of an estimator T}, of ¥, mser, (P) = E(T,, — 9)?, is not well defined
if the second moment of 7}, does not exist.

We now define a version of asymptotic mean squared error (amse) and a measure of assessing
different point estimators of a common parameter.

2



Definition 2.12. Let 7, be an estimator of ¢ for every n and {a,} be a sequence of
positive numbers satisfying a,, — oo or a, — a > 0. Assume that a,(7, — V) —4 Y with
0< EY? < 0.

(i) The asymptotic mean squared error of T, denoted by amser, (P) or amser, (6) if P isin a
parametric family indexed by 6, is defined to be the asymptotic expectation of (T, —9)?, i
amser, (P) = EY?/a2. The asymptotic variance of T, is defined to be o7, (P) = Var(Y)/aZ2.
(ii) Let 7 be another estimator of ¥. The asymptotic relative efficiency of T), w.t.r. T, is
defined to be e 1, (P) = amser, (P)/amser (P).

(iii) 7}, is said to be asymptotically more efficient than T, if and only if lim sup,, ey 7, (P) <1
for any P and < 1 for some P.

The amse and asymptotic variance are the same if and only if £EY = 0.

By Proposition 2.3, the amse or the asymptotic variance of T}, is essentially unique and,
therefore, the concept of asymptotic relative efficiency in Definition 2.12(ii)-(iii) is well de-
fined.

In Example 2.33, amsex:(P) = 0%,(P) = 4p%0?/n.
In Example 2.34, ai(n) (P) = [ha(0)]*Var(Y) and amsex , (P) = [h,(0)]*EY?.

When both mser, (P) and mser, (P) exist, one may compare T;, and T} by evaluating the
relative efficiency mser, (P)/msez (P).

However, this comparison may be different from the one using the asymptotic relative ef-
ficiency in Definition 2.12(ii), since the mse and amse of an estimator may be different
(Exercise 115 in §2.6).

The following result shows that when the exact mse of T}, exists, it is no smaller than the
amse of T,.

It also provides a condition under which the exact mse and the amse are the same.

Proposition 2.4. Let T, be an estimator of ¥ for every n and {a,} be a sequence of
positive numbers satisfying a,, — oo or a, — a > 0. Suppose that a,(7T,, — J) —4 Y with
0 < EY? < co. Then

(i) EY? < liminf, Ela ( — )% and

(ii) EY? = lim,_. E[a?(T,, — 9)?] if and only if {a? (T}, — ¥)?} is uniformly integrable.
Proof. (i) By Theorem 1.10(iii),

min{aZ (T, — 9¥)? t} —4 min{Y? t}
for any ¢ > 0. Since min{a?(T;, — 9)?,¢} is bounded by ¢,
Jim E(min{a?(T,, — 9)?,t}) = E(min{Y?t})
(Theorem 1.8(viii)). Then
EY?= Jim E(min{Y?t})
= lim lim E(min{a?(T,, — 9)?,t})

:hntlme(mm{an( n— )% t})
<lim inf Ea(T,, — v)?),

3



where the third equality follows from the fact that F(min{a?(T,, — 9)?,t}) is nondecreasing
in ¢ for any fixed n.
(ii) The result follows from Theorem 1.8(viii).

Example 2.36. Let X1, ..., X,, be i.i.d. from the Poisson distribution P(f) with an unknown
g > 0.

Consider the estimation of ¥ = P(X; = 0) = e~".

Let Ty, = F,,(0), where F, is the empirical c.d.f.

Then T}, is unbiased and has mser, (0) = e (1 — e %) /n.

Also, v/n(Ty, —19) —4 N(0,e7%(1 — e=?)) by the CLT.

Thus, in this case amser,, (§) = mser,, (6).

Consider Ty,, = e X.

Note that ETy, = e /"1,

Hence nbr,, (0) — 0e=?/2.

Using Theorem 1.12 and the CLT, we can show that /n(Ts, — ) —4 N(0,e=2%9).
By Definition 2.12(i), amser,_ () = e=2%0/n.

Thus, the asymptotic relative efficiency of T3, w.r.t. Ty, is

6T17L7T27L(9) = 9/(69 - 1)7

which is always less than 1.
This shows that T5, is asymptotically more efficient than T7,,.

The result for Ty, in Example 2.36 is a special case (with U, = X ) of the following general
result.

Theorem 2.6. Let g be a function on R* that is differentiable at § € R* and let U, be a
k-vector of statistics satisfying a, (U, —0) —4 Y for a random k-vector Y with 0 < E|Y||? <
oo and a sequence of positive numbers {a,} satisfying a, — oco. Let T,, = ¢(U,) be an
estimator of ¥ = ¢(f). Then, the amse and asymptotic variance of T, are, respectively,

E{[Vg(6)]"Y }2/a2 and [Vg(8)]Var(Y)V(8) /a2,



Lecture 28: Asymptotic inference

Statistical inference based on asymptotic criteria and approximations is called asymptotic
statistical inference or simply asymptotic inference.

We have previously considered asymptotic estimation.

We now focus on asymptotic hypothesis tests and confidence sets.

Hypothesis tests

Definition 2.13. Let X = (X3, ..., X,,) be a sample from P € P and T,,(X) be a test for
Hy: P € Py versus Hy : P € P;.

(i) If limsup,, ar, (P) < « for any P € Py, then « is an asymptotic significance level of T,.
(ii) If lim, o SUppep, o, (P) exists, then it is called the limiting size of T,.

(iii) T, is called consistent if and only if the type II error probability converges to 0, i.e.,
lim, o[l — ar, (P)] =0, for any P € P;.

(iv) T, is called Chernoff-consistent if and only if T,, is consistent and the type I error
probability converges to 0, i.e., lim, ., ar, (P) = 0, for any P € Py. T, is called strongly
Chernoff-consistent if and only if T,, is consistent and the limiting size of T,, is 0.

Obviously if T;, has size (or significance level) « for all n, then its limiting size (or asymptotic
significance level) is a.

If the limiting size of T), is o € (0, 1), then for any € > 0, T}, has size a + € for all n > ny,
where ng is independent of P.

Hence T, has level of significance a + € for any n > ny.

However, if Py is not a parametric family, it is likely that the limiting size of T}, is 1 (see,
e.g., Example 2.37).

This is the reason why we consider the weaker requirement in Definition 2.13(i).

If T}, has asymptotic significance level «, then for any € > 0, ar, (P) < a+e€ for all n > ng(P)
but ny(P) depends on P € Py; and there is no guarantee that 7,, has significance level o+ ¢
for any n.

The consistency in Definition 2.13(iii) only requires that the type II error probability converge
to 0.

We may define uniform consistency to be lim, .o suppep, [1 — o, (P)] = 0, but it is not
satisfied in most problems.

If o« € (0,1) is a pre-assigned level of significance for the problem, then a consistent test T,
having asymptotic significance level « is called asymptotically correct, and a consistent test
having limiting size « is called strongly asymptotically correct.

The Chernoff-consistency (or strong Chernoff-consistency) in Definition 2.13(iv) requires that
both types of error probabilities converge to 0.

Mathematically, Chernoff-consistency (or strong Chernoff-consistency) is better than asymp-
totic correctness (or strongly asymptotic correctness).

After all, both types of error probabilities should decrease to 0 if sampling can be continued
indefinitely.

However, if « is chosen to be small enough so that error probabilities smaller than o can



be practically treated as 0, then the asymptotic correctness (or strongly asymptotic correct-
ness) is enough, and is probably preferred, since requiring an unnecessarily small type I error
probability usually results in an unnecessary increase in the type II error probability.

Example 2.37. Consider the testing problem Hy : pu < po versus Hy @ p > pg based on
iid. Xy,..., X, with EX; = u € R. If each X; has the N(u,0?) distribution with a known
o?, then the test T, I(c, o0)(X) With co = 021_a/v/n + p1o and a € (0,1) has size o (and,
therefore, limiting size «).

For any p > py,

(1)

1—oar, (n) =2 (Zl—a + w> — 0

as n — o0.
This shows that 7., is consistent and, hence, is strongly asymptotically correct.
The convergence in (1) is not uniform in g > g, but is uniform in g > p; for any fixed

M1 > fo-

Since the size of T, is « for all n, T, is not Chernoff-consistent.
A strongly Chernoff-consistent test can be obtained as follows.
Let

an =1 —®(Vnay), (2)

where a,,’s are positive numbers satisfying a,, — 0 and /na, — co.
Let T,, be T, with o = v, for each n.

Then, T,, has size a,,.

Since «,, — 0, The limiting size of T,, is 0.

On the other hand, (1) still holds with « replaced by .

This follows from the fact that

o o

for any p > .
Hence T, is strongly Chernoff-consistent.
However, if o, < a, then, from the left-hand side of (1), 1 — oz, (1) < 1 — ag, (1) for any

> Ho-

We now consider the case where the population P is not in a parametric family.
We still assume that o? = Var(X;) is known.
Using the CLT, we can show that for u > py,

n—oo n—oo o

lim [1 —ar,, (u)] = lim ® <Zl—a + m> =0,
i.e., T.. is still consistent.

For H < Ho,
lim or,, (p) =1- lim @ (Zl—a + M) 7

n—oo g
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which equals a if u = po and 0 if g < pyp.

Thus, the asymptotic significance level of T is «.

Combining these two results, we know that T, is asymptotically correct.

However, if P contains all possible populations on R with finite second moments, then one
can show that the limiting size of T, is 1 (exercise).

For «, defined by (2), we can show that 7,, = T, with & = «, is Chernoff-consistent
(exercise).

But T,, is not strongly Chernoff-consistent if P contains all possible populations on R with
finite second moments.

Example. Let (Xi,..., X,,) be a random sample from the exponential distribution E(0, 6),
where 6 € (0, 00).

Consider the hypotheses Hy : 0 < 6y versus H; : 0 > 6y, where 6y > 0 is a fixed constant.
Let T, = I(C,Oo)()_(), where X is the sample mean.

X /0 has the gamma distribution with shape parameter n and scale parameter 6 /n.

Let G, ¢ denote the cumulative distribution function of this distribution and ¢, , be the
constant satisfying G, g,(cna) =1 — a.

Then,

sup P(T,, ., =1) =sup[l — Gro(cna)l =1 — Grgy(cna) = @,

0<6g 0<6o
i.e., the size of T, _ is «.

n,a

Since the power of 1., . is P(T,,, = 1) = P(X > c,,) for 8 > 6, and, by the law of large

numbers, X —p 0, the consistency of T, , follows if we can show that lim, .o ¢p.a = Op.
By the central limit theorem, /n(X — ) —4 N(0, 6?).

Hence, \/n(5 — 1) —4 N(0,1).

By Pélya’s theorem (Proposition 1.16),

lim sup ’P<\/ﬁ (% — 1) < t> — q)(t)’ =0,

n—~o0 t

where @ is the cumulative distribution function of the standard normal distribution.
When 0 = 6,

a=PX >cpa) = P<\/ﬁ (% — 1) > \/ﬁ(cg(’)“ — 1))

Hence

lim @(ﬁ("g; - 1)> =1-a,

n—oo
which implies lim,, .« \/ﬁ(cé—oa —1) =& (1 — a) and, thus, lim, .. ¢pa = bo.
Let {a,} be a sequence of positive numbers such that lim,,_,, a, = 0 and lim,, .., v/na, = co.
Let a,, = 1 — ®(y/na,) and b, = ¢y q, -
From the previous derivation, the size of T}, is «a,,, which converges to 0 as n — oo since

lim,, .o v/1na, = 0.
Using the previous argument, we can show that

lim ‘1—%—@(%(0’%—1))‘ =0,

n—~o0

3



which implies that

I;
nl—%lo (I)—l(l _ an)

Vi (e —1) = 1.

0o

Since 1 — a,, = ®(y/nay,), this implies that lim, . ¢y.0, = Oo-
Since b, = €y q,,, the test Tp, is Chernoff-consistent.

Confidence sets

Definition 2.14. Let X = (X3,...,X,) be a sample from P € P, ¢ be a k-vector of
parameters related to P, and C(X) be a confidence set for 9.

(i) If liminf, P(¥ € C(X)) > 1 — o for any P € P, then 1 — « is an asymptotic significance
level of C'(X).

