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Chapter 1

Asymptotics for

Exponential Families

1.1 Convex Functions

The extended real number system consists of the real numbers and two ad-
ditional “numbers” −∞ and +∞. As sets, the real numbers are denoted R and
the extended real numbers are denoted R.

It turns out to be very useful to define convex functions taking values in
R. These are called extended-real-valued convex functions. Of course we are
mostly interested in their behavior where they are real-valued, but allowing the
values +∞ and −∞ turns out to be a great convenience.

For any function f : S → R, where S is any set,

dom f = {x ∈ S : f(x) < +∞}

is called the effective domain of f . Such a function is said to be proper if its
effective domain is nonempty and it is real-valued on its effective domain, or,
what is equivalent, f is proper if −∞ < f(x) for all x and f(x) < +∞ for at
least one x.

Note that these two definitions (of “effective domain” and “proper”) treat
plus and minus infinity very differently. The reason is that the theory of convex
functions finds most of its applications in minimization problems (that is, the
object is to minimize a convex function) and they too treat plus and minus
infinity very differently.

A subset S of R
d is convex if

sx+ (1− s)y ∈ S, x, y ∈ S and 0 < s < 1.

Note that it would make no difference if the definition were changed by replacing
0 < s < 1 with 0 ≤ s ≤ 1.

1



2 CHAPTER 1. ASYMPTOTICS FOR EXPONENTIAL FAMILIES

An extended-real-valued function f on R
d is convex if

f
(
sx+ (1− s)y

)
≤ sf(x) + (1− s)f(y), x, y ∈ dom f and 0 < s < 1

The inequality in this formula is also known as the convexity inequality. Note
that on the right hand side of the convexity inequality neither term can be
+∞ because of the requirement x, y ∈ dom f . Thus there is no need to define
what we mean by ∞−∞ in order to use this definition. Similarly since we are
requiring 0 < s < 1 there is no need to define what we mean by 0 · ∞. All we
need are the obvious rules of arithmetic s · (−∞) = −∞ when 0 < s < ∞ and
−∞ + x = −∞ when x < +∞. Together they imply that the right hand side
of the convexity inequality is −∞ whenever either f(x) or f(y) is −∞.

1.2 Concave Functions

An extended-real-valued function f is said to be concave if −f is convex. For
concave functions we change the definitions of “effective domain” and “proper.”
Instead of applying the original definitions to f , instead we say that the effective
domain of a concave function f is the same as the effective domain of the convex
function −f and, similarly, that a concave function f is proper if and only if
the convex function −f is proper. The reason is that the theory of concave
functions finds most of its applications in maximization problems (that is, the
object is to maximize a concave function).

In fact, we only need one theory. If interested in maximizing a concave
function, stand on your head and you are minimizing a convex function. The
difference in the two situations is entirely trivial, a mere change in terminol-
ogy and notation. Nothing of mathematical significance changes, which is why
we want our definitions of “effective domain” and “proper” to match. Why
take convex functions as the main notion and treat concave functions as the
secondary notion that cannot be properly understood without reference to the
other? Tradition and the way most optimization books are written.

1.3 Exponential Families

We use the notation 〈 · , · 〉 for the usual inner product on R
d, that is, if

x = (x1, . . . , xd) and θ = (θ1, . . . , θd), then

〈x, θ〉 =

d∑

i=1

xiθi

or in the notation where x and θ are both considered “column vectors” (d × 1
matrices) 〈x, θ〉 = x′θ, where the prime indicates the transpose operation.

Let λ be a nonzero Borel measure on R
d. The Laplace transform of λ is the

extended-real-valued function c on R
d defined by

c(θ) =

∫
e〈x,θ〉λ(dx).
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For any θ ∈ dom c, the real-valued function fθ on R
d defined by

fθ(x) =
1

c(θ)
e〈x,θ〉 (1.1)

is a probability density with respect to λ. The family { fθ : θ ∈ dom c } is
the full standard exponential family of densities generated by λ. Any subset of
this family is called a standard exponential family. The measure λ is sometimes
called the base measure of the family.

A general exponential family is the family of densities of a random variable
X taking values in any space but having a statistic t(X) that induces a standard
exponential family, which means that t(X) takes values in R

d for some d. Then
t(X) is called the natural statistic (also called canonical statistic) of the family.
This generalization makes only a slight change in notation. The densities become

fθ(x) =
1

c(θ)
e〈t(x),θ〉, (1.2)

where

c(θ) =

∫
e〈t(x),θ〉λ(dx) (1.3)

and now λ is a measure on the space where X takes values. A change in
descriptive terminology is now also required. The function c is no longer the
Laplace transform of λ (technically it is the Laplace transform of the image
measure λ ◦ t−1).

