Statistics 4109: Probability and Statistics
Liam Paninski, liam@stat.columbia.edu
Fall 2010

The course covers the material of two other courses, STAT4105 and STAT4107, in a single semester. The pace,
therefore, is fast, and not all students will be able to keep up. Furthermore, the material is cumulative, that is, almost
every lecture builds on previously discussed concepts, and students unable to keep up will find themselves in a very
uncomfortable position. Students who doubt their preparation or who are concerned that they will not be able to
consistently devote time to the course would be well advised to consider taking STAT4105 this semester followed by
STAT4107 the next. However, if you're thinking of taking 4105 and 4107 in the same semester, | strongly recommend
you take 4109 instead; 4109 offers the big advantage of covering the material in the proper sequence.

Also see

Probability and Statistics, 3rd Ed., by DeGroot and Schervish (ISBN 0-201-52488-0
A First Course in Probability (by S. Ross)
Statistical Inference (by Casella and Berger).
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Probability inequalities'!

There is an adage in probability that says that behind every limit theorem lies
a probability inequality (i.e., a bound on the probability of some undesired
event happening). Since a large part of probability theory is about proving
limit theorems, people have developed a bewildering number of inequalities.

Luckily, we’ll only need a few key inequalities. Even better, three of them
are really just versions of one another. Exercise 29: Can you think of exam-
ple distributions for which each of the following inequalities are tight (that
is, the inequalities may be replaced by equalities)? Are these “extremal”
distributions unique?

Markov’s inequality

Figure 5: Markov.

For a nonnegative r.v. X,
E(X)
.

P(X >u) <

So if E(X) is small and we know X > 0, then X must be near zero with
high probability. (Note that the inequality is not true if X can be negative.)

HHMC 1.10
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The proof is really simple:
WP(X > u) < / tpx (D)t < / Ipx ()t = BE(X). O
u 0

Chebyshev’s inequality

Figure 6: Chebyshev.

P(X — B[ >w) < V)

aka
X-BOl N1
() =

Proof: just look at the (nonnegative) r.v. (X — E(X))?, and apply Markov.
So if the variance of X is really small, X is close to its mean with high
probability.

Chernoff’s inequality
P(X >u) = P(e* > e™) < e *M(s).

So the mgf controls the size of the tail of the distribution — yet another
surprising application of the mgf idea.
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Figure 7: Chernoff.

The really nice thing about this bound is that it is easy to deal with
sums of independent r.v.’s (recall our discussion above of mgf’s for sums
of independent r.v.’s). Exercise 30: Derive Chernoff’s bound for sums of
independent r.v.’s (i.e., derive an upper bound for the probability that ). X;
is greater than w, in terms of M (Xj;)).

The other nice thing is that the bound is exponentially decreasing in
u, which is much stronger than Chebyshev. (On the other hand, since not
all r.v.’s have mgf’s, Chernoff’s bound can be applied less generally than
Chebyshev.)

The other other nice thing is that the bound holds for all s simultaneously,
so if we need as tight a bound as possible, we can use

P(X >u) <infe ™M(s),
S
i.e., we can minimize over s.

Jensen’s inequality

This one is more geometric. Think about a function g(u) which is curved
upward, that is, ¢”’(u) > 0, for all u. Such a g(u) is called “convex.”
(Downward-curving functions are called “concave.” More generally, a convex
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Figure 8: Jensen.

function is bounded above by its chords:

g(tz + (1 —t)y) < tg(z) + (1 —t)g(y),

while a concave function is bounded below.)
Then if you draw yourself a picture, it’s easy to see that

E(9(X)) = g(E(X)).

That is, the average of g(X) is always greater than or equal to g evaluated
at the average of X. Exercise 31: Prove this. (Hint: try subtracting off
f(X), where f is a linear function of X such that g(X) — f(X) reaches a
minimum at £(X).)

Exercise 32: What does this inequality tell you about the means of
1/X7 of —Xlog X7 About E;(X) vs. E;(X), where ¢ > 57

Cauchy-Schwarz inequality
[C(X,Y)] < a(X)a(Y),

that is, the correlation coefficient is bounded between —1 (X and Y are
anti-correlated) and 1 (correlated).
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The proof of this one is based on our rules for adding variance:
1
CXY) =S [VX+Y) = V(X) - V()]

(assuming F(X) = E(Y) = 0). Exercise 33: Complete the proof. (Hint:
try looking at X and —X, using the fact that C(—X,Y) = -C(X,Y).)

Exercise for the people who have taken linear algebra: interpret the
Cauchy-Schwarz inequality in terms of the angle between the vectors X and
Y (where we think of functions — that is, r.v.’s — as vectors, and define the
dot product as E(XY) and the length of a vector as \/FE(X?2)). Thus this
inequality is really geometric in nature.
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Limit theorems!?

An approximate answer to the right question is worth a great deal more than
a precise answer to the wrong question.

The first golden rule of applied mathematics, sometimes attributed to
John Tukey

(Weak) law of large numbers

Chebyshev’s simple inequality is enough to prove perhaps the fundamental
result in probability theory: the law of averages. This says that if we take
the sample average of a bunch of i.i.d. r.v.’s, the sample average will be close
to the true average. More precisely, under the assumption that V(X) < oo,

then
| XN
P <|E(X) ¥ ;_1 X;| > 6> —0

as N — 00, no matter how small € is.
The proof:

1 N
E (N ;Xi) = B(X),

by the linearity of the expectation.

N
1 V(X)
VI— X | = ——,
(FEx) -5
by the rules for adding variance and the fact that X; are independent.
Now just look at Chebyshev. [
Remember, the LLN does not hold for all r.v.’s: remember what happened

when you took averages of i.i.d. Cauchy r.v.’s? Exercise 34: What goes
wrong in the Cauchy case?

Stochastic convergence concepts

In the above, we say that the sample mean % Zf\il X, “converges in proba-
bility” to the true mean. More generally, we say r.v.’s Zy converge to Z in

2HMC chapter 4
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probability, Zy —p Z, if
P(|Zy —Z| >¢) — 0

as N — oo. (The weak LLN is called “weak” because it asserts convergence
in probability, which turns out to be a somewhat “weak” sense of stochastic
convergence, in the mathematical sense that there are “stronger” forms of
convergence — that is, it’s possible to find sequences of r.v.’s which converge
in probability but not in these stronger senses. In addition, it’s possible to
prove the LLN without assuming that the variance exists; existence of the
mean turns out to be sufficient. But discussing these stronger concepts of
convergence would take us too far afield'?; convergence in probability will be
plenty strong enough for our purposes.)

We discussed convergence of r.v.’s above; it’s often also useful to think
about convergence of distributions. We say a sequence of r.v.’s with cdf’s
Fy(u) “converge in distribution” if

lim Fy(u) — F(u)

N—oo
for all u such that F' is continuous at u (here F is itself a cdf). Exercise 35:
Explain why do we need to restrict our attention to continuity points of F.
(Hint: think of the following sequence of distributions: Fy(u) = 1(u < 1/N),
where the “indicator” function of a set A is one if x € A and zero otherwise.)

It’s worth emphasizing that convergence in distribution — because it
only looks at the cdf — is in fact weaker than convergence in probability.
For example, if px is symmetric, then the sequence X, — X, X, — X, ... trivially
converges in distribution to X, but obviously doesn’t converge in probability.
Exercise 36: Prove that convergence in probability actually is stronger, that
is, implies convergence in distribution.

Central limit theorem

The second fundamental result in probability theory, after the LLN, is the
CLT: if X; are i.i.d. with mean zero and variance 1, then

1 N
— Xi —D N(071)7
D

13 Again, see e.g. Breiman ’68 for more information.
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Figure 9: De Moivre and Laplace.

where N(0,1) is the standard normal density. More generally, the usual
rescalings tell us that

v 20— BLX) = 0.1

Thus we know not only that (from the LLN) the distribution of the sample
mean approaches the degenerate distribution on F(X), but moreover (from
the CLT) we know exactly what this distribution looks like, asymptotically, if
we take out our magnifying glass and zoom in on E(X), to a scale of N~/2,
In this sense the CLT is a stronger result than the WLLN: it gives more
details about what the asymptotic distribution actually looks like.

One thing worth noting: keep in mind that the CLT really only tells us
what’s going on in the local neighborhood (E(X) — N~'/2¢, E(X) 4+ N~'/%¢)
— think of this as the mean plus or minus a few standard deviations. But
this does not imply that, say,

P(N ZXi < —€) ~ / N(0, N)(:c)dx = / N(0,1)(z)dz not true;
i=1 oo

oo

a different asymptotic approximation typically holds for the “large devia-
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tions,” the tails of the sample mean distribution.

More on stochastic convergence

So, as emphasized above, convergence in distribution can drastically simplify
our lives, if we can find a simple approximate (limit) distribution to substitute
for our original complicated distribution. The CLT is the canonical example
of this; the Poisson theorem is another. What are some general methods to
prove convergence in distribution?