(ii) If lim, o inf pep P(U € C(X)) exists, then it is called the limiting confidence coefficient
of C(X).

Note that the asymptotic significance level and limiting confidence coefficient of a confidence
set are very similar to the asymptotic significance level and limiting size of a test, respectively.
Some conclusions are also similar.

For example, in a parametric problem one can often find a confidence set having limiting
confidence coefficient 1—a € (0, 1), which implies that for any € > 0, the confidence coefficient
of C(X)is 1—a—efor all n > ng, where ng is independent of P. In a nonparametric problem
the limiting confidence coefficient of C'(X) might be 0, whereas C'(X) may have asymptotic
significance level 1 —a € (0, 1), but for any fixed n, the confidence coefficient of C'(X) might
be 0.



Lecture 29: UMVUE and the method of using the distribution
of a sufficient and complete statistic

Unbiased or asymptotically unbiased estimation plays an important role in point estimation
theory.

Unbiased estimators can be used as “building blocks” for the construction of better estima-
tors.

Asymptotic unbiasedness is necessary for consistency.

How to derive unbiased estimators

How to find the best unbiased estimators

UMVUE

X: a sample from an unknown population P € P

¥: a real-valued parameter related to P.

An estimator T'(X) of ¥ is unbiased if and only if E[T(X)] =9 for any P € P.

If there exists an unbiased estimator of ¢, then ¥ is called an estimable parameter.

Definition 3.1. An unbiased estimator T'(X) of ¥ is called the uniformly minimum variance
unbiased estimator (UMVUE) if and only if Var(T(X)) < Var(U(X)) for any P € P and any
other unbiased estimator U (X)) of 9.

Since the mse of any unbiased estimator is its variance, a UMVUE is $-optimal in mse with
$ being the class of all unbiased estimators.

One can similarly define the uniformly minimum risk unbiased estimator in statistical deci-
sion theory when we use an arbitrary loss instead of the squared error loss that corresponds
to the mse.

Sufficient and complete statistics

The derivation of a UMVUE is relatively simple if there exists a sufficient and complete
statistic for P € P.

Theorem 3.1 (Lehmann-Scheffé theorem). Suppose that there exists a sufficient and com-
plete statistic T'(X) for P € P. If ¥ is estimable, then there is a unique unbiased estimator
of ¥ that is of the form h(7T) with a Borel function h. (Two estimators that are equal a.s. P
are treated as one estimator.) Furthermore, h(7T) is the unique UMVUE of 9.

This theorem is a consequence of Theorem 2.5(ii) (Rao-Blackwell theorem).

One can easily extend this theorem to the case of the uniformly minimum risk unbiased
estimator under any loss function L(P,a) that is strictly convex in a.

The uniqueness of the UMVUE follows from the completeness of T'(.X).

Two typical ways to derive a UMVUE when a sufficient and complete statistic T is available.

The 1st method: Directly solving for A

Need the distribution of 7'

Try some function h to see if E[h(T)] is related to
If E[h(T)] =9 for all P, what should h be?



Example 3.1. Let X, ..., X, be i.i.d. from the uniform distribution on (0, 6), 8 > 0.
Suppose that 9 = 6.
Since the sufficient and complete statistic X(,,) has the Lebesgue p.d.f. nf="a" ¢ (x),

n
n+1"
Hence an unbiased estimator of 6 is (n + 1) X(,)/n, which is the UMVUE.

Suppose that ¥ = g(#), where g is a differentiable function on (0, c0).
An unbiased estimator h(X(,)) of ¥ must satisfy

0
EXpy = n@‘"/ "dx =
0

0
0"g(0) = n/ h(z)z" dx for all 6 > 0.
0

Differentiating both sizes of the previous equation and applying the result of differentiation
of an integral (Royden (1968, §5.3)) lead to

n0"1g(0) + 0"g'(0) = nh(0)0"".

Hence, the UMVUE of ¢ is (X)) = 9(X(n)) + 1 Xy g’ (X))
In particular, if ¥ = 60, then the UMVUE of 0 is (1 +n™")X(,).

Example 3.2. Let X, ..., X,, be i.i.d. from the Poisson distribution P(f) with an unknown
0 > 0.
Then T'(X) = Y7, X; is sufficient and complete for > 0 and has the Poisson distribution
P(nd).
Since E(T') = nf, the UMVUE of 6 is T'/n.
Suppose that 9 = g(f), where g is a smooth function such that g(z) = ¥2a;27, z > 0.
An unbiased estimator h(T') of ¥ must satisfy

o] h t t

> MOy congo

t=0

[e9) nk . o) ;
= Z ﬁﬁ Z aje
k=0 """ 7=0

S x mu)e
=0 ket R
for any 6 > 0.

Thus, a comparison of coefficients in front of § leads to

t! n*a;
_ Z !37

h(t) =
J,k:gj+k=t

nt

i.e., h(T) is the UMVUE of 9.
In particular, if ¢ = 6" for some fixed integer » > 1, then a, = 1 and a; = 0 if k£ # r and

{0 t<r
h(t) =

nr(:!—r)! t=>

2



Example 3.5. Let Xi,..., X}, be i.i.d. from a power series distribution (see Exercise 13 in
§2.6), i.e.,
P(X; =z) =~v(x)0%/c(6), r=0,1,2,..,

with a known function v(z) > 0 and an unknown parameter 6 > 0.
It turns out that the joint distribution of X = (X7, ..., X,,) is in an exponential family with

n

a sufficient and complete statistic 7'(X) = > ; X.
Furthermore, the distribution of 7" is also in a power series family, i.e.,

P(T =t) = 7, ()8! /[c(0)]", t=0,1,2,..,

where 7,(t) is the coefficient of 6 in the power series expansion of [¢(f)]™ (Exercise 13 in
§2.6).

This result can help us to find the UMVUE of 9 = ¢(0).

For example, by comparing both sides of

fgh(t)%(t)et — (o)) e

we conclude that the UMVUE of 0" /[c(0)]F is

0 T<r

Yn—p(T—=T)
() Tz

WT) =

where r and p are nonnegative integers.
In particular, the case of p = 1 produces the UMVUE ~(r)h(T") of the probability P(X; =
r) = 7(r)f"/c(0) for any nonnegative integer r.

Example 3.6. Let X7, ..., X, be ii.d. from an unknown population P in a nonparametric
family P.

We have discussed in §2.2 that in many cases the vector of order statistics, 7' = (X1, ..., X(n)),
is sufficient and complete for P € P.

(For example, P is the collection of all Lebesgue p.d.f.’s.) Note that an estimator (X, ..., X,,)
is a function of 7" if and only if the function ¢ is symmetric in its n arguments.

Hence, if T is sufficient and complete, then a symmetric unbiased estimator of any estimable
¥ is the UMVUE.

For example,

X is the UMVUE of ¥ = EX;;

52 is the UMVUE of Var(X;);

nt3" X2 — S? is the UMVUE of (EX,)%

F,(t) is the UMVUE of P(X; <) for any fixed ¢.

These conclusions are not true if 7" is not sufficient and complete for P € P.

For example, if n > 1 and P contains all symmetric distributions having Lebesgue p.d.f.’s
and finite means, then there is no UMVUE for ¢ = EFX].

Suppose that T"is a UMVUE of p.



Let Py = {N(u,1): p € R}.

Since the sample mean X is UMVUE when P, is considered, and the Lebesgue measure is
dominated by any P € Py, we conclude that T'= X a.e. Lebesgue measure.

Let P, be the family of uniform distributions on (6; — 65,60, + 6), 6; € R, 65 > 0.

Then (X(1) + X))/2 is the UMVUE when P, is considered, where X(;) is the jth order
statistic.

Then X = (X + X(n))/2 a.s. P for any P € Py, which is impossible if n > 1.

Hence, there is no UMVUE of p.

What if n =17

Consider the sub-family P, = {N(u,1) : p € R}.

Then X is complete for P € P;.

Hence, E[h(X;)] = 0 for any P € P implies that E[h(X;)] = 0 for any P € P; and, thus,
h = 0 a.e. Lebesgue measure.

This shows that X is complete when the family P is considered.

Since K X; = p, X; is the UMVUE of p.



Lecture 30: UMVUE: the method of conditioning

The 2nd method of deriving a UMVUE is conditioning on a sufficient and complete statistic
T(X),

i.e., if U(X) is any unbiased estimator of ¥, then E[U(X)|T] is the UMVUE of 9.

We do not need the distribution of 7.

But we need to work out the conditional expectation E[U(X)|T].

From the uniqueness of the UMVUE, it does not matter which U(X) is used.

Thus, we should choose U(X) so as to make the calculation of E[U(X)|T] as easy as possible.

Example 3.3. Let X3,..., X, be i.i.d. from the exponential distribution E(0,#).
Fy(x) = (1 — e [(p00) ().

Consider the estimation of ¥ =1 — Fy(t).

X is sufficient and complete for 6 > 0.

I(1,00)(X71) is unbiased for 9,

Ell o) (X1)] = P(X1 > t) = 0.

Hence
T(X) = Bl (X0)|X] = P(X, > )

is the UMVUE of 4. If the conditional distribution of X, given X is available, then we can
calculate P(X; > t|X) directly.

By Basu’s theorem (Theorem 2.4), X;/X and X are independent.

By Proposition 1.10(vii),

P(X, > t|X = 7) = P(X,/X > t/X|X = 7) = P(X,/X > t/7).

To compute this unconditional probability, we need the distribution of

Xl/gxile/ <X1+znjxi>.

1=2

Using the transformation technique discussed in §1.3.1 and the fact that .7 , X; is inde-
pendent of X; and has a gamma distribution, we obtain that X;/ > ;| X; has the Lebesgue

p.df (n—1)(1 = 2)" 2L ().

Hence

1 t

(1 — )" 2dw = (1 - _)n—l

nT

PX, > X =7) = (n— 1)/t/( )

and the UMVUE of ¥ is

T(X) = <1 _ %)n_l.



Example 3.4. Let X1, ..., X,, be i.i.d. from N(u,0?) with unknown x4 € R and % > 0.
From Example 2.18, T' = (X, 5?) is sufficient and complete for 6 = (i, 0%);

X and (n —1)5?%/0? are independent;

X has the N(u,0?/n) distribution;

S? has the chi-square distribution x?_;.

Using the method of solving for h directly, we find that

the UMVUE for u is X;

the UMVUE of z? is X? — S?/n;

the UMVUE for 0" with r > 1 —n is k,,_1,5", where

_ T (n/2)
n,r or/2T (nT_H,)
and the UMVUE of u/o is k, 1 _1X/S, if n > 2.

Suppose that ¢ satisfies P(X; < o) = p with a fixed p € (0, 1).
Let ® be the c.d.f. of the standard normal distribution.
Then ¥ = p+ 0@ (p) and its UMVUE is X + k,_1150!(p).

Let ¢ be a fixed constant and ¥ = P(X; <c¢) =& (%)
We can find the UMVUE of ¥ using the method of conditioning.
Since I(_oo¢)(X1) is an unbiased estimator of ¥, the UMVUE of 4 is

Ell(—o00(X1)|T] = P(Xy < |T).

By Basu’s theorem, the ancillary statistic Z(X) = (X;—X)/S is independent of T' = (X, S?).
Then, by Proposition 1.10(vii),

P(X, <dT = (z,5%)) =P <Z <t _SX ’T = (z, 52)>

It can be shown that Z has the Lebesgue p.d.f.

_ v
f(z)—ﬁ(n_l)r(%) ll 1)

Hence the UMVUE of ¢ is

Tio,(n—1)/ym) (12])

P <eny= [ e
C = z)az
L= 1)/

Suppose that we would like to estimate 1 = %CD’ (c—;’ﬁ), the Lebesgue p.d.f. of X; evaluated
at a fixed ¢, where @’ is the first-order derivative of ®.

2



By the previous result, the conditional p.d.f. of X; given X = Z and S? = 5% is s~ f (ﬂ)
Let fr be the joint p.d.f. of T = (X, S?).

Then _
o= 2 on=e o ()]

Hence the UMVUE of ¥ is _
lf c—X
S S '

Example. Let Xi,..., X, be i.id. with Lebesgue p.d.f. fo(z) = 027211 o0)(2), where 6 > 0
is unknown.