The parameterization used so far is called the natural parameterization of the
family (also called canonical parameterization), and θ is called the natural (or
canonical) parameter. If we introduce another parameterization, say θ = g(ϕ),
where g is a one-to-one mapping from some other parameter space into R

d, the
formula for the densities becomes

fϕ(x) =
1

c
(
g(ϕ)

)e〈t(x),g(ϕ)〉,

where c is still given by (1.3).

General exponential families clutter the theory of exponential families. Since
the densities (1.2) only depend on x through t(x), it follows by the factoriza-
tion criterion that t(X) is a sufficient statistic. Hence the sufficiency principle
says we may use the standard exponential family induced by t(X) for inference.
Moreover, all the theory is much cleaner and clearer when stated in terms of
standard families. Of course, you are usually given an exponential family prob-
lem in nonstandard form, and you must start by recognizing the natural statistic
and parameter, but after you have made this recognition everything of inter-
est about the problem can be derived from the theory of standard exponential
families.
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1.4 Identifiability

A family of probability densities { fθ : θ ∈ Θ } with respect to a measure λ
is identifiable if there do not exist distinct densities corresponding to the same
probability measure, that is, if there do not exist θ1 6= θ2 such that fθ1 and fθ2
are equal almost everywhere with respect to λ.

A hyperplane in R
d is a subset of the form

H = {x ∈ R
d : 〈x, ϕ〉 = b } (1.4)

for some nonzero ϕ ∈ R
d and some b ∈ R.

Lemma 1.1. A full standard exponential family is identifiable if and only if its
base measure is not concentrated on a hyperplane.

Proof. Because the log function is one-to-one, the densities fθ1 and fθ2 are equal
almost everywhere if and only if the log densities are equal almost everywhere,
and the log densities are equal for x such that

〈x, θ2 − θ1〉 = log
c(θ2)

c(θ1)
(1.5)

Since θ1 6= θ2 the set of x such that (1.5) holds is a hyperplane. Hence if the
base measure is not concentrated on a hyperplane, distinct densities cannot be
equal almost everywhere.

Conversely, if the base measure is concentrated on the hyperplane (1.4) and
we denote the base measure by λ and its Laplace transform by c as before and
θ is any point in dom c, then

c(θ + ϕ) =

∫
e〈x,θ+ϕ〉λ(dx)

=

∫

H

e〈x,θ+ϕ〉λ(dx)

= eb
∫

H

e〈x,θ〉λ(dx)

= ebc(θ)

because 〈x, ϕ〉 = b on H. Hence θ + ϕ ∈ dom c and

fθ+ϕ(x) =
1

c(θ + ϕ)
e〈x,θ+ϕ〉

=
1

c(θ)
e〈x,θ〉 · 1

eb
e〈x,ϕ〉

= fθ(x) · e〈x,ϕ〉−b

and this equals fθ(x) for x ∈ H. So the family is not identifiable.
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1.5 Affine Change of Parameter

A function g : R
p → R

d is affine if it has the form

g(ϕ) = Aϕ+ b

for some linear transformation A : R
p → R

d and some b ∈ R
d. We now want to

consider such an affine change of parameter for a standard exponential family.
Then writing θ = g(ϕ) we have

〈x, θ〉 = 〈x,Aϕ〉+ 〈x, b〉 = 〈A∗x, ϕ〉+ 〈x, b〉
where A∗ : R

d → R
p is the adjoint of A, which is characterized by

〈x,Aϕ〉 = 〈A∗x, ϕ〉, x ∈ R
d, ϕ ∈ R

p.

If we write this in matrix notation it becomes x′Aϕ = ϕ′Bx, where B is the
matrix representing the linear transformation A∗. Using the rule for the trans-
pose of a product x′Aϕ = ϕ′A′x, we see that B = A′ so the adjoint operation
on linear transformations corresponds to the transpose operation on matrices.

Thus in the new parameterization, the densities are

fϕ(x) =
1

c(Aϕ+ b)
e〈A
∗x,ϕ〉e〈x,b〉

From the functional form we see that we again have a standard exponential
family with natural statistic A∗X, natural parameter ϕ, and a new base measure
having density e〈x,b〉 with respect to the old base measure.