Delta method

The first thing to note is that if Xy converge in distribution or probability to
a constant ¢, then g(Xy) —p g(c) for any continuous function g(.). Exercise
37: Prove this, using the definition of continuity of a function: a function
g(u) is continuous at u if for any possible fixed € > 0, there is some (possibly
very small) 0 such that |g(u+v) — g(u)| < €, for all v such that —§ < v < 4.
(If you’re having trouble, just try proving this for convergence in probability.)

So the LLN for sample means immediately implies an LLN for a bunch
of functions of the sample mean, e.g., if X; are i.i.d. with V(X)) < oo, then

N 1/N
] 1 5N )
<H €X2> = eN Zizl Xi —p eE(X)7
=1

(which of course should not be confused with E(e¥); in fact, Exercise 38:
Which is greater, E(eX) or e#¥)? Give an example where one of E(eX) or
eP(X) is infinite, but the other is finite).

We can also “zoom in” to look at the asymptotic distribution (not just
the limit point) of g(Z), whenever g is sufficiently smooth. For example, let’s
say ¢(.) has a Taylor expansion at u,

9(2) = g(u) + ¢'(u)(z — ) + o(|z — ul), |z —u| =0,
where |¢/(u)| > 0 and z = o(y) means z/y — 0. Then if

aN(ZN - U) —D 9,

14See e.g., Large deviations techniques and applications, Dembo and Zeitouni ’93, for
more information.
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for some limit distribution ¢ and a sequence of constants ay — oo (think
ay = NY2 if Zy is the sample mean), then

L 9Zy) = gl

DY,
g'(u)

since

x 209 _ o o (ay D).

g'(u) g'(u)

the first term converges in distribution to ¢ (by our assumption) and the
second one converges to zero in probability (Exercise 39: Prove this; i.e.,
prove that the remainder term

9(Zn) — g(u)
g'(u)

converges to zero in probability, by using the Taylor expansion formula).
In other words, limit distributions are passed through functions in a pretty
simple way. This is called the “delta method” (I suppose because of the
deltas and epsilons involved in this kind of limiting argument), and we’ll be
using it a lot. The main application is when we’ve already proven a CLT for
Zn,

an —CLN(ZN—U)

Z _
VNEYZE N, 1),

g

in which case
VN(9(Zn) = 9(1)) —p N(0,5°(g'(1))?).

Exercise 40: Assume N'/2Zy —p N(0,1). Then what is the asymptotic
distribution of 1) g(Zx) = (Zy — 1)?? 2) what about g(Zy) = Z%7? Does
anything go wrong when applying the delta method in this case? Can you
fix this problem?

Mgf method

What if the r.v. we're interested in, Yy, can’t be written as g(Xy), i.e., a
nice function of an r.v. we already know converges? Are there methods to
prove limit theorems directly?

Here we turn to our old friend the mgf. It turns out that the following
generalization of the mgf invertibility theorem we quoted above is true:
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Theorem 2. The distribution functions Fy converge to F' if:

e the corresponding mgf’s Mx, (s) and Mx(s) exist (and are finite) for
all s € (—z,z), for all N, for some positive constant z.

o Mx,(s) — Mx(s) forall s € (—z,z).

So, once again, if we have a good handle on the mgf’s of X, we can learn
a lot about the limit distribution. In fact, this idea provides the simplest way
to prove the CLT.

Proof: assume X; has mean zero and unit variance; the general case
follows easily, by the usual rescalings.

Now let’s look at My(s), the mgf of ﬁ SV, X;. If X, has mgf M(s),

then \/LN SV, X; has mgf
M(s/VN)V.

Now let’s make a Taylor expansion. We know that M (0) = 1, M’(0) = 0,
and M"(0) = 1. (Why?) So we can write

M(s) =1+ s%/2+ o(s?).
Now we just note that My(s) converges to e**/2, recall the mef of a stan-
dard normal r.v., and then appeal to our general convergence-in-distribution
theorem for mgf’s. O
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Part III
Estimation theory

We’ve established some solid foundations; now we can get to what is really
the heart of statistics.
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Point estimation

“Point estimation” refers to the decision problem we were talking about last
class: we observe data X; drawn i.i.d. from ps(z)', and our goal is to
estimate the parameter § € © from the data. An “estimator” is any decision
rule, that is, any function from the data space X into the parameter space
O. E.g. the sample mean, in the Gaussian case. Or the function that assigns
“2” to every possible observed data sample.

Bias and variance!”

There are two important functions associated with any estimator 0 that are
useful as a thumbnail sketch of how well the estimator is doing: the “bias”

B;(0) =

Ep(6—0) = /Z.../Zﬁpg(){i)(é({Xl,Xg,...XN})—Q) ﬁdXi = Ey(0)—0

and the variance

Vi(0) = Va(d)

There is a very useful relationship between the bias, variance, and the
mean-square error (MSE) of any estimator. Using the usual rules for expec-
tations of squares, it’s easy to show that the square error decomposes into a
bias and variance term:

B (007 ) = B0 + V0

So the MSE of an estimator can be simply described as a sum of a term
measuring how far off the estimator is “on average” (not average square) and
a term measuring the variability of the estimator.

16Note that this is a huge assumption, or rather set of assumptions. We assume that
the data is mutually independent — that is, seeing one data point doesn’t affect the other
data points at all — and even more strongly, that the true underlying distribution of
the data happens, rather too conveniently, to some easy-to-analyze family of distributions
pe(x), where 6 is some simple parameter that tells us everything we need to know about
the data. The message is to take all of the following with a grain of salt: this i.i.d. story
is a simple, tractable model of the data — while it’s a very helpful model, as we’ll see, it’s
important to remember that in 99% of cases it’s something of a caricature.

ITHMC 4.1
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Note that both the bias and variance are functions of 6 (and are there-
fore usually unknown, although we will see some exceptions to this below);
the bias could be positive for some parameters but negative for others, for
example.

Here’s an example: let x; be i.i.d. coin flips from some coin that has p
probability of coming up heads. We want to estimate p. Then it’s easy to
compute the bias if we take our estimator to be the sample mean number of
heads: we just need to compute

EBN,p (n/N> =D.

Therefore the bias is zero, no matter what p is. The variance is also easy
to compute, if we recall the binomial variance and use our scaling rule for
variance:

Vi, (n/N) = p(1 ~ p).

Here the variance of our estimator depends on the parameter p.
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Unbiased, minimum-variance estimators

This bias-variance decomposition leads to another possible way to choose
between all possible admissible estimators. (Recall that we discussed two
such principles before, the Bayes — minimum average error — principle and
the minimax — minimum worst-case error.)
Here’s a third: choose the best unbiased estimator. That is, choose an
estimator # such that
B;(0) =0 V0,

and such that the variance is minimized over the class of all such unbiased
estimators. Unbiased estimators are right “on average,” which is not a bad
thing to aim for (although the condition of exactly zero bias turns out to
be pretty strong, ruling out a lot of otherwise good estimators, so it’s much
more questionable whether we should exclude all estimators with any bias
whatsoever).

Exercise 52: Is the sample mean unbiased for Poisson data?

Exercise 53: Provide an unbiased estimator for b if the data is U(]0, b]).

Exercise 54: Provide an unbiased estimator for o2, the variance param-
eter of the Gaussian distribution N (u,0?): 1) in the case that p is known;
2) in the case that p is unknown.

Note that this unbiasedness condition rules out trivial estimators such
as é(D) = 2 VD, which is nice. In fact, in some situations we’ll see that a
“uniformly minimum-variance unbiased” estimator (UMVUE) exists: such
an estimator satisfies

Vi 0) <Vy(0) 0,

U]\/[VU<

for any unbiased estimator é; therefore an UMVUE dominates all other un-
biased estimators under the squared-error cost function. In this case, it
obviously makes sense to use the UMV UE.

One last interesting thing to note: when a UMVUE does exist, it is
automatically unique. Suppose U; and U, are both UMVUE, with variance
V(0), then the average U = (U; + U,)/2 is also an unbiased estimator. Now
let’s look at the new function W = (U; — Us)/2. Now

Vo, + Vu,

Vo + Viv = =

- VUl S VU—

This means Vi = 0, i.e., U; = Uy with probability 1.
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Exercise 55: Is the sample mean from a Gaussian with known variance
(say, N'(u,1)) a UMVUE for the mean parameter p? If not, can you think
of one, or prove that none exists? (Hint: try the case N = 1, then N = 2,
first.)

Exercise 56: Is the sample maximum from a uniform distribution U(a, b)
a UMVUE for the maximum parameter b7 If not, can you think of one, or
prove that none exists? (Hint: try the case N = 1, then N = 2, first.)

Reparameterization

One very important thing to note about the unbiasedness property is that
it is not invariant with respect to reparameterizations. That is, if we relabel
the parameters, the estimator might not remain unbiased. This is, in fact,
one of the strongest arguments that has been raised against the idea of re-
stricting our attention to unbiased estimators. Exercise 57: Is the sample
mean an unbiased estimator of |/p, where p is the parameter of a binomial
distribution? What about the square root of the sample mean: is p = y/n/N
an unbiased estimator of /p?