Suppose that ¥ = P(X; > t) for a constant ¢ > 0.

The smallest order statistic X(;) is sufficient and complete for 6.

Hence, the UMVUE of ¢ is

P(Xi >t Xw) = P(X1>tXq =)

X, t
- Pl s Xy =2
(Xu) Xpl™® (1))
X, /
- P2t X, =2
(Xa) zy @ (1))

X4
= Pl— >s
(Xu) )
(Basu’s theorem), where s = t/x).

If s <1, this probability is 1.

Consider s > 1 and assume 8 = 1 in the calculation:

X, n X, )
Pl—=—>s5] = Pl ——>5 X1 =X,
<X<1> ) 2 <X<1> W
X
n—1 P(—l > 5, X :Xn>

L
/ H —dry -+ - dzy,
T1>8Tn, T2>Tn, s Tn—1>Tn ;1 Lj

.....

— (n—l)/loo [/800”1:[1</;0%de> xi%dxlldxn

Tn j=2 i
o 1
— (-1 / da,
(n—1) 1 sxnt ’
_ (n—l)x(l)
nt



This shows that the UMVUE of P(X; > t) is

X)) = { "

1 X =t

Another way of showing h(X()) is the UMVUE.
Note that the Lebesgue p.d.f. of X(y) is

nd"
i L0.00)(2)-

If 6 <t,
n@"

Eh(Xw)] = / 7)rda
B n—1)x nd" p o ne"
= / 1 :):+/t s}
n ten o
_ ¢
St
= P(Xl > t)

dx

If 0 > t, then P(X; >t) =1and h(X(;)) =1 a.s. Py since P(t > X))

Hence, for any 6 > 0,
E[h(X(l)) = P(Xl > t).

=0.



Lecture 31: UMVUE: a necessary and sufficient condition

When a complete and sufficient statistic is not available, it is usually very difficult to derive
a UMVUE.

In some cases, the following result can be applied, if we have enough knowledge about
unbiased estimators of 0.

Theorem 3.2. Let U be the set of all unbiased estimators of 0 with finite variances and 7'
be an unbiased estimator of ¥ with E(T?) < oc.

(i) A necessary and sufficient condition for 7'(X') to be a UMVUE of ¥ is that E[T(X)U(X)] =
0 for any U € U and any P € P.

(i) Suppose that T = h(T'), where T is a sufficient statistic for P € P and h is a Borel
function.

Let U; be the subset of U consisting of Borel functions of 7.

Then a necessary and sufficient condition for 7" to be a UMVUE of 9 is that E[T'(X)U(X)] =
0 for any U € Uy and any P € P.

Proof. (i) Suppose that 7" is a UMVUE of 9.

Then T, =T + cU, where U € U and c is a fixed constant, is also unbiased for ¢ and, thus,

Var(T.) > Var(T) ceER, PeP,
which is the same as
Var(U) 4+ 2cCov(T,U) >0 c€R, PcP.

This is impossible unless Cov(T,U) = E(TU) = 0 for any P € P.

Suppose now E(TU) =0 for any U € Y and P € P.
Let T be another unbiased estimator of ¥ with Var(7j) < oc.
Then T — Ty € U and, hence,

ET(T -Ty)] =0 PeP,
which with the fact that ET' = ET, implies that
Var(T) = Cov(T,Tp) PeP.
Note that [Cov (T, Tp)]* < Var(T)Var(Ty).
Hence Var(7T) < Var(Tp) for any P € P.
(ii) It suffices to show that E(T'U) = 0 for any U € Uz and P € P implies that E(TU) =0

for any U € Y and P € P. .
Let U € U. Then E(U|T) € U; and the result follows from the fact that 7" = h(7") and

E(TU) = E[E(TU|T)] = E[E(MT)U|T)] = E[WT)E(U|T)].



Theorem 3.2 can be used

to find a UMVUE,

to check whether a particular estimator is a UMVUE, and
to show the nonexistence of any UMVUE.

If there is a sufficient statistic, then by Rao-Blackwell’s theorem, we only need to focus on
functions of the sufficient statistic and, hence, Theorem 3.2(ii) is more convenient to use.

As a consequence of Theorem 3.2, we have the following useful result.

Corollary 3.1. (i) Let 7; be a UMVUE of 9, j = 1, ..., k, where k is a fixed positive integer.
Then Z?zl ¢;T; is a UMVUE of ¥ = Z?Zl c;¥; for any constants cy, ..., ¢.
(ii) Let Ty and T3 be two UMVUE’s of ¢. Then T} = Ty a.s. P for any P € P.

Example 3.7. Let X, ..., X, be i.i.d. from the uniform distribution on the interval (0, §).
In Example 3.1, (1 + n_l)X(n) is shown to be the UMVUE for 6 when the parameter space
is © = (0, 00).

Suppose now that © = [1, co).

Then X, is not complete, although it is still sufficient for 6.

Thus, Theorem 3.1 does not apply to X(,).

We now illustrate how to use Theorem 3.2(ii) to find a UMVUE of 6.

Let U(X(n)) be an unbiased estimator of 0.
Since X(,) has the Lebesgue p.d.f. nf="z" ' g (z),

1 o
. n—1 n—1
0= /0 U(x)z" dx + /1 U(x)z"  dx

for all 6 > 1.
This implies that U(z) = 0 a.e. Lebesgue measure on [1,00) and

1
/ U(x)a" tdx = 0.
0

Consider T' = h(X,)).
To have E(TU) = 0, we must have

/ (@)U (2)2" dx = 0.

Thus, we may consider the following function:

where ¢ and b are some constants.
From the previous discussion,

E(Xm)U(X@m)] =0, =1

2



Since E[h(X(y))] = 6, we obtain that

0 =cP(Xm < 1)+ 0E[X ) 1.00) (X))
=c0 "+ [bn/(n+1))(0—07").

Thus, c =1 and b = (n+ 1)/n. The UMVUE of 6 is then

1 OSX(n)Sl

h(X(n)) = )
(1 +n- )X(n) X(n) > 1.

This estimator is better than (1 + n~")X(,), which is the UMVUE when © = (0, c0) and
does not make use of the information about 6 > 1.

In fact, h(X,)) is complete and sufficient for 6.
It suffices to show that
1 0< X <1

9(Xw) =
X(n) X(n) > 1.

is complete and sufficient for 6.
The sufficiency follows from the fact that the joint p.d.f. of Xy, ..., X,, is

1 1

H_nI(O,G)(X(n)> = e—nf(o,e) (9(Xm)))-

If E[f(9(X))] =0 for all > 1, then

0= /0 " Ho(x))am "z = /0 ' ()2l + /1 " H@)e e

for all 6 > 1.
Letting # — 1 we obtain that f(1) = 0. Then

0= /16 f(z)z" dx

for all # > 1, which implies f(z) =0 a.e. for z > 1.
Hence, g(X(,)) is complete.

Example 3.8. Let X be a sample (of size 1) from the uniform distribution U (6 — 1,6 + 3),
0 eR.

We now apply Theorem 3.2 to show that there is no UMVUE of ¢ = ¢g(0) for any nonconstant
function g.

Note that an unbiased estimator U(X) of 0 must satisfy

0+5
/6 U(z)de =0  forall 6 € R.

_1
2



Differentiating both sizes of the previous equation and applying the result of differentiation
of an integral lead to U(z) = U(x + 1) a.e. m, where m is the Lebesgue measure on R.

If Tis a UMVUE of g(6), then T(X)U(X) is unbiased for 0 and, hence, T'(z)U(z) =
T(x+1)U(x + 1) a.e. m, where U(X) is any unbiased estimator of 0.

Since this is true for all U, T'(x) = T'(x + 1) a.e. m. Since T is unbiased for g(0),

0+
g(0) = / T(x)dx for all § € R.
0

1

2

Differentiating both sizes of the previous equation and applying the result of differentiation
of an integral, we obtain that

gl(e):T(e_l_%)_T(Q—%):O a.e. m.



Lecture 32: Information inequality

Suppose that we have a lower bound for the variances of all unbiased estimators of .

There is an unbiased estimator 1" of ¥} whose variance is always the same as the lower bound.

Then T is a UMVUE of 9.

Although this is not an effective way to find UMV UE’s, it provides a way of assessing the

performance of UMVUE’s.

Theorem 3.3 (Cramér-Rao lower bound). Let X = (Xj,...,X,,) be a sample from P €
P ={Py:0 € O}, where O is an open set in R*. Suppose that T'(X) is an estimator with
E[T(X)] = g(0) being a differentiable function of 8; Py has a p.d.f. fy w.r.t. a measure v for

all 8 € ©; and fy is differentiable as a function of  and satisfies

% /h(x)fg(x)dl/ = /h(m)%fe(x)d% 0 €0,

for h(z) =1 and h(x) = T'(x). Then

Var(T(X)) > [Zg(0)]" [1(0)]7" 59(0),
where

106) = £{ 10w o) | 102 0)] |

is assumed to be positive definite for any 6 € ©.
Proof. We prove the univariate case (k = 1) only.
When k =1, (2) reduces to

gOr
E [Z10g fo(X)]

From the Cauchy-Schwartz inequality, we only need to show that

Var(T'(X)) =

E L‘fe log fo(X )r = Var (gelogfe( ))

and
g'(#) = Cov <T(X), % log fg(X)) .

From condition (1) with h(z) =1,

0 0
E[aelogfa ] /aefa v = =5 [ fa(X)dv =

From condition (1) with h(z) = T'(z),

B [100) 108 £600)] = [ T00) X0 = 25 [ 760 o) = 0)

1

(1)



The k x k matrix I(6) in (3) is called the Fisher information matriz.

The greater () is, the easier it is to distinguish € from neighboring values and, therefore,
the more accurately 6 can be estimated. Thus, I(f) is a measure of the information that X
contains about the unknown 6.

The inequalities in (2) and (4) are called information inequalities.

The following result is helpful in finding the Fisher information matrix.

Proposition 3.1. (i) Let X and Y be independent with the Fisher information matrices
Ix(0) and Iy (0), respectively. Then, the Fisher information about 6 contained in (X,Y) is
Ix(0) + Iy (). In particular, if X7, ..., X, are i.i.d. and I;(0) is the Fisher information about
0 contained in a single X;, then the Fisher information about 6 contained in X, ..., X,, is
(ii) Suppose that X has the p.d.f. fy that is twice differentiable in 6 and that (1) holds with
h(z) =1 and fy replaced by 0fy/00. Then

160)= —F [ﬁ log f9<X>] . (5)

Proof. Result (i) follows from the independence of X and Y and the definition of the Fisher
information. Result (ii) follows from the equality

2 0% r(Y -
ae%m log fo(X) = % - %bg Jo(X) [% logfe(X)] :

Example 3.9. Let X, ..., X,, be i.i.d. with the Lebesgue p.d.f. %f (%:”), where f(z) > 0

and f’(z) exists for all z € R, u € R, and ¢ > 0 (a location-scale family). Let 6 = (u,0).
Then, the Fisher information about € contained in X7, ..., X, is (exercise)

@) F @) f @)+ )
I “5-dx J a4

F @) f (@) +f ()] [of! (2)+f (@))?
J (@) dv [ ==y —dv

Note that I(0) depends on the particular parameterization.
If & =+ (n) and v is differentiable, then the Fisher information that X contains about 7 is

Lp(mI(m) [Zvm)] .
However, the Cramér-Rao lower bound in (2) or (4) is not affected by any one-to-one repa-

rameterization.

If we use inequality (2) or (4) to find a UMVUE T(X), then we obtain a formula for
Var(T'(X)) at the same time.
On the other hand, the Cramér-Rao lower bound in (2) or (4) is typically not sharp.

2



Under some regularity conditions, the Cramér-Rao lower bound is attained if and only if
fo is in an exponential family; see Propositions 3.2 and 3.3 and the discussion in Lehmann
(1983, p. 123).

Some improved information inequalities are available (see, e.g., Lehmann (1983, Sections 2.6
and 2.7)).

Proposition 3.2. Suppose that the distribution of X is from an exponential family {fy :
0 € ©}, i.e., the p.d.f. of X w.r.t. a o-finite measure is

fo(x) = exp{[n(O)]"T (x) — £(6) }e(x), (6)

where © is an open subset of RF.