Thus an affine change of parameter just gives us a new standard exponential
family. It does not take us into any new realm of theory. It is important
in applications that we allowed the domain and range of the affine change of
variable to have different dimensions. Most of linear regression and generalized
linear model theory is a special case of this section. We observe data Y1, . . .,
Yn that are independent and all have distributions in the same one-parameter
exponential family but are not identically distributed because they have different
values of the natural parameter: Yi having the distribution corresponding to
natural parameter θi. The joint density is

fθ(y) =
1∏

i c(θi)
e

P

i yiθi

which is clearly of the exponential family form when we consider y and θ as
vectors, since

∑
i yiθi = 〈y, θ〉. A regression model involves other data, called

covariates, which may be either random or deterministic, but are treated as
being deterministic. If the covariates are random, then the inference is condi-
tional on the observed covariate values. The regression model specifies a new
parameterization

θ = AXϕ+ bX

where AX is a linear transformation and bX a vector, both considered deter-
ministic because X is treated as deterministic. This is just an affine change of
parameter as discussed above.
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1.6 Independent, Identically Distributed Data

Another important application that does not take us out of standard expo-
nential families is independent and identically distributed data. If X1, . . ., Xn

are i. i. d. from the distribution having densities (1.1), then the joint density

fθ(x1, . . . , xn) =
1

c(θ)n
e〈

P

i xi,θ〉

(this is a density with respect to the product measure λn). If we do a one-to-one
linear change of variables from (x1, . . . , xn) to (u1, . . . , un) so that un =

∑
i xi,

then the joint density of the new variables will be

fθ(u1, . . . , un) =
j

c(θ)n
e〈un,θ〉

where j is a constant (the jacobian). If we integrate out all the variables but
un we get the marginal density of U =

∑
iXi

fθ(u) =
j2

c(θ)n
e〈u,θ〉 (1.6)

where j2 is another constant. It is now not so clear what measure this is a
density with respect to, but a little thought reveals that it must be the n-fold
convolution of the original base measure λ.

Thus, here too, we have not entered any new realm of theory. Indepen-
dent and identically distributed sampling just gives another standard exponen-
tial family with the same natural parameter as the original family and natural
statistic

∑
iXi if X1, . . ., Xn were the original natural statistics. Thus there

is, for the most part, no need to explicitly mention i. i. d. sampling. It is just
a special case of the general notion of a standard exponential family. If we
understand the general case, i. i. d. sampling adds nothing new.

1.7 Moment Generating Functions

The moment generating function of the random variable X having density
(1.1) is the function Mθ on R

d defined by

Mθ(t) = Eθe
〈X,t〉 =

c(θ + t)

c(θ)

if Mθ is finite on a neighborhood of zero, that is, if θ ∈ int(dom c). If θ is not
in the interior of dom c, then Mθ is not a moment generating function in the
classical sense.

If θ ∈ int(dom c), then the first two absolute moments are given by the
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derivatives of Mθ at zero.

Eθ(X) = ∇Mθ(0) =
∇c(θ)
c(θ)

Eθ(XX
′) = ∇2Mθ(0) =

∇2c(θ)

c(θ)

If we define the cumulant function k = log c, we find that

∇k(θ) =
∇c(θ)
c(θ)

= Eθ(X)

and

∇2k(θ) =
∇2c(θ)

c(θ)
− ∇c(θ)[∇c(θ)]

′

c(θ)2

= Eθ(XX
′)− Eθ(X)Eθ(X)′

= Varθ(X)

1.8 Maximum Likelihood

The log likelihood of the standard exponential family with densities (1.1) is

lx(θ) = 〈x, θ〉 − k(θ)

where k is the cumulant function (log Laplace transform). It can be shown that
k is a convex function (Problem 1-2) so the log likelihood is a concave function.

A point x is a global minimizer of an extended-real-valued function f on R
d

if

f(y) ≥ f(x), y ∈ R
d,

and x is a local minimizer if there exists a neighborhood U of x such that

f(y) ≥ f(x), y ∈ U.

Lemma 1.2. For an extended-real-valued proper convex function, every local
minimizer is a global minimizer.

The proof is left as an exercise (Problem 1-3).
We won’t even bother to state as a formal corollary the analogous fact for

concave functions, in particular for log likelihoods of standard exponential fam-
ilies: every local maximizer is a global maximizer. This is just obvious from the
“stand on your head” principle.

Lemma 1.3. In an identifiable full standard exponential family, the maximum
likelihood estimate is unique if it exists.
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Proof. If θ1 and θ2 are distinct maximizers of the log likelihood, say lx(θ1) =
lx(θ2) = m, then concavity of the log likelihood implies

lx(sθ1 + (1− s)θ2) ≥ slx(θ1) + (1− s)lx(θ2) = m (1.7)

for 0 ≤ s ≤ 1. But since the value at a global maximizer cannot be exceeded,
we must have equality in (1.7) for 0 ≤ s ≤ 1, that is,

k(sθ1 + (1− s)θ2) = 〈x, sθ1 + (1− s)θ2〉 −m.
Hence

d2

dss
k(sθ1 + (1− s)θ2) = 0, 0 < s < 1.