The other big drawback, as mentioned above, is that unbiased estimators
don’t necessarily exist. Exercise 58: Does an unbiased estimator exist for
log p, where p is the parameter of a binomial distribution? If so, supply one;
if not, prove it.
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Maximum likelihood estimators (MLE)

Figure 11: Fisher.

The idea of maximum likelihood is perhaps the most important concept
in parametric estimation. It is straightforward to describe (if not always to
implement), it can be applied to any parametric family of distributions (that
is, any class of distributions that is indexed by a finite set of parameters
01,05, ...,04), and it turns out to be optimal in an asymptotic sense we will
develop more fully in a couple lectures.

The basic idea is to choose the parameter éM 7, under which the observed
data, D, was “most likely.” I.e., choose the éML which maximizes the likeli-
hood, pg(D). Let’s think about this in terms of Bayes’ rule: if we start with
some prior on the parameters, p(f), then the posterior on the parameters
given the data is

1

p(O1D) = Zp(@)p(DIO) = —p(0)p(D),

where Z = p(D) = [ p(0)pe(D)db is a constant ensuring the normalization of
the posterior. So if we ignore the prior p(#) on the right hand side (or assume
p(0) is roughly constant in #), then maximizing the likelihood is roughly the
same as maximizing the posterior probability density of 6, given the data.
It’s clear that this can be applied fairly generally. But how do we actu-
ally compute the maximum? Well, we can ask a computer to do it, using a
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numerical optimization scheme. Sometimes we can find the optimum ana-
lytically. For example, assume (as usual) that we have i.i.d. data X;. This

means that
po(D) = [ [ po(X2).

This suggests that we maximize the log-likelihood instead, since sums are
easier to work with than products:

Orr = arg maaxpg(D) = arg m@aXHpg(Xi) = arg mgxelogpg(Xi).

Often we can take the gradient of
L(0) =) logps(X,)

and set it to zero to obtain a local optimum; then we can sometimes addi-
tionally argue that the optimum is unique. Exercise 59: Give a simple con-
dition, in terms of the second derivative of the log-likelihood d? log pg(x)/d6?,
ensuring that the likelihood has a unique global maximum as a function of
0 € O.

Here’s an example: let x; be exponential. Then
polfi) = [T e,

so if we set the derivative of the loglikelihood equal to zero, we get

8 N

0 = %<N10g0—;6’xi>
N
Ovre i

0=0nrE

so we have that

~1
- 1
Ovre = (N Z}%) )

the MLE for @ is just the inverse of the sample mean of x;. This makes sense:

if we see that the sample mean is very close to zero, then it seems likely that
6 is large.
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Exercise 60: Find the MLE for (u,0?) for Gaussian data, given N
i.i.d. data samples ;. Is the MLE biased? If so, compute the bias.

Exercise 61: Find the MLE for (a,b) for uniform U(a,b) data, given N
i.i.d. data samples z;. Is the MLE biased? If so, compute the bias.

Invariance

One more important point about the MLE is that it is invariant with respect
to reparameterizations. That is, if 0,1 is an MLE for 6, then g(éML) is an
MLE for g(#) whenever g(.) is invertible. For example, the MLE for o is just
\03,;. Exercise 62: Prove this.

Regression'®

One important application of ML estimation is to regression analysis. Un-
fortunately we don’t have time to go very deeply into this very important
topic; check out W4315 for more information.

The basic model for regression is as follows: we see paired data {X;, Y},
and we have reason to believe X; and Y; are related. In fact, we can hypoth-
esize a model:

Y =aX; + ¢,

where e; is some (unobserved) i.i.d. noise source; i.e., Y is given by aX,

a linearly-scaled version of X, but contaminated by additive noise. Let’s

assume that e; ~ N'(0,0?). What is the MLE for the parameters (a, 0?)?
Well, first we write down the loglikelihood.

L(a,0?) = Zlog/\f(O,ﬁ)(Yi—aXi)

Y —aX,)’
= Z —log(oV2m) — w.
- 202
Now if we take the gradient and set it to zero, we get two equations (one for
a and one for o2

> XY — annXi) =0,

ISHMC 12.3
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and
i o2 (02)2 o
So
a ==
ML zl XX,
and

52, = Zi]\il(Yi — aXi)Q’
N
both of which have a fairly intuitive interpretation.
Again, check out W4315 to learn more about what to do when X is multi-
dimensional, when more complicated (nonlinear) relationships hold between

X and Y, when e; is not normal or even i.i.d., etc.

Robustness

One very important point is that the MLE depends strongly on the para-
metric family chosen. For example, if your data is actually Cauchy, but you
apply the MLE assuming Gaussian data, then you're not going to do very
well. (Exercise 63: Why?) This is an extreme case, but a lot of work on
the “robustness” of the MLE indicates that things can go fairly badly wrong
even when your data is “mostly” Gaussian (e.g., when data are drawn from
a “mixture” distribution
Z a;pi(),

where the mixture weights a; are positive and sum to one; think e.g. of a
Gaussian distribution for p; mixed with some occasional “outliers,” as < aq,
with ps having heavier tails than p;). Since, of course, we don’t know a priori
what distribution our data is drawn from, this is a bit of a problem. If there’s
time at the end of the semester after developing the basic theory, we’ll return
to this robustness question. If not, of course, feel free to look up this topic
on your own; see 12.1-12.2 in HMC for a start.
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Sufficiency!”

Let’s look more closely at this likelihood idea. One thing that we saw was
that not every bit of the data really mattered to our estimate. For example,
if we have i.i.d. data, it doesn’t really matter what order the data appeared
in. So we can throw out the order of the data and do inference given the
unordered data just as well.

Similarly, se saw that we didn’t need to remember everything about Gaus-
sian data, just the sample mean and sample variance (or equivalently, the
sample mean and sample mean square, since we can derive one from the
other), since the likelihood depends on the data only through these statis-
tics:

L(p,0?) = ZlogN(u,02)(X¢)

= Y —log(ov2r) - (X —w)?

, 202
A

1
= —Nlog(oVv2m) — 292 (ZX? - 2#2)(1' —|—Nu2) .

This is quite a savings: we’'ve compressed N data points into just two.

This turns out to be a pretty common phenomenon, if we think about
it. We're led to a definition: Any function 7'(D) of the data D (and only
of the data D) is called a “statistic.” A statistic is called sufficient for the
parameter 6 if we can split the data into two parts: 1) the sufficient statistic,
and 2) the aspects of the data that have nothing to do with estimating 6.

More mathematically,

po(D) = F(0,T(D))G(D),

for some functions F'(.) and G(.). This is equivalent (although we’ll skip the
proof) to saying that the conditional distribution of the data D, given T'(D),
does not depend on # at all. That is, the function

_ po(T(D)[D)pe(D) _ po(D)
po(T (D)) po(T(D))

pe(D|T)

YHMC 7.
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does not depend on 6.
(Yet another way of saying this: § — T"— D is a “Markov chain”: D is
conditionally independent of @ given T, for any prior distribution on 6, i.e.

p(6, D|T) = p(0|T)p(DI|T).)
Here are some more examples:

e Binomial data: if x; = 1 or 0 depending on if the i-th i.i.d. coin flip
came up heads or tails, then

piteh) = (E]ivx)pzz' =)

from this we can easily see that n =), z; is sufficient.

e If we have N i.i.d. Poisson observations, then
sz' Ti

L
po({xi}) = He il € m>

and once again ), z; is sufficient.
e For uniform U[(0,0]) data,
1 1
p@({xz}) - ];[ 1[921‘1]5 = Q_N]-[OZmaXi zi]»
i.e., max; x; is sufficient.

e For uniform UJ(0, 0 + 1]) data,

Do ({xz}) - 1[0§mini zi] 1[9+12maxi x;]

i.e., the pair (min; z;, max; x;) is sufficient (even though there is only
one parameter 6).

Exercise 64: What is a sufficient statistic for exponential data, x; ~
exp(A)?

Exercise 65: What is a sufficient statistic for uniform data, x; ~ U([a, b])?

Exercise 66: What is a sufficient statistic for Gaussian data, x; ~
N(0,0)? (L.e., the mean is known but the variance is not.)

A couple things to note:
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e The MLE can only depend on the data through sufficient statistics,
since

arg méaxpg(D) = arg max F(0,7T(D))G(D) = arg max F(0,T(D)).

Exercise 67: Prove the following statement (if true), or (if false) give
a counterexample and salvage the statement if possible. “If the MLE
is unique, it must necessarily be a function of any sufficient statistic.”

e For similar reasons, Bayes estimators only depend on the data through
sufficient statistics. Exercise 68: Show this using Bayes’ rule.

e Sufficiency is only defined in the context of a parametric family. That
is, a statistic may be sufficient for one parametric family but not for
another one. Exercise 69: Give an example of this.

e any invertible function (relabeling) of a sufficient statistic is itself suf-
ficient. (Hence sufficient statistics are very nonunique.) Exercise 70:
Prove this using the factorization definition of sufficiency.