(i) The regularity condition (1) is satisfied for any h with F|h(X)| < oo and (5) holds.

(ii) If Z(n) is the Fisher information matrix for the natural parameter 7, then the variance-
covariance matrix Var(T') = I(n).

(iii) If 7(¥9) is the Fisher information matrix for the parameter ¥ = E[T(X)], then Var(T) =
(1)~

Proof. (i) This is a direct consequence of Theorem 2.1.

(ii) The p.d.f. under the natural parameter 7 is

fola) = exp {n"T(x) = ((n)} c(x).
From Theorem 2.1, E[T(X)] = (%C (n). The result follows from
oy log f(x) = T(x) — 5:¢(n).
(iii) Since ¥ = E[T(X)] = £¢(n),

() = 2T(9) ()" = 52-CI) [55=Cn)] -

By Theorem 2.1 and the result in (ii), %C(n) = Var(7T") = I(n). Hence

1(9) = (L) L [L(m)] ™" = [L(n)] " = [Var(T)]".

A direct consequence of Proposition 3.2(ii) is that the variance of any linear function of T
in (6) attains the Cramér-Rao lower bound.

The following result gives a necessary condition for Var(U(X)) of an estimator U(X) to
attain the Cramér-Rao lower bound.

Proposition 3.3. Assume that the conditions in Theorem 3.3 hold with 7'(X) replaced by
U(X) and that © C R.
(i) If Var(U(X)) attains the Cramér-Rao lower bound in (4), then

O U(X) ~g0)] = o (0) 7 08 [(X) a5 Py



for some function a(#), 6 € ©.
(ii) Let fy and T be given by (6). If Var(U(X)) attains the Cramér-Rao lower bound, then
U(X) is a linear function of T'(X) a.s. Py, 6 € ©.

Example 3.10. Let Xi,..., X, be i.i.d. from the N(u,o?) distribution with an unknown
i € R and a known o?.

Let f, be the joint distribution of X = (Xj,..., X,,). Then

n

alog fu(X) = Z;(Xz- —n)/o”.
Thus, () =n/o.
It is obvious that Var(X) attains the Cramér-Rao lower bound in (4).
Consider now the estimation of ¥ = 2.
Since EX? = u? + 02 /n, the UMVUE of ¥ is h(X) = X2 — o?/n.
A straightforward calculation shows that

B 4202 9204
Var(h(X)) = 7 27

On the other hand, the Cramér-Rao lower bound in this case is 4°0” /n.

Hence Var(h(X)) does not attain the Cramér-Rao lower bound.
The difference is 20 /n?.

Condition (1) is a key regularity condition for the results in Theorem 3.3 and Proposition
3.3.

If fp is not in an exponential family, then (1) has to be checked.

Typically, it does not hold if the set {x : fy(z) > 0} depends on 6 (Exercise 37).

More discussions can be found in Pitman (1979).



Lecture 33: U-statistics and their variances

Let Xy, ..., X,, be ii.d. from an unknown population P in a nonparametric family P.
If the vector of order statistic is sufficient and complete for P € P, then a symmetric unbiased
estimator of any estimable 1 is the UMVUE of 9.

In a large class of problems, parameters to be estimated are of the form
U= FElh(Xq,...., Xm)]

with a positive integer m and a Borel function A that is symmetric and satisfies
E|\h(X1, ..., Xn)| < 00

for any P € P.
It is easy to see that a symmetric unbiased estimator of ¥ is

U, = <”>_ S h(Xiy, o X)), (1)

m

where 3", denotes the summation over the (:@) combinations of m distinct elements {1, ..., i, }
from {1,...,n}.

Definition 3.2. The statistic U, in (1) is called a U-statistic with kernel h of order m.

The use of U-statistics is an effective way of obtaining unbiased estimators.
In nonparametric problems, U-statistics are often UMVUE’s, whereas in parametric prob-
lems, U-statistics can be used as initial estimators to derive more efficient estimators.

If m =1, U, in (1) is simply a type of sample mean.
Examples include the empirical c.d.f. evaluated at a particular ¢ and the sample moments
n~t 3" XF for a positive integer k.

Consider the estimation of ¥ = u™, where 4 = EX; and m is a positive integer. Using
h(z1, ..., Tm) = x1 - -+ T, We obtain the following U-statistic unbiased for ¥ = p™:

U, = (">_lzcjxil-.-xim. (2)

m

Consider the estimation of ¥ = 02 = Var(X;). Since
0? = [Var(X;) + Var(X,)]/2 = E[(X; — X3)?/2],

we obtain the following U-statistic with kernel h(xy, z3) = (z; — 22)%/2:

U, =

2 3 (XZ-—Xj)2: 1 (
n(n—1) =<, 2

SXP - nX2> = 5%

n—1\;=



which is the sample variance.

In some cases, we would like to estimate ¥ = F|X; — X5|, a measure of concentration.

Using kernel h(xi,x2) = |r1 — 23|, we obtain the following U-statistic unbiased for 9 =
E|X1 - X2|I 5
U= 2 X, - X,
n(n —1) 1<;<n g

which is known as Gini’s mean difference.

Let ﬂ:P(Xl—i_XQ S 0)
Using kernel h(x1,22) = I(—o0,0 (21 + x2), we obtain the following U-statistic unbiased for ¥:

2

ENTEEY

> T (Xi+ X;),

1<i<j<n
which is known as the one-sample Wilcozon statistic.

If E[h(X}, ..., X,,)]? < 0o, then the variance of U, in (1) with kernel 4 has an explicit form.
To derive Var(U,,), we need some notation.
For k=1,...,m, let
hk(l’l, ,[L’k) :E[h(Xl, ceny Xm)|X1 =Ty .y Xk = l’k]
= E[h(l’l, ey Ty Xk-i—la ceey Xm)]

Note that h,, = h.
It can be shown that

hk(xla"'axk) :E[hk+1($la"'>$k>Xk+l)]‘ (3)

Define .

k=1,...m, and h = h,,.
Then, for any U,, defined by (1),

U, — E(U,) = <”>_ S (X, X)) (5)

m

Theorem 3.4 (Hoeffding’s theorem). For a U-statistic U,, given by (1) with F[h(X1, ..., X,,)]?

=0 -1 m
= () $5) e

Ck = Var(hk(Xl, ceey Xk))

Proof. Consider two sets {i1,...,%,} and {ji,..., jm} of m distinct integers from {1,...,n}
with exactly k integers in common.

where



The number of distinct choices of two such sets is (Z) (’g) ("_m)

m—k

By the symmetry of h., and independence of X1, ..., X,
E[E(Xh”"?Xim)iL(le?"'7ij)] = Ck (6>

for k=1,...,m.
Then, by (5),

This proves the result.

Corollary 3.2. Under the condition of Theorem 3.4,

(i) ¢ < Var(Un) < 26m;

(ii) (n+ 1)Var(Up41) < nVar(U,,) for any n > m;

(iii) For any fixed m and k =1,...,m, if (; =0 for j < k and (; > 0, then

Var(Un):%%—O( ! >

nk nk+1

It follows from Corollary 3.2 that a U-statistic U,, as an estimator of its mean is consistent
in mse (under the finite second moment assumption on h).

In fact, for any fixed m, if (; = 0 for j < k and (; > 0, then the mse of U, is of the order
n~* and, therefore, U, is n*/?-consistent.

Example 3.11. Consider first h(zy,z2) = x122, which leads to a U-statistic unbiased for
2
pe, = EXy. 5 -
1~\Tote that hl(l’l) = UTq, hl(l'l) = u(a:l - ,u), Cl = E[hl(Xl)]2 = ,u2Var(X1) = M202,
h(x1,229) = 1179 — /~L27 and ¢ = Var(X;Xy) = E(X1X2)2 - /~L4 = (N2 + 02)2 - /~L4-
-1
By Theorem 3.4, for U,, = (g) Mi<icj<n XiXj,

() [T (5

_ 2 2 2 2 2\2 4
_ ApPo? 201
on n(n—1)

Comparing U,, with X2 — ¢?/n in Example 3.10, which is the UMVUE under the normality
and known o2 assumption, we find that

204

Var(U,) — Var(X? — 0% /n) = =1



Next, consider h(z1, ¥2) = I(_oo0)(21 +22), which leads to the one-sample Wilcoxon statistic.
Note that hi(x;) = P(z; + Xy < 0) = F(—x1), where F' is the c.d.f. of P. Then (; =
Var(F(—X7)).

Let 9 = E[h(Xl, Xg)]

Then (, = Var(h(Xy, X3)) = J(1 —9).

Hence, for U,, being the one-sample Wilcoxon statistic,

2

Var(U,,) = m

2(n —2)¢ +9(1 —v)].

If F'is continuous and symmetric about 0, then (; can be simplified as

(1 = Var(F(—X;)) = Var(l — F(X;)) = Var(F(X1)) = &

127
since F'(X;) has the uniform distribution on [0, 1].

Finally, consider h(z,z3) = |x; — 22|, which leads to Gini’s mean difference.
Note that

(1) = Blay = Xa| = [ oy = ylaP(y).
and

G = Var(n(x2)) = [ [ [ 12 = slapt)] ap(a) -,

where ¥ = E‘Xl — XQ‘




Lecture 34: The projection method

Since P is nonparametric, the exact distribution of any U-statistic is hard to derive.
We study asymptotic distributions of U-statistics by using the method of projection.

Definition 3.3. Let T}, be a given statistic based on X7, ..., X,,. The projection of T, on k,
random elements Y7, ..., Y, is defined to be

T, = +Z (T,,|Y:) — E(T},)).

If T,, is symmetric (as a function of X, ..., X,,), then ¢, (X1), ..., ¥,(X,) are i.i.d. with mean
Elyn(X:)] = E[E(T,|X3)] = E(T,,).
If E(T?) < oo and Var(¢n(X-)) > 0, then

wn z n)] —d N(Oa 1) (1)
nVar(¢n(X1 ;

by thve CLT.

Let T,, be the projection of T,, on Xj, ..., X,,.

Then

T, — T, = T, — B(T) = Y. 16.(X0) — E(L) @

i=1
If we can show that 7, — T, has a negligible order of magnitude, then we can derive the
asymptotic distribution of T;, by using (1)-(2) and Slutsky’s theorem.

The order of magnitude of T, — T;, can be obtained with the help of the following lemma.

Lemma 3.1. Let T}, be a symmetric statistic with Var(T},) < oo for every n and T,, be the
projection of T, on X1, ..., X,,. Then E(T,) = E(T},,) and

E(T, —T,)? = Var(T,,) — Var(T},).
Proof. Since E(T,) = E(T,),
E(T, — T,)* = Var(T,) + Var(T,,) — 2Cov(T,,, T},).
From Definition 3.3 with Y; = X, and k,, = n
Var(T},) = nVar(E(T,| X;)).
The result follows from
Cov(T,,T,) = E(T,T,) — [E(T,))
=nE[T,E(T,|X;)] — n[E(T,)]?
=nB{E[T,B(T,|X;)|Xi]} — n[E(T,)]*
=nE{[E(Ta|Xi)*} — n[E(T,)]?
= nVargE(Tn\Xi))
= Var(7),).



This method of deriving the asymptotic distribution of 7}, is known as the method of pro-
jection and is particularly effective for U-statistics.
For a U-statistic U,,, one can show (exercise) that

U,=EU,) + Z hi(X;), (3)

where U, is the projection of U, on X1, ..., X,, and hy(z) = hy(z) — E[M(X1, ..., Xm)], ha(z) =
E[h(z, Xs, ..., X))
Hence )
Var(U,) = m*C;/n
and, by Corollary 3.2 and Lemma 3.1,

E(U, —U,)?*=0(n?).

If ¢; > 0, then (1) holds with ), (X;) = mhi(X;), which leads to the result in Theorem 3.5(i)
stated later.

If ¢; = 0, then h; = 0 and we have to use another projection of U,.

Suppose that (; =--- = (1 = 0 and ¢} > 0 for an integer k > 1.

Consider the projection Uy, of U, on (Z) random vectors {X;,, ..., X; }, 1 <3 <--- <i <
n.

We can establish a result similar to that in Lemma 3.1 and show that

E(U, — U,)? = O(n~*+1),

Also, see Serfling (1980, §5.3.4).
With these results, we obtain the following theorem.