The map s 7→ sθ1 + (1 − s)θ2 is an affine change of parameter, hence by the
theory of Section 1.5 it induces a one-parameter exponential family with natural
parameter s, natural statistic 〈X, θ1 − θ2〉, and cumulant function s 7→ k(sθ1 +
(1−s)θ2). By the theory of moment generating functions, this cumulant function
having second derivative zero means that the natural statistic 〈X, θ1 − θ2〉 has
variance zero, which means thatX itself is concentrated on a hyperplane and the
original family is not identifiable, contrary to hypothesis. Thus we have reached
a contradiction and hence the assumption that distinct maximizers exist cannot
be possible.

If the log likelihood is maximized at an interior point of the effective domain,
then its gradient is zero. That is, the MLE is the unique solution (unique by
Lemma 1.3) of

∇lx(θ) = x−∇k(θ) = 0,

that is, the θ such that

x = τ(θ) = ∇k(θ).
A function f : U → V where U and V are open sets in R

d is a C1 isomorphism if
it is a continuously differentiable function and has a continuously differentiable
inverse.

Lemma 1.4. If k is the cumulant function of an identifiable full standard ex-
ponential family then the function τ : int(dom c)→ R

d defined by

τ(θ) = ∇k(θ) = Eθ(X)

is a C1 isomorphism onto its range, which is an open set, and

∇τ(θ) = ∇2k(θ) = Varθ(X) (1.8a)

and if x = τ(θ)

∇τ−1(x) = (∇τ(θ))−1
. (1.8b)
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Proof. Since τ is one-to-one by Lemma 1.3 and is onto by definition (every func-
tion maps onto its range), it is invertible. Also (1.8a) holds by the theory of
moment generating functions, so τ is differentiable, and the derivative is non-
singular because X is not concentrated on a hyperplane. Thus by the inverse
function theorem, if x = τ(θ) then τ has an inverse defined on some neighbor-
hood of x such that (1.8b) holds. Since x was any point of the range of τ , this
implies the range of τ is open.

Let W denote the range of τ . We would now like to define the MLE to be
τ−1(x), and that is fine for x ∈ W , but the MLE is undefined when x /∈ W .
Thus we extend the domain of definition by adding a point u (for “undefined”)
to the set of possible values, which we consider an isolated point of the range.
One way to do this and still remain in a Euclidean space is to embed W in R

d+1

as the set
W̃ = { (x1, . . . , xd, 0) : (x1, . . . , xd) ∈W }

and defining
u = (0, . . . , 0, 1)

so the distance between u and x is greater than or equal to one for any x ∈ W̃ .
This is an artificial device, but any method of precisely defining u will have
similar artifice. To simplify the notation, consider W and W̃ the “same” set
and drop the tilde. Now we define

θ̂(x) =

{
τ−1(x), x ∈ τ(int(dom k))

u, otherwise

Note that this function is measurable, because it is continuous on the open set
int(dom k) and constant (equal to u) on the complement of int(dom k).

Now we consider i. i. d. data x1, x2, . . .. The log likelihood is

lx1,...,xn
(θ) =

n∑

i=1

〈xi, θ〉 − nk(θ) = n〈x̄n, θ〉 − nk(θ) = nlx̄n
(θ)

Thus we get the same likelihood problem as if we had observed data x̄n as a
sample of size one. Then the MLE is

θ̂(x̄n) = τ−1(x̄n).

Theorem 1.5. For a standard exponential family with cumulant function k, if
the true parameter value θ0 is in the interior of the effective domain of k and
the family is identifiable, then the maximum likelihood estimate θ̂n exists and is
unique with probability converging to one and

√
n
(
θ̂n − θ0

) L−→ Normal
(
0, I(θ0)

−1
)

where I(θ) = ∇2k(θ).
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Proof. Since θ0 is in int(dom c), moments of all orders exist, in particular,

µ0 = Eθ0(X) = τ(θ) = ∇k(θ0)
I(θ0) = Varθ0(X) = ∇τ(θ) = ∇2k(θ0)

where τ is the function defined above. Then the function θ̂ defined above is
differentiable at µ0 by Lemma 1.4 and has derivative

∇θ̂(µ0) = ∇τ−1(µ0) = I(θ0)
−1.