Minimal sufficiency

This last point leads to another important concept. A sufficient statistic is
minimal if it can be written as a function of every other conceivable sufficient
statistic. In a sense, minimal statistics have all the redundancy compressed
out — there’s nothing irrelevant left to throw out.

In a sense, anything that doesn’t change the likelihood can be thrown
out, as the following simplification of a theorem (which we won’t prove) by
Lehmann-Scheffé shows:

Theorem 3. T is munimal sufficient if and only if the following two state-
ments are equivalent:

1. For any data samples D and D',

1s constant in 0

pe(D')
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This condition is often much easier to check than whether a given statistic
is a function of every other sufficient statistic.
Example: z; ~ exp(6). Then

N

pe(D) = H@exp(—&xi) =N exp(—@Zmi)

i=1 i=1

for x; > 0 Vi. Clearly " x; is sufficient; is it minimal? Let’s apply the above
theorem: choose another arbitrary data sample, D’ = {z, 2}, ..., 2y }. Now

we can see that (D)
LI SR )

is constant as a function of 6 if and only if Y x; = > . Thus > z; is a
minimal sufficient statistic; this was much easier to check than whether > z;
was a function of all other possible sufficient stats! Conversely, let’s look at
a sufficient statistic which is not minimal, namely the full data D. Here it’s
clear that 2 = 1 but 1 does not imply 2; hence, the full data D is not
minimal.

Here’s another one. Recall that (min; z;, max; x;) was sufficient for uni-
form U[(0, 6 4 1]) data. It’s clear from this theorem that this statistic is also
minimal.

We'll see more examples in a moment, when we discuss exponential fam-
ilies.

Exercise 71: Let z ~ N(0,0?) (i.e., the mean is known but the variance
is not). Is |x| sufficient for o7 If so, is it minimal?

Exercise 72: Let x; be drawn i.i.d. from a density in a “location family”;
that is, we know f(z) and we know py(x) = f(x — 0), we just want to know
@. Can you come up with a minimal sufficient statistic for 6 (and, of course,
prove that this statistic is minimal sufficient)? (Hint: the order statistics
might be useful here, as it’s intuitively clear that we don’t need to remember
what order the data actually came in.)

Rao-Blackwell theorem?’

Not only does restricting our attention to sufficient statistics make life easier;
it also improves (or at least can’t hurt) our estimation accuracy:

20HMC 7.3
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Figure 12: Rao and Blackwell.

Theorem 4 (Rao-Blackwell).
Elg(E(O|T) - 0)] < E[g(0 - 0)]

for any estimator é, convex error function g, and sufficient statistic T'. In

particular, R R
E[(B(9|T) - 0)°] < E[(¢ - 0)*]

In words, take any estimator §. Then form the estimator E(4|T) (note
that E(0|T) is a bona fide statistic — that is, doesn’t depend on § — if T is
sufficient). The theorem says that the risk of E(A|T) is never worse (and in
practice, often better) than that of the original estimator é, as long as the
loss function ¢ is convex. Also note that E(f|T) is unbiased whenever 6 is
(Exercise 73: Why?).

We'll prove the special (g(u) = u?) case to give a sense of what’s going
on here. Just write out E[( — 6)?]:

Bl-oy] = Ex(E(0-07in))

= Ef[(E@|T) - 6] + Er (E[(é - E(éIT)>2]>

> Er(E@IT) - 0)°).
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Exercise 74: Prove the general case using Jensen’s inequality and the
rules for combining conditional expectations.

It’s worth noting that a very similar proof establishes the important fact
we've used a couple times now, that the optimal Bayesian estimator under
square loss is the conditional expectation of 8 given the data. I'll leave the
proof as an exercise.

Also, the proof doesn’t seem to rely directly on sufficiency — the inequal-
ities above hold for any statistic 7', not just for sufficient 7. The point to
remember, again, is that if 7' is not sufficient then E(A|T) is not guaranteed
to even be a valid statistic.

Exponential families?!

Let’s talk about a class of statistical families whose sufficient statistics are

very easy to describe. We say a parametric family is an “exponential family”
if

exp (f(@)k(x) + s(x) + g(9)> ifa<z<b

0 otherwise,

po(x) =
for some —oo < a,b < oo (note that a and b don’t depend on 0).
An example: x ~ exp(6).
po(x) = exp([—0z] + [0] + [log d]),

from which we can read off f(0), k(z), s(z), and g(0).
Another example: N (0,0?%) (0 known). After a little manipulation, we
can write

po(r) = exp ([_—eﬁ] - [i — 110g(27r02)] + [i]>

o2 202 2 202

It’s pretty easy to define a minimal sufficient statistic here: if we write

(o)~ exp (FOR) ) exp (500

and recall the sufficient statistic factorization, then k(x) is a good candidate.

ZIHMC 7.5.
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Now for the really useful part: if we look at multiple i.i.d. samples x;,
then it’s easy to see that ) . k(z;) is minimal sufficient for the full data {z;}.
(Exercise 75: Prove this.) This saves a whole lot of work — to come up
with a minimal s.s. (and therefore come up with an improved estimator,
according to Rao-Blackwell), all we need to do is manipulate py(x) into the
above form. We’ll get some more practice with this in a moment.

More generally, sometimes we need more than one statistic to adequately
describe the data. In this case, we can define a k-dimensional exponential
family as a parametric family satisfying

exp (Zle [i(0)k;(x) + s(z) + g(9)> ifa<z<b

0 otherwise.

po(z) =

Here, {k;(x)}1<j<k are minimal sufficient together (but not alone).

These concepts give us a canonical parameterization of our parametric
family: f;(6) (we call {f;(0)}1<j<r the “canonical parameter”), and the nat-
ural parameter space is the set of all 8 for which the above form makes sense,
that is, the set of 6 such that g(6), as defined above, is finite.

Exercise 76: Write out f(0),k(x),s(x), and g(f) for 1) N(u,0) (u
known), 2) B(N,#), and 3) Poiss(6). Write out f;(8), k;(x), s(x), and g(f)
for the normal family in the case that both u and o2 are unknown.

Now to make life simpler assume we're dealing with the canonical param-
eterization, i.e. f(€) = 0. Let’s look more closely at g(#). First, there is
some redundancy here: we know, since [ py(z)dx = 1, that

4(0) = —log ( / explk(z) + s(x)]da:).

We can go a little further if we remember some of our facts about moment-
generating functions and recognize that an mgf is hiding in the above defi-
nitions. Now, remember that taking derivatives of mgf’s kicks out moments
(hence the name). In this case, we have

dg
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This is because

-2~ o ([ explonto) + st
[ k(x) expl0k(z) + s(x)]dx
exp[—g(0)]

— /pe(x)k(x)dm = Epk(z).

Exercise 77: Derive a relationship between ¢(0), Epk(x), and the MLE
by taking the derivative of the loglikelihood and setting it to zero.
We can use similar techniques to show that

0%g

This, in turn, proves that the log-likelihood log py(z) is a concave function
of 8 whenever 6 is the canonical parameter of an exponential family, which
you’ll recall is quite handy in the context of ML estimation. Exercise 78:
Prove the above formula, and use this to establish the concavity of the log-
likelihood in the canonical exponential family setting.

Of course, exponential families are a special case; life isn’t always so easy.
Exercise 79: Try writing U (a, b) in the exponential form. What goes wrong?
(Hint: don’t forget to keep track of the support of U(a,b).)

It’s interesting to note (though we won’t pursue this) that exponential
families are the only ones for which a finite-dimensional sufficient statistic ex-
ists for all sample sizes N. This is called the “Koopman - Darmois” theorem,
if you want to read more about it.

Exercise 80: Give a minimal sufficient statistic for Cauchy data.

Completeness and uniqueness (time permitting)?

“Completeness” of a statistic, in the context of a given probability family, is
a property that guarantees the uniqueness of the unbiased estimator which
may be written as a function of a sufficient statistic; this estimator is then
automatically the UMVUE.

ZHMC 7.4.
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We call the statistic U(x) “complete” if??
Eo(g(U)) =0 V8 = g(U) =0.

Exercise 81: Prove that the completeness of a sufficient statistic U, as
defined above, guarantees that if ¢(U) is an unbiased estimator for 6, then
¢(U) is the UMVUE. (Hint: think about what the completeness condition
says about the difference between ¢(U) and any other unbiased estimator that
is a function of U. Then think about Rao-Blackwell, and the uniqueness of
UMVUEs.)

Exercise 82: Is the natural sufficient statistic in an exponential family
complete?