Theorem 3.5. Let U, be a U-statistic with E[h(X1, ..., X,,)]* < co.
(i) If ¢; > 0, then
VlUn = E(Un)] =4 N(0,m?Cy).

(11) If Cl =0 but Cg > O, then

Al ~ B)] "D S 08, - 1), (@)

where X%j’s are i.i.d. random variables having the chi-square distribution x3 and \;’s are
some constants (which may depend on P) satisfying 372, )\3 = (.

We have actually proved Theorem 3.5(i).

A proof for Theorem 3.5(ii) is given in Serfling (1980, §5.5.2).

One may derive results for the cases where (5, = 0, but the case of either (; > 0 or (, > 0 is
the most interesting case in applications.



If ¢; > 0, it follows from Theorem 3.5(i) and Corollary 3.2(iii) that
amsey, (P) = m?¢,/n = Var(U,) + O(n™?).

By Proposition 2.4(ii), {n[U, — E(U,)]*} is uniformly integrable.

If (; = 0 but ¢ > 0, it follows from Theorem 3.5(ii) that amsey, (P) = EY?/n? where Y
denotes the random variable on the right-hand side of (4).
The following result provides the value of EY?2.

Lemma 3.2. Let Y be the random variable on the right-hand side of (4). Then EY? =

m2(m—1)2
( 2 1) C2-
Proof. Define

m(m—1) &
Yk:%Z)\j(X%j—l), k‘:1,2,....
j=1

It can be shown (exercise) that {Y;?} is uniformly integrable.

Since Y —4 Y as k — oo, limy_, EY;? = EY? (Theorem 1.8(viii)).

Since X%j’s are independent chi-square random variables with Exfj =1 and Var(x%j) = 2,
EY);, = 0 for any k and

m?(m —1)* &

EY? = — > A2Var(xd;)
Jj=1

~ m*(m —1)? koo,
I

B m2(m — 1)2C2-

2

It follows from Corollary 3.2(iii) and Lemma 3.2 that

2 -1 2
amsey, (P) = %Q/nz = Var(U,) + O(n?)
Again, by Proposition 2.4(ii), the sequence {n?[U, — E(U,)]?} is uniformly integrable.

We now apply Theorem 3.5 to the U-statistics in Example 3.11.
For U,, = ﬁ Pi<icj<n XiXj, (1= u202.
Thus, if u # 0, the result in Theorem 3.5(i) holds with (; = p?0?.
If 4 =0, then (; =0, (; = 0* > 0, and Theorem 3.5(ii) applies.
However, it is not convenient to use Theorem 3.5(ii) to find the limiting distribution of U,,.
We may derive this limiting distribution using the following technique, which is further
discussed in §3.5.
By the CLT and Theorem 1.10,
nX?/o0? —q4 X3



when p = 0, where x? is a random variable having the chi-square distribution x?.
Note that

TLX2 ]_ n 2 (n - ]-)Un
o2 on ;Xi + o2
By the SLLN, 157 | X2 —,, 1.

An application of Slutsky’s theorem leads to

nU,/o® —q4 X7 — 1.
Since 1 = 0, this implies that the right-hand side of (4) is 0%(x? —1), i.e., Ay = 0 and \; = 0
when j > 1.

For the one-sample Wilcoxon statistic, (; = Var(F(—X;)) > 0 unless F' is degenerate.
Similarly, for Gini’s mean difference, (; > 0 unless F is degenerate.
Hence Theorem 3.5(i) applies to these two cases.



Lecture 35: The LSE and estimability

One of the most useful statistical models
Xi :ﬁTZZ'—I—SZ', 1= 1,...,n, (].)

where X is the ith observation and is often called the ith response;
[ is a p-vector of unknown parameters (main parameters of interest), p < n;
Z; is the ith value of a p-vector of explanatory variables (or covariates);
€1, ...,&n are random errors (not observed).
Data: (Xl, Zl), ey (Xn, Zn)
Z;’s are nonrandom or given values of a random p-vector, in which case our analysis is
conditioned on 2y, ..., Z,.
X =(Xy,...X,), e =(e1,...,6n)
Z = the n X p matrix whose ith row is the vector Z;, i =1,...,n
A matrix form of model (1) is
X=7Zp3+c¢. (2)

Definition 3.4. Suppose that the range of § in model (2) is B C RP. A least squares
estimator (LSE) of 3 is defined to be any 5 € B such that

. 2 2 _ : - 2
1 = Z5]]" = min [|X — Zb||". (3)

For any [ € R?, ZTB is called an LSE of [75.

Throughout this book, we consider B = RP unless otherwise stated.
Differentiating || X — Zb||? w.r.t. b, we obtain that any solution of

777b=7"X (4)

is an LSE of .
If the rank of the matrix Z is p, in which case (Z7Z)~! exists and Z is said to be of full
rank, then there is a unique LSE, which is

B=(2"2)"'7"X. (5)

If Z is not of full rank, then there are infinitely many LSE’s of .
Any LSE of (3 is of the form

A

B=(Z2"2)"72"X, (6)
where (Z77)~ is called a generalized inverse of Z7Z and satisfies
AVAVAPANAN AN

Generalized inverse matrices are not unique unless Z is of full rank, in which case (Z72)" =
(Z7Z)~! and (6) reduces to (5).



To study properties of LSE’s of 3, we need some assumptions on the distribution of X or ¢
(conditional on Z if Z is random).

Assumption Al: ¢ is distributed as N, (0,0%I,) with an unknown o2 > 0.
Assumption A2: E(g) =0 and Var(e) = ¢*I,, with an unknown o2 > 0.

Assumption A3: E(e) =0 and Var(e) is an unknown matrix.

Assumption Al is the strongest and implies a parametric model.

We may assume a slightly more general assumption that € has the N, (0,02D) distribution
with unknown o2 but a known positive definite matrix D.

Let D~'/2 be the inverse of the square root matrix of D.

Then model (2) with assumption Al holds if we replace X, Z, and ¢ by the transformed
variables X = D™V2X | Z = D~Y2Z and & = D~/2¢, respectively.

A similar conclusion can be made for assumption A2.

Under assumption Al, the distribution of X is N, (Zf,0%I,), which is in an exponential
family P with parameter § = (3,02) € RP x (0, 00).

However, if the matrix Z is not of full rank, then P is not identifiable (see §2.1.2), since
Z Py = Z 35 does not imply 5 = (5.

Suppose that the rank of 7 is r < p.
Then there is an n X r submatrix Z, of Z such that

Z =70 (7)
and Z, is of rank r, where @) is a fixed r X p matrix, and

P is identifiable if we consider the reparameterization B=0Qg.
The new parameter (3 is in a subspace of R” with dimension r.

In many applications, we are interested in estimating some linear functions of 3, i.e., ¥ ="/
for some [ € R?.

From the previous discussion, however, estimation of {73 is meaningless unless [ = Q"¢ for
some ¢ € R" so that

B=cQB=cp.
The following result shows that {7 is estimable if [ = Q"¢, which is also necessary for [/
to be estimable under assumption Al.

Theorem 3.6. Assume model (2) with assumption A3.

(i) A necessary and sufficient condition for [ € R? being Q"¢ for some ¢ € R" is | € R(Z) =
R(Z7Z), where @) is given by (7) and R(A) is the smallest linear subspace containing all
rows of A.

(i) If I € R(Z), then the LSE [73 is unique and unbiased for I73.



(iii) If | € R(Z) and assumption A1l holds, then {73 is not estimable.
Proof. (i) Note that a € R(A) if and only if a = A7b for some vector b. If [ = Q7¢, then

| =Qc=Q ZIZ(Z2IZ) ‘e = Z"|Z(ZI Z,) ).
Hence | € R(Z). If | € R(Z), then | = Z7( for some ¢ and
1= (Z.Q)C=Q¢c
with ¢ = Z7¢.
(i) If l e R(Z) = R(Z7Z), then | = Z7 Z( for some ¢ and by (6),
E(I'3)=E[l(Z7Z) Z"X]

AT AVAS AR AT A

— CTZTZ/@

=1"5.
If 3 is any other LSE of 3, then, by (4),

UG—1B=C(Z"2)3-B)=C (27X —Z7X) =0.

(iii) Under assumption A1, if there is an estimator h(X, Z) unbiased for I73, then

I8 = / Wz, Z)(2m) 0" exp {—slle — Z5)°} da.
R?’L
Differentiating w.r.t. § and applying Theorem 2.1 lead to
=2z / W, Z2)(2m) 20" (& — ZB) exp {5 |lv — 25|} da,

which implies | € R(Z).

Example 3.12 (Simple linear regression). Let 8 = (8o, 31) € R? and Z; = (1,4), t; € R,
1=1,..,n.
Then model (1) or (2) is called a simple linear regression model.

It turns out that
n i1 ti
777 = )
St Yt

This matrix is invertible if and only if some t;’s are different.
Thus, if some t;’s are different, then the unique unbiased LSE of {73 for any [ € R? is
I"(Z™Z)~'Z7 X, which has the normal distribution if assumption A1 holds.

The result can be easily extended to the case of polynomial regression of order p in which

B = (8o, b1, Bp1) and Z; = (1,t;,...,t771).



Example 3.13 (One-way ANOVA). Suppose that n = 7", n; with m positive integers
N1, ..., Ny, and that

Xi:,llj‘l‘gi, i:kj_l—}—l,...,kj, j:]_,...,m,

where ky =0, k; = S, j=1,...,m, and (pi1, ..., ftan) = B

Let J,, be the m-vector of ones.

Then the matrix Z in this case is a block diagonal matrix with J,,; as the jth diagonal

column.

Consequently, Z7Z is an m x m diagonal matrix whose jth diagonal element is n;.

Thus, Z™Z is invertible and the unique LSE of  is the m-vector whose jth component is
—1 kJJ .

’/I,j i:kj,1+1 Xi, j — 1,...’m.

Sometimes it is more convenient to use the following notation:
Xij = in,1+j> €ij = Eki_14j> J = 1a ceey Mgy 1= ]-7 ey MY,

and
Wi = 1+ oy, Zzl,,m

Then our model becomes
Xij:M—FOéi—F&ij, jzl,...,ni,izl,...,m, (8)

which is called a one-way analysis of variance (ANOVA) model.
Under model (8), 3 = (u, aq, ..., @) € R™L

The matrix Z under model (8) is not of full rank.

An LSE of § under model (8) is

= (X, Xy~ X, X — X))
where X is still the sample mean of Xi;'s and X,. is the sample mean of the ith group
{XZ],] = 1, ,’)’Lz}

The notation used in model (8) allows us to generalize the one-way ANOVA model to any
s-way ANOVA model with a positive integer s under the so-called factorial experiments.

Example 3.14 (Two-way balanced ANOVA). Suppose that
X,Jk:,u+az+ﬁj+'y,]—l—€,]k, ’l:]_,,a,,]:]_,,b,kf:l,,c, (9)

where a, b, and ¢ are some positive integers.
Model (9) is called a two-way balanced ANOVA model.
If we view model (9) as a special case of model (2), then the parameter vector [ is

ﬁ = (:U’uah "'7aa7517 "'76b77117 vy Vb -+ Yal, "‘7/76&6)' (10)

One can obtain the matrix Z and show that it is n x p, where n = abc and p = 14+a+ b+ ab,
and is of rank ab < p.



It can also be shown that an LSE of 3 is given by the right-hand side of (10) with u, «,
Bj, and ;; replaced by fi, &;, Bj, and 4;;, respectively, where i = X, & = X;. — X,
B =X, —X., 4 =X — X;.— X, + X, and a dot is used to denote averaging over the
indicated subscript, e.g.,
X = i 2D Xijk
i=1 k=1
with a fixed j.



Lecture 36: The UMVUE and BLUE

Theorem 3.7. Consider model
X=Z3+c¢ (1)

with assumption A1l (e is distributed as N, (0,02I,,) with an unknown o2 > 0).
(i) The LSE I"3 is the UMVUE of {73 for any estimable [ 3.

(ii) The UMVUE of 02 is 6% = (n — )~ !|| X — Zf||?, where r is the rank of Z.
Proof. (i) Let 3 be an LSE of 8. By Z72b= Z7X,

(X =207 Z(B~B)=(X"Z~X"2)(5~5)=0
and, hence,

IX — ZB|*=||X — ZB+ ZB — ZB|?
=X - ZB|* + |23 - zB|?
=X — ZB|* - 268727 X + | 28| + |23

Using this result and assumption Al, we obtain the following joint Lebesgue p.d.f. of X:

o2 20

- _ 7312 3112 2
(270%) " 2exp {ﬁ Z7s _ le=ZBPHIZBP _ 1126) }

By Proposition 2.1 and the fact that 70 = Z(Z7Z)~Z7X is a function of Z7 X, the statistic
(Z7X, || X — ZP|]?) is complete and sufficient for § = (83, 0*).

Note that (3 is a function of Z"X and, hence, a function of the complete sufficient statistic.
If I"3 is estimable, then (7 is unbiased for {"3 (Theorem 3.6) and, hence, {73 is the UMVUE
of I"[5.

(ii) From || X — Z3||2 = | X — ZB3|2 + || Z3 — ZB||*> and E(Z3) = Z3 (Theorem 3.6),

E|IX = ZB|I* = E(X = ZB)(X = ZB) = BE(B = B) Z7Z(5 - j)
=tr (Var(X) - Var(ZB))
=o’ln—tr (2(272)" 27 2(272)"Z7))]
=o’ln—tr ((272)°27%)).
Since each row of Z € R(Z), Z[ does not depend on the choice of (Z7Z)" in § =
(Z277)~Z"X (Theorem 3.6).

Hence, we can evaluate tr((Z7Z)~Z"Z) using a particular (Z77)~.
From the theory of linear algebra, there exists a p x p matrix C' such that CC™ = I, and

()
C(Z7Z)C = ,
00



where A is an r X r diagonal matrix whose diagonal elements are positive.
Then, a particular choice of (Z772)~ is

(77 7) =C ( A0 ) cr 2)
0 0

and

whose trace is r.
Hence 62 is the UMVUE of o2, since it is a function of the complete sufficient statistic and

E6* = (n—r)"'E||X — ZB||> = 0.

In general,

Var(I"3) = (27 2)~Z"Var(e)Z(Z7Z) L. (3)

If I € R(Z) and Var(e) = 0°I, (assumption A2), then the use of the generalized inverse
matrix in (2) leads to Var(I"3) = 01" (Z7Z)~l, which attains the Cramér-Rao lower bound
under assumption Al (Proposition 3.2).

The vector X — Zf3 is called the residual vector and || X — Zf||? is called the sum of squared
residuals and is denoted by SSR.
The estimator 62 is then equal to SSR/(n — ).

Since X — Z3 = [I, — Z(Z7Z)"Z7)X and '3 = I"(Z7Z)"Z"X are linear in X, they are
normally distributed under assumption Al.
Also, using the generalized inverse matrix in (2), we obtain that

I, — Z(Z72)" 27\ 2(Z72)" = Z(Z"2)" — Z(Z7Z)" 27 2(Z7Z)" = 0,

which implies that 62 and "3 are independent (Exercise 58 in §1.6) for any estimable [7f3.
Furthermore,
(Z(Z72)" 2" = Z2(Z72)" 77
(i.e., Z(Z™Z)~Z7 is a projection matrix) and
SSR = X"[I, — 2(Z72)" Z)X.
The rank of Z(Z72)~Z7 iste(Z(Z7Z)"Z7) =r.
Similarly, the rank of the projection matrix I,, — Z(Z7Z)~Z7 isn —r.
From
X' X=X"Z(Z"2)"Z"| X+ X"|I, — Z(Z"Z)" Z"]X
and Theorem 1.5 (Cochran’s theorem), SSR/c? has the chi-square distribution x? () with

§=0 232", - Z(Z"Z)" Z"|Z3 = 0.

2



Thus, we have proved the following result.

Theorem 3.8. Consider model (1) with assumption Al. For any estimable parameter I" 3,
the UMVUE’s ["3 and 62 are independent; the distribution of 173 is N(I"3, 02" (Z7Z)~1);
and (n — r)6%/0? has the chi-square distribution x?_ .

Example 3.15. In Examples 3.12-3.14, UMV UE’s of estimable {73 are the LSE’s lTﬁ, under
assumption Al. In Example 3.13,

m Ny

SSR=>5"3"(Xy — X)%

i=1j=1
in Example 3.14, if ¢ > 1,

a c

b
1j=1k=1

We now study properties of lTﬂA and 62 under assumption A2, i.e., without the normality
assumption on €.

From Theorem 3.6 and the proof of Theorem 3.7(ii), I"3 (with an [ € R(Z)) and 62 are still
unbiased without the normality assumption.

In what sense are ZT@ and &2 optimal beyond being unbiased?

We have the following result for the LSE 5.

Some discussion about 62 can be found, for example, in Rao (1973, p. 228).

Theorem 3.9. Consider model (1) with assumption A2.

(i) A necessary and sufficient condition for the existence of a linear unbiased estimator of I3
(i.e., an unbiased estimator that is linear in X) is [ € R(Z).

(ii) (Gauss-Markov theorem). If [ € R(Z), then the LSE I" is the best linear unbiased
estimator (BLUE) of [7 3 in the sense that it has the minimum variance in the class of linear
unbiased estimators of [7 3.

Proof. (i) The sufficiency has been established in Theorem 3.6.

Suppose now a linear function of X, ¢" X with ¢ € R", is unbiased for [”3. Then

I"B=FE(C"X)=cEX =c2Zp.
Since this equality holds for all 3,1 = Z7¢, i.e., | € R(Z).
(ii) Let l e R(Z) = R(Z7 Z). R R
Then | = (Z7Z)( for some ( and "3 =("(Z72)3=("Z"X by Z7Zb=Z"X.
Let ¢"X be any linear unbiased estimator of {"3. From the proof of (i), Z7¢ = [. Then
Cov(("Z™X, "X — (7" X)=FE(X"Z(c"X) — E(X"Z¢("Z"X)
=c*tr(Z¢CT) + BT 2722
— o*1(Z¢CTZT) - BTZTZCCTZTZ
:O'2CTZ 4 <176)2 . O_2<—Tl - (175)2
=0.



Hence

Var(¢"X) = Var(¢X — (27X + (27 X)
— Var(¢"X — ¢"Z7X) + Var(¢TZ7X)
1 2Cov((TZTX, X — (TZ7X)
=Var(¢"X — ("Z7X) + Var(I" )
> Var(I™3).



Lecture 37: Robustness of LSE’s

Consider model
X=7ZF+c¢. (1)

under assumption A3 (F(e) = 0 and Var(e) is an unknown matrix).

An interesting question is under what conditions on Var(e) is the LSE of I"3 with [ € R(Z)
still the BLUE.

If ZTB is still the BLUE, then we say that lTﬂA, considered as a BLUE, is robust against
violation of assumption A2.

A statistical procedure having certain properties under an assumption is said to be robust
against violation of the assumption if and only if the statistical procedure still has the same
properties when the assumption is (slightly) violated.

For example, the LSE of [ with [ € R(Z), as an unbiased estimator, is robust against
violation of assumption Al or A2, since the LSE is unbiased as long as E(¢) = 0, which can
be always assumed without loss of generality.

On the other hand, the LSE as a UMVUE may not be robust against violation of assumption
Al.

Theorem 3.10. Consider model (1) with assumption A3. The following are equivalent.
(a) I7f3 is the BLUE of 73 for any [ € R(Z).

(b) E(I"3n"X) = 0 for any | € R(Z) and any 5 such that E(n"X) = 0.

(c) Z™Var(e)U = 0, where U is a matrix such that Z7U = 0 and R(U") + R(Z7) = R™.
(d) Var(e) = ZA1Z7 + UALU™ for some Ay and As.

(e) The matrix Z(Z7Z)~Z"Var(e) is symmetric.

Proof. We first show that (a) and (b) are equivalent, which is an analogue of Theorem
3.2(1).

Suppose that (b) holds.

Let l € R(Z).

If ¢"X is unbiased for I3, then E(n"X) =0 with n=c— Z(Z7Z)"1.

Hence

"X +17p)
0" X) + Var(I"3) + 2Cov(n™ X, 17 3)
1" X) + Var(I"3) + 2E(I" 3" X)
1 I5)
> Var(I"3).
Suppose now that there are I € R(Z) and 1 such that E(n7X) = 0 but § = E(I"3y" X)) # 0.
Let ¢, =tn+ Z(Z7Z)" L.
From the previous proof,

Var(c] X) = t*Var(n”X) 4 Var(I"3) + 20t.

1



As long as ¢ # 0, there exists a t such that Var(cf X) < Var(I7 ).
This shows that [75 cannot be a BLUE and, therefore, (a) implies (b).

We next show that (b) implies (c).
Suppose that (b) holds.

Since | € R(Z), | = Z7~ for some 7.
Let n € R(UT).

Then E(n"X) =n"Z3 = 0 and, hence,

0=E(lByX)=EWZ2(ZZ) Z"XX ] =+ Z(Z" Z)~ Z"Var(e)n.

Since this equality holds for all I € R(Z), it holds for all ~.
Thus,
Z(Z7Z)” Z™Var(e)U = 0,
which implies
Z27Z(Z7Z)" Z™Var(e)U = Z"Var(e)U = 0,

since ZTZ(Z7Z)"ZT = 7.
Thus, (c) holds.
To show that (c) implies (d), we need to use the following facts from the theory of linear
algebra: there exists a nonsingular matrix C' such that Var(e) = CC”™ and C' = ZC; + UCy
for some matrices C; (since R(UT) + R(Z7) = R"™).
Let Al = Clof, A2 = 0205, and Ag = Cng
Then

Var(e) = ZMZ™ + UNUT + ZAUT + UANLZT (2)
and Z"Var(e)U = Z7ZA3UTU, which is 0 if (c) holds.
Hence, (c) implies

0= Z(Z72)"Z"ZAUTUUTU) U™ = ZAU”,
which with (2) implies (d).
If (d) holds, then Z(Z7Z)~Z"Var(e) = ZA1Z7, which is symmetric.
Hence (d) implies (e).
To complete the proof, we need to show that (e) implies (b), which is left as an exercise.

As a corollary of this theorem, the following result shows when the UMVUE’s in model (1)
with assumption Al are robust against the violation of Var(e) = ¢21,,.

Corollary 3.3. Consider model (1) with a full rank Z, ¢ = N,(0,%), and an unknown
positive definite matrix X. Then [ is a UMVUE of ["§ for any [ € R? if and only if one of
(b)-(e) in Theorem 3.10 holds.

Example 3.16. Consider model (1) with (3 replaced by a random vector 3 that is indepen-
dent of e.



Such a model is called a linear model with random coefficients.
Suppose that Var(e) = 021, and E(3) = 3. Then

X=Zp+Z(B—-p)+ec=ZB+e, (3)
where e = Z(8 — 3) + ¢ satisfies E(e) = 0 and
Var(e) = ZVar(B8)Z" + o1,.
Since
Z(Z7Z)~Z Var(e) = ZVar(B)Z7 + 0*Z(Z7Z)" 27

is symmetric, by Theorem 3.10, the LSE "3 under model (3) is the BLUE for any 7[5,
leR(Z). A

If Z is of full rank and ¢ is normal, then, by Corollary 3.3, "3 is the UMVUE of [" 3 for any
leRP.

Example 3.17 (Random effects models). Suppose that
Xij :N+Ai+eij7 jzl,...,ni,izl,...,m, (4)

where p € R is an unknown parameter, A;’s are i.i.d. random variables having mean 0 and
variance o2, e;;’s are i.i.d. random errors with mean 0 and variance o%, and A;’s and €ij’s
are independent.

Model (4) is called a one-way random effects model and A;’s are unobserved random effects.
Let €ij = AZ + €ij-

Then (4) is a special case of the general model (1) with

Var(e) = 0% + 0°1,,,

where ¥ is a block diagonal matrix whose ith block is J,,J7 and Jj is the k-vector of ones.

Under this model, Z = J,, n = Y™ ng, and Z(Z7Z)" 27 = = J, J7.
Note that
nidp Iy nadnJy, o Nmdn Jy
JnJ;L_E _ nIJNZ J777,—1 na J"Z J;?,—2 T nman J;f—m 7
mdn, Iy, nodn,Jn, o Mmdn,Jn
which is symmetric if and only if ny =ng =+ = n,,.