2The term “complete” is inherited from functional analysis (or, in the case of discrete
data, linear algebra): U(x) is complete if pg(U) is complete in Lo (1), the space of square-
integrable functions on the range of U(x), Y. If you've taken linear algebra, just think of
functions of U as vectors — you can add them and multiply them by scalars to get new
functions of U, just like ordinary vectors. Now the completeness condition just says that
po(U) span the set of all functions of U: if any function is orthogonal to all py(U) (where
we interpret Epg(U) = [ po(u)g(u)du as a dot product), then the function must be zero.
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Asymptotic ideas

Now we turn to the asymptotic properties of our estimators. We'll discuss
two questions in particular:

1. Does our estimator work properly asymptotically? That is, does it
provide us with the correct answer if we give it enough data?

2. How asymptotically efficient is our estimator? For example, can we
come up with an estimator which is at least as good as any other
estimator, in some asymptotic sense?

Consistency?*

We say an estimator is consistent (in probability) if it provides us with the
correct answer asymptotically. That is,

é—>p6.

(More precisely, we're talking about convergence of a sequence of estimators,
one for each N, i.e.,
0 N —p 0.

But usually we’ll suppress this extra notation.)
How can we establish that an estimator is consistent? Well, the easiest
thing to do is to establish that the estimator is asymptotically unbiased,

B(Q, N) —N—o00 0,
and that the variance goes to zero,
V(O,N) =N_0o 0;

then we can just apply our bias-variance decomposition and Chebysheft’s
inequality, and we're done.

Exercise 83: Use this method to develop a simple consistent estimator
of the binomial parameter p.

It’s worth noting that it’s possible to come up with examples in which
the estimator is consistent but either the bias or the variance does not tend

24HMC p. 206.
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to zero; in other words, for consistency it is sufficient but not necessary that
the bias and variance both tend to 0. For example, an estimator might have
very fat tails, such that the variance is infinite for any N, but nonetheless
most of the mass of p(Ay) becomes concentrated around the true 6. T'll leave
it to you to work out the details of such an example.

Method of moments

One way to generate consistent estimators is to find a function U(x) of a
single observation X; such that Ey(U(z)) = f(0), where f(6) is chosen to
be a one-to-one function with a continuous inverse. Then we can use our
results about convergence in probability of continuous functions to see that

the estimator
. 1 X
-1
Ovinve = f (ﬁ ;:1 U(%))

is consistent for 6. (To see this, note that

%Z Ulz;) —p EgU(z) = f(0),

i=1

by the law of large numbers and the definition of f(#), then apply f~! to both
sides and use what we’ve learned about continuous mappings and convergence
in probability.)

In the case of multiple parameters, we would solve this equation simul-
taneously for several U;. When U; are taken to be the first 7 moments of
X (i.e., we choose § to match the observed moments to the true moments
as a function of ), this estimation technique is known as the “method of
moments.”

Here’s an example. Let x; ~ exp(f). Now let U(z) = x. Then

Ey(U(x)) = f(0) = 1/0.

. R AN
v (v2e) - (%)

is consistent for 6.

Therefore
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We saw another example of this kind of moment-matching estimator re-
cently in the homework: in an exponential family with the canonical param-
eterization, we saw that

EéMLE(U(x)) = % Z U(x,),

1=1

where U(z) = k(z) is the minimal sufficient statistic of the exponential fam-
ily. Thus in this special case (but not in general!) the MLE is exactly the
method of moments estimator.

Exercise 84: Develop the “method of moments” estimator for A, the
parameter of the Poisson distribution, using a) U(z) = z and b) U(z) = z°.
Are these estimators consistent? How are these estimators related to the
MLE?

Exercise 85: Develop the “method of moments” estimator for (u,o?),
the parameters of the Gaussian distribution. Is this estimator consistent?
How is this estimator related to the MLE?

Exercise 86: Assume U(x) has some finite variance, Vy(U(x)), and that
f~1is continuously differentiable, with strictly nonzero derivative. Use the
central limit theorem and the delta method to derive the asymptotic distri-
bution of éMM.

This type of estimator, constructed by finding the solutions of some
equations that the parameter estimate must satisfy, is often called a “Z-
estimator,” because of the special case of the MLE, when we set the gradient
of the likelihood equal to zero (hence the “Z”) and solve the resulting equa-
tions. We'll look at some more examples in the next section.

Convergence rates and asymptotic normality

Just as we discussed the CLT as a “finer” result than the LLN, we’d like
to know more about an estimator than just the fact that it converges in
probability. For example, we’d like to know the convergence rate — how
quickly it converges to @, for example the N~'/2 rate we saw when adding
together i.i.d. r.v.’s — and once the rate is established, what the asymptotic
distribution is on the scale defined by the convergence rate. For example,
can we prove asymptotic normality on the N~='/2 scale,

NY2(6 - 0) —p N(0,0%)?
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And finally, what is the variance o2 of this asymptotic rescaled distribution?
We'll address these questions for the MLE in the next section.

Confidence intervals®

Before we get too deeply into the question of how to prove these kinds of
results, let’s step back a moment and think about what we're going to do
with this kind of asymptotic approximation. Probably the most important
application of this idea is in the construction of confidence intervals — “error
bars.”

Let’s imagine we know that

VN(0 - 6) —p N(0,0%(0)),

for some estimator §. That is, 0 is asymptotically unbiased and normal
about the true parameter # (for now assume we know the asymptotic vari-
ance coefficient 0%(f), even though we don’t know ). How can we use this
information? Well, by definition of asymptotic normality, we know that

VN0 — 0) o
P <—2< O <2> ~ 0.95;

thus

~ _o(0) s o0(0)\
P<0_2ﬁ <9<6+2ﬁ) ~ 0.95.

So we’ve gone from just making a guess about ¢ to something stronger: we’ve

bracketed € in a set, (6 — Qi\/%), 0+ 2%), into which 6 falls with about 95%
probability, assuming N is sufficiently large (it’s essential to remember — and
unfortunately easy to forget — that this argument only holds asymptotically
as N — o0). In other words, we've given an approximate “95% confidence
interval” for 6.

We left one little problem: how do we get o(f) without knowing 07 Well,
the coefficient o(f) is a function of the parameter 6. If we can estimate 6,
then we can also estimate a function of . So we estimate o(): we know
from the continuity properties of stochastic convergence theory that if an

estimator ¢ is consistent for o(f), and recall we're already assuming that

VN0 —6) —p N(0,0%0)),

2HMC 5.4
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then?6

VN (?) —p N(0,1).

Note, importantly, that the (unknown) parameter 6 no longer appears on the
right hand side. Now, applying the same logic as above, (9 —26/V/N, 0 +
26 /v/N) is an approximate 95% confidence interval for 6, and importantly,
we don’t need to know # to construct this interval.

Exercise 87: Generalize this analysis to get a 99% confidence interval
(instead of 95%). What about the (1 — «) - 100% confidence interval, where
0 < a < 1 is some arbitrary (fixed) error tolerance?

Let’s look at a simple example. Let n ~ Bin(N,p). Then pyrp = n/N.
We know from the standard CLT and the formula for the variance of n that

\/N(ﬁMLE —p) —p N(0,0%(p)),

where
o*(p) = p(1 — p).

A simple estimator for o is

6 =\/02(pare) = /Prure(l — Prure);

we can prove that this estimator is consistent by our usual delta method
arguments. Thus

VN (ZM) —p N(0,1),

o

and (Pyre — 26/\/N, PymLE + 2&/\/N) is an approximate 95% confidence
interval for p.

26If you're reading along in HMC, be careful — the corresponding equation on page 255
(the equation just before eq. 5.4.4) is incorrect. Do you see why?
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MLE asymptotics®’

Finally we get to the discussion of the asymptotic properties of the maximum
likelihood estimator. As we said long ago, when we first introduced the idea
of ML, really the best justification for the MLE is in its asymptotic properties:
it turns out to be asymptotically optimal in a sense we will define below.

Consistency: identifiability and the Kullback-Leibler di-
vergence

Before we talk about the asymptotic optimality of the MLE, though, let’s
ask a more basic question: is the MLE even consistent in general?

The answer is (generally speaking) yes, if the parameters are “identi-
fiable,” that is, if the distribution of data under any parameter 6 in our
parameter space O differs from the distribution of the data under any other
parameter, 6’. That is,

po(D) # per(D), ¥V D.

This condition makes intuitive sense — if two parameters, say ¢, and 6,
— were not identifiable, of course we wouldn’t be able to distinguish them
based on their likelihoods (because the likelihoods would be equal), and so
the MLE is doomed to be inconsistent.

The interesting thing is that this simple identifiability condition is enough
to guarantee consistency in most cases, if the data are i.i.d. Let’s write out
the likelihood and try to manipulate it into a form we can deal with.

N
log pg(1, T2, ...xN) = Z log pe(z;).
i=1

Let’s say the true parameter is fy. We don’t know 6, of course (otherwise we
wouldn’t need to estimate it), but subtracting off its (unknown) loglikelihood
and dividing by N won’t change the location of the MLE:

1 N

N
Omr = arg max Z log po(z;) = arg Hax =7 Z (log pg(@;) — log pay (1)) ;

i=1 =1

2THMC 6.1-6.2
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remember, log py, (;) is constant in 6, so subtracting it off doesn’t perturb
the MLE at all.