Since J,,J] Var(e) is symmetric if and only if J,J73 is symmetric, a necessary and sufficient
condition for the LSE of i to be the BLUE is that all n;’s are the same.

This condition is also necessary and sufficient for the LSE of i to be the UMVUE when ¢;5’s
are normal.

In some cases, we are interested in some (not all) linear functions of [.
For example, consider 73 with [ € R(H), where H is an n x p matrix such that R(H) C
R(Z).



Proposition 3.4. Consider model (1) with assumption A3. Suppose that H is a matrix
such that R(H) C R(Z). A necessary and sufficient condition for the LSE {73 to be the
BLUE of 73 for any | € R(H) is H(Z7Z)~Z"Var(e)U = 0, where U is the same as that in
(c) of Theorem 3.10.

Example 3.18. Consider model (1) with assumption A3 and Z = (H; H,), where H] Hy =
0.
Suppose that under the reduced model

X = Hlﬂl + €,
I" 3 is the BLUE for any I3, | € R(H;), and that under the reduced model
X = HQﬁQ + g,

I" 35 is not a BLUE for some "3, | € R(H,), where 3 = (1, 52) and Bj’s are LSE’s under
the reduced models.
Let H = (H; 0) be n x p.
Note that
H(Z™Z)~Z"Var(e)U = Hy(HTH,)~ HI Var(e)U,

which is 0 by Theorem 3.10 for the U given in (c) of Theorem 3.10, and
Z(Z7Z)~Z"Var(e)U = Hy(Hj Hy)~ Hi Var(e)U,

which is not 0 by Theorem 3.10. R
This implies that some LSE ("3 is not a BLUE of {3 but ["3 is the BLUE of [" 5 if | € R(H).

Finally, we consider model (1) with Var(e) being a diagonal matrix whose ith diagonal
element is 07, i.e., &;’s are uncorrelated but have unequal variances.

A straightforward calculation shows that condition (e) in Theorem 3.10 holds if and only if,
for all i # j, 07 # o7 only when h;; = 0, where h;; is the (4, j)th element of the projection
matrix Z(Z7Z)" 7.

Thus, an LSE is not a BLUE in general, although it is still unbiased for estimable [ .

Suppose that the unequal variances of ¢;’s are caused by some small perturbations, i.e.,
g; = e; + u;, where Var(e;) = o2, Var(u;) = §;, and ¢; and u; are independent so that
o2 = o% + ;.

Var(lT@) =1"(Z"7)" Z YA AR

i=1

If ; = 0 for all ¢ (no pertuArbations), then assumption A2 holds and lTﬂA is the BLUE of any
estimable [73 with Var(I"3) = o7 (Z7Z)"1.
Suppose that 0 < §; < 025. Then

Var(I"3) < (1+6)o2I" (27 Z)71.

This indicates that the LSE is robust in the sense that its variance increases slightly when
there is a slight violation of the equal variance assumption (small 0).



Lecture 38: Asymptotic properties of LSE’s

We consider first the consistency of the LSE 7§ with [ € R(Z) for every n.

Theorem 3.11. Consider model
X=Z3+c¢ (1)

under assumption A3 (E(e) = 0 and Var(e) is an unknown matrix).

Suppose that sup, A, [Var(e)] < oo, where A\, [A] is the largest eigenvalue of the matrix A,
and that lim,, .o A+ [(Z7Z)7] = 0. Then ["f3 is consistent in mse for any [ € R(Z).

Proof. The result follows from the fact that lﬂ@ is unbiased and

Var(I"3) =17(Z72)~ Z"Var(e) Z(Z7Z) "1
< A [Var(e)|I(Z272)71.

Without the normality assumption on ¢, the exact distribution of ZTB is very hard to obtain.
The asymptotic distribution of {73 is derived in the following result.

Theorem 3.12. Consider model (1) with assumption A3. Suppose that 0 < inf,, A\_[Var(e)],
where A\_[A] is the smallest eigenvalue of the matrix A, and that

lim max Z7(Z"Z)" Z; = 0. (2)

n—oo 1<i<n

Suppose further that n = Z?;l m; for some integers k, m;, 7 = 1,..., k, with m;’s bounded
by a fixed integer m, e = (1, ..., &), & € R™, and §;’s are independent.
(i) If sup; E|e;|**® < oo, then for any [ € R(Z),

(3= 8) [\ Var(trB) —a N (0, 1), (3

(ii) Suppose that when m; = m;, 1 <i < j <k, & and ; have the same distribution. Then
result (3) holds for any | € R(Z).
Proof. Let [ € R(Z). Then
I(Z72)" 2723 173 =0
and

(6= 8)=1(272) Ze = Zcm&,

where ¢,; is the mj-vector whose components are lT(ZTZ) Ziy i =kj_1+1,..kj, ko =0,
and kf] = Zg:l my, ] = 1, ceey k.
Note that

k
S lewl® =122y 2 A2 =T (Z 2 ()
Also,
max [|c,;||? <mlmax (1"(Z72) Z;)?

1<5<k

<ml™(Z"Z) lmax Z] (2" Z)" Z;,
1<i<n



which, together with (4) and condition (2), implies that

k
Jim (m el / 2 chjn?) = 0.

The results then follow from Corollary 1.3.

Under the conditions of Theorem 3.12, Var(e) is a diagonal block matrix with Var(¢;) as the
jth diagonal block, which includes the case of independent ¢;’s as a special case.

Exercise 80 shows that condition (2) is almost a necessary condition for the consistency of
the LSE.

The following lemma tells us how to check condition (2).

Lemma 3.3. The following are sufficient conditions for (2).
(a) \p[(Z72)") = 0and Z7(Z7Z)" Z, — 0, as n — o0.
(b) There is an increasing sequence {a,} such that a, — oo, a,/a,1 — 1, and Z77Z/a,
converges to a positive definite matrix.
Proof. (a) Since Z7Z depends on n, we denote (Z7Z)~ by A,.
Let 7,, be the integer such that h;, = max;<;<, h;.
If lim,, . i, = 00, then
lim h;, = lim Z7 A,Z;, < lim Z] A

n—oo

=0,

inin
where the inequality follows from i,, < n and, thus, A; — A, is nonnegative definite.
If 7,, < ¢ for all n, then

. . T . 2
J— 7 < 117 = 0.
Hing iy = livg, 25, AnZi, < litg An poax | 23] = 0

Therefore, for any subsequence {j,} C {i,,} with lim,_. j, = a € (0, o0, lim,,_, h;, = 0.
This shows that lim, . h;, = 0.
(b) Omitted.

IfntS"  t2 — cand n™' 37, t; — d in the simple linear regression model (Example 3.12),
where c is positive and ¢ > d?, then condition (b) in Lemma 3.3 is satisfied with a,, = n and,
therefore, Theorem 3.12 applies.

In the one-way ANOVA model (Example 3.13),

max Z7 (27 2)" Z; = M\ [(Z7Z)"] = max n; .

1<i<n 1<j<m

Hence conditions related to Z in Theorem 3.12 are satisfied if and only if min;n; — oo.
Some similar conclusions can be drawn in the two-way ANOVA model (Example 3.14).



Functions of unbiased estimators

If the parameter to be estimated is 1 = g(#) with a vector-valued parameter 6 and U, is a
vector of unbiased estimators of components of @, then T,, = g(U,) is often asymptotically
unbiased for 9.

Assume that ¢ is differentiable and ¢, (U, — ) —; Y. Then

amser, (P) = E{[Vg(0)"Y }*/c;

(Theorem 2.6). Hence, T), has a good performance in terms of amse if U, is optimal in terms
of mse (such as the UMVUE or BLUE).

Example 3.22. Consider a polynomial regression of order p:
)Q :iﬂTéz'+'€h i::ﬁL.”,n,

where 5 = (8o, 81, ..y Bp—1), Zi = (1,14, ...,tf_l), and ¢;’s are i.i.d. with mean 0 and variance
a? > 0.
Suppose that the parameter to be estimated is t3 € 7 C R such that

p—1 ) p—1

i )
2 s = e 2
7=0 7=0

Note that tz = g(3) for some function g.

Let 3 be the LSE of §.

Then the estimator fg = g(ﬁ) is asymptotically unbiased and its amse can be derived under
some conditions.

Example 3.23. In the study of the reliability of a system component, we assume that
Xij =0]2(t;) e, =1,k j=1..,m.

Here X;; is the measurement of the ith sample component at time t;;

z(t) is a g-vector whose components are known functions of the time ¢;

0,’s are unobservable random g¢-vectors that are ii.d. from N,(0,%), where § and ¥ are
unknown;

g;;’s are 1.1.d. measurement errors with mean zero and variance o?;

0;’s and ¢;;’s are independent.

As a function of t, 87z(t) is the degradation curve for a particular component and 07z(t) is
the mean degradation curve.

Suppose that a component will fail to work if 87z(¢) < 1, a given critical value.

Assume that 07z(t) is always a decreasing function of t.

Then the reliability function of a component is

R(t) = P(072(t) > n) = ® (%) :



where s(t) = 4/[2(t)]72z(t) and ® is the standard normal distribution function.
For a fixed t, estimators of R(t) can be obtained by estimating 6 and 3, since ® is a known

function.
It can be shown (exercise) that the BLUE of # is the LSE

0=(Z272)"'7"X,

where Z is the m x ¢ matrix whose jth row is the vector z(¢;), X; = (Xi1, ..., Xim), and X
is the sample mean of X;’s.

The estimation of ¥ is more difficult.

It can be shown (exercise) that a consistent (as k — oo) estimator of ¥ is

L1 _ _
= (22X = X)X = XY 2(272)7 = 2 2)
=1
where .
1
0= —— N XTX, - X7 Z(Z72)" 77 X,].
k(m — q) ;[ (272) ]

Hence an estimator of R(t) is

where

Yo = X72(272)"+(1)

Yy = (X7 Z(2°Z) 2(0)?

Yis = [X7X; — X7 Z(272)7 27 Xi] /(m — q)

Y; = (Yi1, Yia, Yis) It is apparent that R(t) can be written as g(Y) for a function

Yo ys) = B Yy1—n1n )
oy v) (wz—y%—yg[z@)r(ZTZ)—lz(t)

Suppose that ¢;; has a finite fourth moment, which implies the existence of Var(Y;).
The amse of R(t) can be derived (exercise).




Lecture 39: The method of moments

The method of moments is the oldest method of deriving point estimators.
It almost always produces some asymptotically unbiased estimators, although they may not
be the best estimators.

Consider a parametric problem where X, ..., X, are i.i.d. random variables from P, 6 €
© C RF, and E|X;|* < oc.
Let p; = EX{ be the jth moment of P and let

be the jth sample moment, which is an unbiased estimator of u;, 7 =1, ..., k.
Typically,
Hj = h’j(e)> ] = 1a ) k? (1)

for some functions h; on RF.
By substituting s;’s on the left-hand side of (1) by the sample moments /i;, we obtain a
moment estimator 0, i.e., 0 satisfies

:&j = h’j(é)> ] =1, "'>k>

which is a sample analogue of (1).
This method of deriving estimators is called the method of moments.
An important statistical principle, the substitution principle, is applied in this method.

Let i = (fi1, ..., i) and h = (hy, ..., hy).

Then i1 = h(6). A

If the inverse function h™! exists, then the unique moment estimator of @ is 6 = h='(fi).
When A~ does not exist (i.c., h is not one-to-one), any solution of i = h(f) is a moment
estimator of 0,

if possible, we always choose a solution 6 in the parameter space O.

In some cases, however, a moment estimator does not exist (see Exercise 111).

Assume that 6 = ¢(j) for a function g.
If h=! exists, then g = h™1.
If g is continuous at g = (1, ..., pt), then 6 is strongly consistent for 6, since fi; —q.5. ft; by
the SLLN.
If g is differentiable at u and E|X|* < oo, then 0 is asymptotically normal, by the CLT
and Theorem 1.12, and
amse;(0) = n~' [Vg(u)]"V,. Vg (),
where V), is a k x k matrix whose (¢, j)th element is p1;4; — pipt;.
Furthermore, the n=! order asymptotic bias of 0 is

(2n)~"tr (V2g(1)V,.) -

1



Example 3.24. Let Xi,..., X, be ii.d. from a population P indexed by the parameter
0 = (u,0?), where = EX; € R and 0% = Var(X;) € (0, 0).