Now we're left with something that looks a little more familiar: the log-
likelihood ratio

N

N
1 1 po(x;)
— (lo z;) —lo ;) = — lo

N ;:1 g o 800 (2i)) = ;:1 8 o (21)

— the log of the ratio of the likelihood of the data under 6, and under 6 —
is a sample average of i.i.d. r.v.’s! So, by the LLN,

po(x) Do (T)
log FEy, log = —FEy, log ;
N ; 2900 TP (@) ° 7 po(w)

the expectation is taken under 6, because, remember, that is the true pa-
rameter (i.e., our data are drawn i.i.d. from pg,(x)).

Now, this last term has a name you might have encountered before;
Ej, log %% is called the “Kullback-Leibler divergence” between the distri-
butions py, (z) and pp(z). This is called a “divergence” because it measures
the distance between pg,(x) and py(z), in the sense that

1 X
D1 (ps,: po,) = Eo, log 2 (2) >0,
Do, (2)

with equality only when py, () = py,(z) with pe,-probability one. Exercise
88: Prove this using Jensen’s inequality.
So what have we learned7 We now know that, for any fixed 0, the normal-

mz)

ized log-likelihood ratio, + ¥ Zl L log =5 tends to a function, — Dy, (pg,; pe),

which has a unique maximum at 6. (Why is the maximum unique? Identifi-
ability.) So we can argue that the MLE asymptotically picks out the argmax
of —Dkr(pey; pe), i-€., is consistent. (Actually, completing this consistency
argument rigorously does require a couple technical conditions — e.g., it is
enough that py(z) is continuous in 6 with probability one, and

Ejy, (glgllogpe(w)o <00

— but we’ll ignore these technical details. The basic logic — LLN + defini-
tion of K-L divergence + Jensen — should be clear.)
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Asymptotic normality and the Fisher information

OK, that takes care of consistency: now we know that Orine —p 0y. But
just as in the LLN case, we want to know more. How fast does the MLE
converge? What is the limiting (rescaled) distribution?

It turns out to be useful and informative to step back and look at the
behavior of the posterior density. We know from the above that

1 N

p(O)p(ar, w2, anld) = —p(0) [] p(a:l6)

p(@\xl,@,...x]v) = 7
i=1

L
Z

Q

%exp(—NDKL(p(xwo);p(x|9)))

Note immediately that we’re ignoring the prior p(f) asymptotically; as N
becomes large the likelihood term dominates the shape of the posterior, be-
cause the likelihood term is growing linearly with /N, whereas the prior term
is fixed as a function of N.

Next, remember that —Dg(6o;6) has a unique maximum at 6y; this

implies that

0
%DKL(HO,Q) - = 0.

Now if we make a second-order expansion around 6,
logp(0|z1, 22, ..xn) ~ —NDgp(0o;0)
1
= —NO+0+ 5(9 —60)1(60)(0 — 6p) + ...),

i.e., the posterior likelihood is well-approximated by a Gaussian with mean

0y and variance
1

—1(0)7"
100,
where we have abbreviated the curvature of the Dy, function at 6 as
92
1(0g) = =—=Dgr.(0y;0 )
(6o) 902 xL(00;0) -

This simple geometric quantity 1(6y) is called the “Fisher information” at 6y;
it’s called “information” because the larger I is, the smaller the asymptotic
variance of the posterior is — thus, in a sense, large values of I indicate that
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the data tell us a lot about the true underlying 6, and vice versa. (This
number is named after Fisher, the statistician who first developed a great
deal of the estimation theory we’ve been talking about in this section.)

What about the mean of this Gaussian? We know it’s close to 6y, be-
cause the posterior decays exponentially everywhere else. (This is another
way of saying that Orirp is consistent.) But how close exactly? We took a
relatively crude approach above: we took the random log-likelihood function
log p(z;]0) and substituted its average, Dk (0o;6). What if we try expanding
the loglikelihood directly: We look at ), logp(z;|6):

0
> logp(ilth) + Z%logpe(xz)

~ Ky + Z log pe(z;)

(0 — 6p)*

26> |,

(o) + 5 30 Frsteld)

(0=00) = NIG)0 )

0
20 log pg(x)

0o

This is an important random variable — albeit one with a somewhat compli-
cated definition — known as the “score.” Exercise 89: Prove that this r.v.
has mean zero and variance I(fp) (a nice coincidence!). (Caveat: to prove
this, you'll need to interchange an integral and a derivative, which isn’t al-
ways legal. We’ll mostly ignore this mathematical delicacy here, but note
that it does lead to problems in some cases, e.g. in the case that py(z) is
uniform U(0,0).)

So we can apply the CLT: if we abbreviate

Y

o

0
Gy = Z % 10g299(55i)

then Gy is asymptotically Gaussian, with mean zero and variance N1(6).
So log p(D|0) looks like a random upside-down bowl-shaped function:

Z log p(x:]60) ~ G (6 — 6y) — %NI(@O)((‘) — 6)>.

The curvature of this bowl is —N1(6p). The top of the bowl (i.e., the MLE)
is random, on the other hand, asymptotically Gaussian with mean 6, and
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variance (N1(6y))~!. Exercise 90: Prove this, using what you know about
the peak of an upside-down quadratic, what you already know about the
mean and variance of G, and the usual rules for multiplication of variances
and the fact that Gaussians are preserved under addition and multiplication
by scalars.

To sum up, our main result: the posterior likelihood is well-approximated
by a Gaussian shape, with variance (N1(6y))~" and mean

VN (éMLE - 90) —p N(0, I(6)71).

Note that, as we've seen with our concrete examples, the variance asymp-
totically depends on the underlying true parameter 6y, because the Fisher
information 7(6,) depends on 6.

Exercise 91: We've seen some examples where computing the asymp-
totic variance of the MLE is easy by direct methods. Use direct methods to
compute the asymptotic variance of the MLE, then use the above formula to
derive the Fisher information (), for a) the Gaussian with unknown mean
and known variance; b) the binomial; ¢) the Poisson.

Exercise 92: Use the delta method to compute the asymptotic variance
of the MLE for exponential data. Now compute the Fisher information 7(6,),
and from this derive the asymptotic variance. Do your answers agree?

Exercise 93: Compute the score and Fisher information in an exponen-
tial family with the canonical parameterization.

Exercise 94: Compute the MLE for double-exponential data,

pol) = g exp(~|r 6.

Now compute the asymptotic variance of the median under double-exponential
data.

Exercise 95: Compute the Fisher information in N i.i.d. observations.
More generally, if z and y are conditionally independent given 6 (i.e., p(x, y|6) =
p(z|0)p(y|0), what is the information in the joint sample (x,y)? (Hint: write
out the score, and take the variance.)

Exercise 96: It might be helpful to step back and look at all this from
a more general viewpoint. We are estimating # by maximizing a function of

the form
N

My (0) = m(x;,0);

i=1
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here m(x;,0) is just the log-likelihood of one sample point, log pg(z;) (and
as usual, z; are i.i.d. from py,(z)). What can you say about the asymptotic
distribution of the “M-estimator” (where “M” stands for “maximization”)

) —_— M
GN arg I’glaX 7\7(0)7
1 you know that:

1. Ep, [m(z,0)] has a unique maximum at 6o;

2.

82
prgo(x) [m(:z:, 9)] = —A, A>0;
0=0,
3. Vo o) [ 2] = B, 0 < B < oc.

Now how does this result fit in with what we just proved about the MLE
(e.g., what form do A and B take in the MLE case)?

Multiparameter case

A similar asymptotic analysis can be performed when we need to estimate
more than one parameter simultaneously. We’ll leave the details to you, but
the basic result is that if (QAMLEJ,QAMLEQ) is the MLE for (01, 6,), then we
can construct the Fisher information matrix

o 0
Ii; = Ea_eza_ej logg, 6, (),

and the asymptotic covariance matrix of the MLE is given exactly by (NT)™!,
where here (.)7! is interpreted as a matrix inverse.

Exercise 97: What is the asymptotic variance of 0 mrE, if 05 is known?
What if 85 is unknown?

Exercise 98: Compute the asymptotic covariance of fiy; g and 6%, ; un-
der Gaussian data, in two ways: 1) directly, and 2) using the multiparameter
Fisher information.
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Cramer-Rao bound, efficiency, asymptotic efficiency

We just established that the asymptotic variance of the MLE looks like
(NI(9))~t. Tt turns out that this is asymptotically optimal, as the following
bound shows:

Theorem 5 (Cramer-Rao lower bound on variance). Let 6 be unbiased. Then
V() = (1(0))".

More generally, for any estimator é,

[dﬁb(é)/d@}z

V(9) >
Proof. For the general case, compute the covariance of 6 and the score; then
apply Cauchy-Schwartz. R

For the special unbiased case, just plug in Fy(0) = 0. ]

Exercise 99: Fill in the gaps in the above proof.

Estimators for which the Cramer-Rao bound is achieved exactly are called
“efficient.” However, such estimators are the exception rather than the rule,
as the following exercise demonstrates. Nonetheless, efficiency is still an
extremely useful concept, if applied in an asymptotic sense: a sequence of
estimators Oy is “asymptotically efficient” if it asymptotically meets the C-R
bound, that is,

lim [NV (0y)] = 1(6)7".
N—oo

Exercise 100: Look at the derivation of the Cramer-Rao bound more
closely. What can you say about the case that the bound is met exactly (i.e.,
equality holds in the bound)? More precisely: if the bound is met precisely,
what does this imply about the parametric family py(x)?

Exercise 101: If 6; and 6, are two asymptotically efficient estimators,
what can you say about their (rescaled) difference, VN (6, — 65)? Does
this imply anything about the “asymptotic uniqueness” of the MLE as an
asymptotically efficient estimator?
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Sufficiency and information loss

Exercise 102: Compute the Fisher information for a sufficient statistic and
compare it to the Fisher information in the full data. Is it necessarily true
that a sufficient statistic preserves all the information in the full sample? How
about the converse: if Ir(;)(0) = I,(), then is T'(z) automatically sufficient?
Can we ever have Ip@)(0) > 1,(0)? If yes, give an example; if no, prove it.

One-step estimators

It’s often a hassle to exactly solve the likelihood equation

OL(6)

0 0

However, in some cases we can come up with a decent estimator 0, that at
least gets us close: say, 0, is v/ N-consistent.

Now, we have established that the loglikelihood surface is asymptoti-
cally (as N — o0o) well-approximated (on a N~1/2 scale) by an upside-down
quadratic. So a natural idea is to use the estimator 05 derived by apply-
ing one step of “Newton’s algorithm”?® for finding the local maximum of a

function which looks like an upside-down quadratic:

()
l//(él

~—

(where I and [” are the first and second derivative of the loglikelihood with
respect to 0, respectively).

Now the very interesting result is that this “one-step” estimator — which
can be computed analytically whenever 6, can — is asymptotically efficient,
that is, asymptotically just as good as the MLE, even though the MLE
might be a lot harder to compute exactly. Exercise 103: Prove this; that
is, establish the asymptotic efficiency of the one-step estimator. (Hint: the
most direct way to do this uses basically the same logic we used to establish
the optimality and asymptotic distribution of the MLE. So try mimicking
that proof.)

28Recall the logic of Newton’s algorithm: to maximize the function f(r) given an initial
guess 1, approximate f(z) with a second-order Taylor expansion about z; and then
(analytically) solve for the maximum of this quadratic approximation to obtain z5. Draw
a picture and do the relevant algebra to remind yourself of what’s going on here.
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Part IV
Hypothesis testing

Do not put your faith in what statistics say until you have carefully considered
what they do not say.
William W. Watt

A caricature of one recipe might read: Apply a significance test to each
result, believe the result implicitly if the conventional level of significance is
reached, believe the null hypothesis otherwise. Such a complete flight from
reality and its uncertainties is fortunately rare, but periodically considering
its extremism may help us keep our balance.

F. Mosteller & J. W. Tukey, 1977, p 25.

...no one believes an hypothesis except its originator but everyone believes
an experiment except the experimenter.
W. 1. B. Beveridge, 1950, p 65.
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Simple hypotheses?

The simplest version of the hypothesis testing problem is as follows: we have
two possible models, po(D) and p;(D), and based on the observed data have
to make a choice between them. (This is called, appropriately enough, a
“simple” hypothesis test; later we’ll consider testing between more than just
two hypotheses at a time.) The example to keep in mind: we draw samples
x; i.i.d. from a Gaussian distribution. We know the Gaussian’s variance is 1
and we know that the mean is either —1 or 1. L.e., we may take

1 a2
po(D) = H_27T6 (xi+1)%/2

N
=1

and
Al 2
D) = ——e @TVY2,
How do we distinguish between these two hypotheses (models of the world)?
Well, given that we’ve just spent a month or so talking about likelihood-
based methods, one obvious approach would be to use maximum likelihood.
That is, choose the hypothesis under which the likelihood of the observed
data is largest. In other words, we look at the likelihood ratio

iigg; = exp <% D (= 1) = (i + 1)2> = exp (_2 le> ;

i=1 i=1

if this ratio is larger than 1, then py(D) > p;(D) and we decide that the true
mean was —1, or otherwise choose 1. This is a straightforward and intuitive
thing to do, and we’ll see in just a moment that in many cases this approach
is in fact optimal.

But first let’s look a little more closely at our decision rule here. If we
simplify the above likelihood ratio, we see that our decision really comes
down to: if Y, x; > 0, choose 1, and otherwise choose —1. (Of course in
theory > . x; could equal zero, in which case we could just flip a coin; but
this exact-tie case happens with probability zero here, so we’ll ignore it for
now.) If we recall, > x; was a minimal sufficient statistic for the Gaussian

29HMC 8.1.
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family with known variance (write the Gaussian as an exponential family to
remind yourself of this fact if you've forgotten).

And of course this can be generalized: tests between two hypotheses based
on likelihood ratios only depend on the data through sufficient statistics.
Exercise 104: Prove this, using the product decomposition for sufficiency.

Exercise 105: Let’s say we observe N i.i.d. observations z; from an
exponential distribution whose mean is known to be either 1 or 2. Write
down the ML test between these two alternatives, in as simple a form as
possible. What role does the minimal sufficient statistic of this exponential
family play?

Exercise 106: Let’s say we observe N i.i.d. observations x; from a Gaus-
sian distribution whose mean is known and whose variance is known to be
either 1 or 2. Write down the ML test between these two alternatives, in as
simple a form as possible. What role does the minimal sufficient statistic of
this exponential family play?

Decision-theoretic approach

What if we take a more general decision-theoretic point of view? l.e., we
have some prior information and a cost function. Now what is the optimal
decision rule? Let’s write down our expected loss function:

E[C(truth, guess(D))] = Z p() Zpi(D)C’(i, guess(D)).

truth=ie{—1,1}

Here C(.,.) is some cost function (just a two-by-two table of numbers, in this
case) and p(7) is the prior probability of model i. Now as usual we want to
choose guess(D) in such a way as to minimize the expected cost. It’s clear
that all we need to do, for each possible data observation D, is to choose
guess(D) such that

Y. pOp(D)C(, guess(D))
truth=ie{—1,1}

is as small as possible.

Now let’s simplify things a little: assume C(i,7) = 0, that is, there’s no
cost associated with choosing the model correctly. Now the optimal decision
rule is as follows:

guess(D) = { it p(=Dpa(D)C(=1,1) < p(p(D)C(1, —1)

—1 otherwise.
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Thus we see that if the cost of errors is symmetric C'(—1,1) = C(1, —1), and
each hypothesis as equally probable a priori, p(—1) = p(1), then our decision
rule is exactly the ML rule described above. So our intuitive ML approach is
actually a special case of the decision-theoretic optimal rule. More generally,
the optimum rule says that if our prior belief is that —1 is more likely than
1, then it makes sense to “lean” towards —1 in the sense that we will choose
—1 even if the likelihood ratio is slightly weighted towards 1.

Exercise 107: Repeat the last two homework problems (the exponential
and Gaussian ML hypothesis tests) in this more general decision-theoretic
context. What is the decision-theoretically optimal test if the costs of a mis-
take are C'(1,2) = a and C(2,1) = b, as a function of the prior distribution?
(Assume again that C(i,i) = 0.)
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Null and alternate hypotheses

Figure 13: Neyman and Pearson.

In the above discussion we treated both hypotheses equally. In some
situations, though, it makes more sense to distinguish between the two hy-
potheses. For example, if we are testing the fairness of a coin, it might be
reasonable to think of the hypothesis that the coin is fair as the “null” hy-
pothesis po(D), and the hypothesis that the coin is biased (towards heads,
say) as the “alternate” hypothesis, p; (D). Some specialized terminology has
developed in this case:

e the “critical region” A of a test is the region of data space such that
if the data D falls in A, we “reject” the null hypothesis; that is, we
choose the alternate hypothesis instead.

e the probability o = [}, _, po(D) of incorrectly rejecting the null is called
the “size,” or “significance level”; this kind of error is called a “type 1”
error.

e a “type II” error is when we incorrectly accept the null hypothesis.

e the probability [ pea P1(D) of correctly rejecting the null is called the
“power.”
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Now, clearly, we want to make the power of our test as large as possible,
while making the size as small as possible. These are contrary goals, of
course: making A smaller decreases the size but also decreases the power.
So one approach is to hold the size fixed at a given level, say a = 0.05, and
then try to maximize the power over all possible tests with size less than or
equal to 0.05.

It turns out this is not hard to do. Conveniently, this optimal test is of
exactly the likelihood ratio form we dealt with above.

Theorem 6 (Neyman-Pearson lemma). The likelihood ratio test

p1(D)
po(D) & Ta}’

with the threshold T, chosen so that the size of the test is equal to «, is the
most powerful test of size a.