This includes cases such as the family of normal distributions, double exponential distribu-
tions, or logistic distributions (Table 1.2, page 20).

Since EX; = p and EX? = Var(X,) + (EX,)? = 0% + 2, setting ji; = p and fip = 0 + p?
we obtain the moment estimator

éz(&%fX&—mﬁz(KTElﬁ)

1=1

Note that X is unbiased, but *=15? is not.

If X; is normal, then 0 is sufficient and is nearly the same as an optimal estimator such as
the UMVUE.

On the other hand, if X; is from a double exponential or logistic distribution, then 6 is not
sufficient and can often be improved.

Consider now the estimation of o2 when we know that p = 0.

Obviously we cannot use the equation fi; = p to solve the problem.

Using fiy = jiz = 0%, we obtain the moment estimator 62 = i = n~' 3" | X2

This is still a good estimator when X; is normal, but is not a function of sufficient statistic
when X is from a double exponential distribution.

For the double exponential case one can argue that we should first make a transformation
Y; = |X;| and then obtain the moment estimator based on the transformed data.

The moment estimator of 02 based on the transformed data is Y2 = (n=! ©7, | X;|)2, which
is sufficient for 2.

Note that this estimator can also be obtained based on absolute moment equations.

Example 3.25. Let Xi,..., X, be i.i.d. from the uniform distribution on (6;,6s), —o0 <
91 < 92 < Q.
Note that

EX, = (6, +6,)/2

and
EX? = (07 + 03 + 016)/3.

Setting ji; = EX; and fi, = EX? and substituting 6, in the second equation by 2/i; — 6,
(the first equation), we obtain that

(201 — 02)" + 63 + (2fin — 62)02 = 3o,

which is the same as
(62 — fn)* = 3(jsa — 7).
Since #, > E X, we obtain that

Oy = i + /3 — i}) = X + /2252



and
b1 = i — \3(i — i7) = X — /2052,
These estimators are not functions of the sufficient and complete statistic (X(l), X(n)),

Example 3.26. Let X1, ..., X, bei.i.d. from the binomial distribution Bi(p, k) with unknown
parameters k € {1,2,...} and p € (0, 1).
Since

EX1 = ]fp

and
EX? = kp(1 —p) + k*p?,

we obtain the moment estimators
p= (i + 03— o)/ =1 - 2=15%/X

and R B B
k= a3/ (i + 5 — i) = X/(1 = 2257/ X).
The estimator p is in the range of (0,1).
But k£ may not be an integer. )
It can be improved by an estimator that is k£ rounded to the nearest positive integer.

Example 3.27. Suppose that Xj, ..., X,, are i.i.d. from the Pareto distribution Pa(a, ) with
unknown a > 0 and 6 > 2 (Table 1.2, page 20).
Note that
EX; =0a/(0—1)
and
EX? =0a*/(0 —2).
From the moment equation,

0—1)2 PN
((9(9_;) = ,ug//ﬁ.

(6-1)* _ 1
Note that 00— — 1= 3
Hence

0(0 — 2) = i/ (j12 — f17).

Since 6 > 2, there is a unique solution in the parameter space:

0 =1+/jin/ (1o — 1}) = 1+ /1 + X2/

and

~

(@ 1)
Q= ——=

0
=X\ 1+ 25X2/8% ) (14 1+ 2 X2/52) .




Exercise 108. Let X, ..., X,, be a random sample from the following discrete distribution:

L 201-9 0
P(Xi=1) = 5 g P(Xl—Q)_ﬂa
where 6 € (0,1) is unknown.
Note that
21-6) 20 2

EX1 ==

20 2.6 2.0
Hence, a moment estimator of 0 is 6 = 2(1 — X~1), where X is the sample mean.

Note that
2(1-10) 40 4 _49—292—4

2—9 2-0 (207 (2=07 °
0=2(1-p"") =g,
g(n) =2/p*=2/2/(2-0)] = (2-0)*/)2.
By the central limit theorem and J-method,

Var(X;) =

-9 —>dN<0, (2—9)2(29—92—2))

2

The method of moments can also be applied to nonparametric problems.
Consider, for example, the estimation of the central moments

cj:E(Xl—,ul)j, ]:2,,]{?

Since _
Zj J ¢
Cj = <t> (_:ul) Mj—t,

the moment estimator of ¢; is

where jiop = 1.
It can be shown (exercise) that
1 & Y
G==> (X, - X), j=2,..k, (2)

n;3

which are sample central moments.
From the SLLN, ¢,’s are strongly consistent.
If E|X;|** < oo, then
ﬁ(éz_CQ,...,ék_Ck> —d Nk_l(O,D) (3)

where the (7, j)th element of the (k — 1) x (k — 1) matrix D is

Citjr2 = Ci1C41 — (1 1)cicjp — (F + L)cipacy + (i + 1) (J + Deicjen.



Lecture 40: V-statistics and the weighted LSE

Let X4,..., X, beiid. from P.
For every U-statistic U,, as an estimator of ¢ = E[h(Xy,..., X;,)], there is a closely related
V-statistic defined by

W:mimiM&”%J (1)

As an estimator of ¥, V,, is biased; but the bias is small asymptotically as the following
results show.
For a fixed sample size n, V,, may be better than U, in terms of their mse’s.

Proposition 3.5. Let V,, be defined by (1).
(i) Assume that Elh(X;,, ..., X, )| <ooforall 1 <iy <--- <1, <m.
Then the bias of V,, satisfies
by, (P) = O(n™").
(i) Assume that F[h(X;,,..., X;,,)]> < oo forall 1 <4y < --- <4, < m. Then the variance
of V,, satisfies
Var(V,) = Var(U,) + O(n™?),

where U, is the U-statistic corresponding to V/,.

To study the asymptotic behavior of a V-statistic, we consider the following representation

of V,, in (1):
Vo = Z <m> an,

j=1 \J

where Lo .
Vn]:’l?‘l'ﬁz "Zg](lea >XZJ)
i1=1 i;=1
is a “V-statistic” with
gj(x1, ..., xj) =hj(z1, ..., ;) Z/h T1, ..., )dP(x;)
+ Z //h L1,y ooy 5)dP (25, )dP(24,) —
1<41<12<5

/' L/h @1,y ;)P (21) - - dP(1;)

and hj(l‘l, ...,Ij) = E[h(l‘l, ...,Ij,Xj+1, ,Xm)]
Using an argument similar to the proof of Theorem 3.4, we can show that

EVZ=0(n™), j=1,...m, (2)



provided that E[h(X;,,...., X;, )]? <occforall 1 <ip < --- <4y < m.
Thus,

Vi — 0 = mVpy + 220y 0 40, (n7Y), (3)
which leads to the following result similar to Theorem 3.5.

Theorem 3.16. Let V,, be given by (1) with E[h(X;,, ..., X;, )P < oo forall 1 <4y <--- <
T < M.
(1) If §1 = V&I'(hl(Xl)) > O, then

Vn(V, —19) —4 N(0,m3¢).

(11) If Cl =0 but Cg = Val'(hg(Xl,X2>) > 0, then

_ 1 oo
n(V, —19) —q % > oA
j=1

where x7,’s and \;’s are the same as those in Theorem 3.5.

Theorem 3.16 shows that if (; > 0, then the amse’s of U,, and V,, are the same. If (; =0
but (, > 0, then an argument similar to that in the proof of Lemma 3.2 leads to

m2(m — 1)%( N m2(m — 1)? (00 )\j>2

amsey, (P)= 573 o

=amsey, (P) + mim — 1) (i )\j)

(see Lemma 3.2). Hence U, is asymptotically more efficient than V;,, unless 3222, A; = 0.

Example 3.28. Consider the estimation of p?, where y = EX;.
From the results in §3.2, the U-statistic U, = ﬁ Y 1<icj<n XiX; is unbiased for p?.
The corresponding V-statistic is simply V,, = X2,
If u # 0, then (; # 0 and the asymptotic relative efficiency of V,, w.r.t. U, is 1.
If =0, then
nV, —q 023 and nU, —q 0*(x3 — 1),
where 7 is a random variable having the chi-square distribution y?.
Hence the asymptotic relative efficiency of V,, w.r.t. U, is

E(G —1)%/E(X))? =2/3.



The weighted LSE

In the linear model
X =Zp+¢, (4)

the unbiased LSE of {73 may be improved by a slightly biased estimator when V' = Var(e)
is not 021, and the LSE is not BLUE.

Assume that Z is of full rank so that every [”[3 is estimable.
If V' is known, then the BLUE of 73 is "3, where

B=(ZV12)'Zz7viX (5)

(see the discussion after the statement of assumption A3 in §3.3.1).
If V is unknown and V' is an estimator of V| then an application of the substitution principle
leads to a weighted least squares estimator

By = (Z7V2)\Z7VIX. (6)

The weighted LSE is not linear in X and not necessarily unbiased for 3.

If the distribution of € is symmetric about 0 and V remains unchanged when e changes to
—e, then the distribution of /@w — [ is symmetric about 0 and, if Eﬁw is well defined, /@w is
unbiased for 3.

In such a case the LSE [73 may not be a UMVUE (when ¢ is normal), since Var(I"3,) may
be smaller than Var(I"3).

Asymptotic properties of the weighted LSE depend on the asymptotic behavior of V.
We say that V' is consistent for V' if and only if

V=V — Lllmax —5 0, (7)

where ||Al|max = max; j |a;;| for a matrix A whose (4, j)th element is a;;.

Theorem 3.17. Consider model (4) with a full rank Z. Let 3 and 3, be defined by (5) and
(6), respectively, with a V' consistent in the sense of (7). Assume the conditions in Theorem
3.12. Then

I"(Bw — 8)/an —a N(0,1),

where [ € RP, [ # 0, and }
a2 =Var(I'p) =1"(Z"V*2)7 .

Proof. Using the same argument as in the proof of Theorem 3.12, we obtain that
ZT(B - ﬁ)/an —d N(O> 1)
By Slutsky’s theorem, the result follows from

By — 175 = op(ay).



Define R R
& =112V 27V = Ve
and R
Co=U[(Z7VIZ) T —(Z7V2)y N2V te.
Then R 5
lTﬁw - lTﬁ =&n + Cn
The result follows from &, = o,(a,) and (, = oy(a,,) (details are in the textbook).

Theorem 3.17 shows that as long as V is consistent in the sense of (7), the weighted LSE B
is asymptotically as efficient as B, which is the BLUE if V' is known. R
By Theorems 3.12 and 3.17, the asymptotic relative efficiency of the LSE [ w.r.t. the
weighted LSE "B, is
I(Z7v—12)74
I"(Z72) 2V Z(Z7Z)

which is always less than 1 and equals 1 if {73 is a BLUE (in which case 8= 5)

Finding a consistent V is possible when V' has a certain type of structure.

Example 3.29. Consider model (4). Suppose that V' = Var(e) is a block diagonal matrix
with the ith diagonal block

o?IL,,, + UXUT, i=1,..k, (8)

where m;’s are integers bounded by a fixed integer m, 02 > 0 is an unknown parameter, ¥ is
a q X ¢ unknown nonnegative definite matrix, U; is an m; x ¢ full rank matrix whose columns
are in R(W;), ¢ < inf; m;, and W; is the p x m; matrix such that Z7 = ( Wj Wy ... Wy ).
Under (8), a consistent V can be obtained if we can obtain consistent estimators of o2 and
3.

Let X = (Y7, ..., Y%), where Y; is an m;-vector, and let R; be the matrix whose columns are
linearly independent rows of W;. Then

G52 =

1 k
> YLy, — Ri(R]R;) ' R])Y; 9)
n—kq =

is an unbiased estimator of o2
Assume that Y;’s are independent and that sup, E|e;|**° < oo for some § > 0.
Then 62 is consistent for o2 (exercise). Let r; = Y; — W73 and
R
2= (U7 U) U rar TUCUT U) ™Y = 62U U Y (10)
i=1
It can be shown (exercise) that 3 is consistent for ¥ in the sense that |3 — %||max — 0 or,

equivalently, |3 — || —, 0 (see Exercise 116).
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