A={D:

Proof. Let Ay be the critical region of any other test of size . We need to
prove that A is at least as powerful as A;. We have

/ pl(D)—/ pl(D) = / pl(D)_/ pl(D)
DeA DeA, DEANAS DeAiNA®
> T/ po(D)—T/ po(D)
DeANAS DeAinAe

=7 /DGA pO(D) -7 /D€A1 pO(D)

= Ta—Ta=0.
O]

To return to our Gaussian example above, we have that the most powerful
test of size « is to choose 1 whenever Zfil x; > T,, where T, is chosen such
that

/OO 1 7(u+1)2/2Nd
o= —c u.
7, V2NT

So, to sum up, all three of the approaches we’ve looked at — ML, decision-
theoretic, and Neyman-Pearson — all say basically the same thing: for simple
hypothesis testing, the optimal thing to do is to use a test based on the
likelihood ratio.
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Exercise 108: What is the most powerful test between two exponential
distributions with mean 1 and 2, at some fixed size a? What is the power of
this test as a function of the number of samples N7

Exercise 109: What is the most powerful test between two uniform
distributions, U([0, 1]) and U ([0, 2]), at some fixed size a? What is the power
of this test as a function of the number of samples N7

A side note: it is possible to use many of the same tricks we developed
earlier to describe the asymptotic power as N becomes large. We won’t go
into the details, but if we look at the log-likelihood ratio

N
Z log po(l’i)’
=1

pl(

it’s clear that we may apply the LLN, CLT, etc. to elucidate the asymptotic
behavior here; again we find that the Kullback-Leibler divergence plays a key
role in determining the asymptotic behavior of the error (the main difference
here is that the hypothesis testing error goes to zero exponentially in N, while
we saw in the last section that the estimation error, at least in the mean-
square setting, goes to zero like 1/N). We leave the details to the interested
reader.
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Compound alternate hypotheses®

More generally, we're interested in compound hypothesis tests: were the data
generated by a model # € Hy or § € H,, where Hy and H 4 are two disjoint
sets of models, the null and alternate sets respectively.

We'll start with the simplest case: the null hypothesis is simple (that is,
Hyj consists of just one model, po(D)), but the alternate is compound. In this
case it’s reasonable to ask if there is a test with a given size which maximizes
the power over every single alternate hypothesis p;(D) € H4. (Remember,
the size of a test only depends on pg, so the size will be the same for all p;
here.) Such a test is called a “uniformly most powerful test,” or UMP test
for short.

From the Neyman-Pearson theory, we already know that a UMP test has
to be based on likelihood ratio tests. This makes it clear that UMP tests
often simply don’t exist: Exercise 110: Prove that no UMP test exists when
we are drawing data from a Gaussian of variance 1, if the null hypothesis
is ¢ = 0 and the alternate hypothesis is p # 0. (Hint: break the alternate
hypothesis into two sets, © > 0 and p < 0, and look at the likelihood ratio
tests for each of these individual alternate hypotheses. If these tests are not
the same, then argue that no UMP test can exist.)

Is there a simple way to guarantee that a UMP test exists? Well, by
the same logic we used above, it’s enough to establish that the LR test is
independent of § € H,. Here’s an example: look at our old friend the
exponential family in canonical form. Let’s write down the loglikelihood
ratio given i.i.d. observations:

log M = log explfo >, k(i) + >, s(z:) + Ng()]
poeia (D) expl0 3, k(i) + 32, s(z:) + Ng(0)]

= [0 — 0] Z k(x;) + Nlg(6o) — g(0)].

It’s not too hard to see that a test of the form T'(D) = > k(z;) > ¢, for
some constant ¢, leads to a UMP test of the hypothesis that 8y > 6 here.
Exercise 111: Complete this argument.

How do we choose the test when no UMP test exists? Well, this puts
us back in the situation we’ve encountered before, when e.g. no uniformly

30HMC 8.2.
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optimal decision rule or UMV UE was available: we have to look at other op-
timality criteria, e.g. minimax or Bayesian criteria. For example, a Bayesian
would choose a hypothesis according to its posterior probability ratio, namely

P(Hy|D) _ p(Ho)po(D)
P(H4|D) feeHA p(0)pe(D)

More generally, we can always choose some test statistic, 7'(D), compute
its sampling distribution under the null hypothesis po(7), and then ask if the
observed T'(D) is “significantly different” than what we would have expected
under the null hypothesis. For example, if we see that T'(D) falls outside of
the interval defined by the 1st and 99th quantile of po(T"), then it is reasonable
to suspect that D was not, in fact drawn from py(D), but rather from some
other distribution, and we would reject the null hypothesis here. (This test
would not be guaranteed to be optimal in any sense — and importantly,
depending on your choice of your test statistic 7', your test might have much
more power against some alternatives than others — but nonetheless this
idea often leads to useful tests in the real world.)

This leads naturally to the concept of a “power curve”: namely, for a
given test (at some given size), we plot the power [, py(x)dz as a function
of 8 € H,. This function plays a similar role to the risk function played in
our decision theory section: basically, we want to make the power as large as
possible over the “relevant” part of the parameter space (where “relevant”
here depends in some sense on which 6 are allowed, or most probable, etc.),
just as we wanted to make the risk function as small as possible over the
relevant part of the parameter space.

We can also make use of the large sample estimation theory we learned
not so long ago: recall that if we have a consistent estimator 6 for 6 and
know that

VN (éN . 9) o N0, V(8)),

and a consistent estimator of 1/V(6), &, then as we discussed earlier we may

build tests for 6 versus > 6, based on v N (0 —0) /& with an asymptotically
correct significance level.
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Compound null and alternate hypotheses

In this last section we talk about the general case: both null and alternate
hypotheses are compound. To find a test of size a here, we would look for
some critical region A such that

/pgzaVGEHO.
A

Sometimes this isn’t even possible, and we have to relax our standards and
look for tests such that

/pggoz‘v’QEHo.
A

Sometimes it is possible to find a test whose size is the same for all 8 € H,
though: for example, if we can find a test statistic 7" whose distribution is
the same for all § € Hy, then clearly a test constructed on this statistic will
have size independent of 6§ € Hy as well.

Here’s an example: Gaussian data of unknown variance; we want to test
the null p = 0 versus the alternate ;o > 0. Thus Hj is the set of all Gaussians
with mean 0, and H 4 is the set of all Gaussians with mean greater than zero.
Before we used the sample mean as our test statistic, but this won’t work
here because its distribution clearly depends on the variance (and therefore
the size of any test based on the sample mean will depend on the underlying
unknown true variance). But we know that the sample mean and sample
variance are sufficient for this family; why don’t we look at the standardized
sample mean,

T
T(D) =—
(D) =2,
with
=
T = — T
Ni:
and

It’s not hard to show that the distribution of z/& is independent of the
variance under the null 4 = 0 (Exercise 112: prove this); this statistic (or
rather, the normalized statistic N — 1Z/7) is called a “t-statistic,” and its
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distribution was originally derived by a statistician working for the Guinness
brewery who disguised his identity when publishing his work (to avoid getting
in trouble for revealing trade secrets) under the pseudonym “Student.” Thus
the t-statistic is also called “Student’s t,” and the commonsense process
of dividing by the sample standard deviation is known as “studentizing.”
Exercise 113: Derive the distribution of Student’s t.

Figure 14: Gosset (aka “Student”).

Another example: Gaussian again, but with unknown mean and we’d like
to test 02 = 1 versus 0? > 1. Clearly the sample variance is independent
of the mean, so we can use this as our test statistic; the null distribution
of N&? is a chi-square with N — 1 degrees of freedom, and thus we can use
a test of the form 62 > ¢, for some ¢ chosen such that the size of the test
is . Exercise 114: Prove that N&? is a chi-square with N — 1 degrees of
freedom. (Hint: start by proving that the sample variance 62 and the sample
mean T are independent if z; are i.i.d. Gaussian.)

Outside of the Gaussian family it is a little harder (though not impossible)
to find test statistics which are independent of § € Hy; nonetheless, again,
we may use our large-sample theory to take advantage of this nice property
of the Gaussian distribution.

More generally we can always turn back to our Bayesian methods: a
Bayesian would choose a hypothesis according to its posterior probability
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ratio, namely

P(Ho|D)  Joen, P(0)po(D)

P(HAID) [y, P(0)ps(D)
in general. This is often simplified into the maximum likelihood ratio test,
based on

maxgeH, pe(D) .

A= :
maxgem 4 Pe(D)

we reject if A is sufficiently small. (Again, we often resort to large sample
theory to determine exactly how small is “sufficiently small.”) This maximal
likelihood ratio test is sometimes easier to compute numerically than the
integral-based Bayesian test, and the two tests turn out to behave similarly
asymptotically (this may be shown, again, using expansions of the loglikeli-
hood similar to those we used in establishing the asymptotic behavior of the
MLE).
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