By the multivariate central limit theorem

√
n
(
Xn − µ0

) L−→ Normal (0, I(θ0))

Thus the multivariate delta method implies

√
n
[
θ̂(Xn)− θ̂(µ0)

]
L−→ I(θ0)

−1Z

where Z ∼ N (0, I(θ0)). Since

Var{I(θ0)−1Z} = I(θ0)
−1I(θ0)I(θ0)

−1 = I(θ0)
−1

were are done, the assertion about the probability of the MLE existing converg-
ing to one following from the portmanteau theorem.

Problems

1-1. Show that the effective domain of a convex function is a convex set.

1-2. Show the following properties of Laplace transforms. If c is the Laplace
transform of a nonzero Borel measure λ on R

d, and k = log c is the corresponding
cumulant function, then

(a) c(θ) > 0 for all θ (hence k is a proper extended-real-valued function).

(b) c and k are both convex functions.

(c) c and k are both lower semicontinuous functions.

(d) if dom c is nonempty, then λ is a σ-finite measure.

For part (c) the following characterization of lower semicontinuity is useful. An
extended real valued function f is lower semicontinuous at a point x if for any
sequence xn → x

lim inf
n→∞

f(xn) ≥ f(x).

1-3. Prove Lemma 1.2.



Chapter 2

Asymptotic Efficiency

2.1 Log Likelihood Derivatives

Let F = { fθ : θ ∈ Θ } be a family of probability densities with respect to
a measure λ. Suppose that the parameter space Θ is an open subset of R

d.
The log likelihood is l(θ) = log fθ. It is a well-known fact that, if the identity∫
fθ dλ = 1 is twice differentiable with respect to θ and both derivatives can be

passed under the integral sign, then

Eθ∇l(θ) = 0 (2.1a)

and

Varθ∇l(θ) = −Eθ∇2l(θ) (2.1b)

hold. Either side of (2.1b) is called the Fisher information for the parameter θ,
denoted I(θ). These two identities and the higher-order identities obtained by
repeated differentiation under the integral sign are called the Bartlett identities.

For an i. i. d. sample X1, . . ., Xn we denote the log likelihood by

ln(θ) =
n∑

i=1

log fθ(Xi) (2.2)

Let In(θ) be the Fisher information for the sample of size n

In(θ) = Varθ∇ln(θ),

then In(θ) = nI1(θ), because the variance of a sum is the sum of the variance
for independent random variables.

Since ln and its derivatives are the sum of i. i. d. terms the weak law of large
numbers and the central limit theorem give

− 1

n
∇2ln(θ0)

P−→ I(θ0) (2.3a)

11
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and
1√
n
∇ln(θ0) L−→ N

(
0, I(θ0)

)
(2.3b)

where θ0 is the true parameter value.

2.2 Some Handwaving

If we expand ∇ln(θ) in a Taylor series around θ0 and only keep the first two
terms, we get

∇ln(θ) ≈ ∇ln(θ0) +∇2ln(θ0)(θ − θ0). (2.4)

If the maximum likelihood estimate (MLE) θ̂n occurs at an interior point of the

parameter space, the first derivative will be zero, so plugging θ̂n in for θ in (2.4)
gives

0 ≈ ∇ln(θ0) +∇2ln(θ0)(θ̂n − θ0),
or

θ̂n − θ0 ≈ −
(
∇2ln(θ0)

)−1∇ln(θ0), (2.5)

if we assume ∇2ln(θ0) is an invertible matrix.
The right hand side of (2.5) is not the right size to converge in distribution,

but if we multiply both sides by
√
n, we get

√
n
(
θ̂n − θ0

)
≈ −

(
1

n
∇2ln(θ0)

)−1

· 1√
n
∇ln(θ0), (2.6)

and the right hand side converges to I1(θ0)
−1Z, where Z ∼ N

(
0, I1(θ0)

)
, by

Slutsky’s theorem.
This gives us the “usual” asymptotics of maximum likelihood, because the

random vector I1(θ0)
−1Z has mean zero and variance I1(θ0)

−1, so

√
n
(
θ̂n − θ0

)
≈ N

(
0, I1(θ0)

−1
)
. (2.7)

As the section heading says, there is a lot of handwaving in this argument.
The main issue, at least the one over which the main analytical sweat is expended
in most textbooks on asymptotics, is under what conditions the representation
(2.4) using only two terms of the Taylor series is valid. But there are a number
of other issues that come before that. The assumption that the log likelihood is
differentiable and the derivatives have moments satisfying the Bartlett identities
is limiting. But even before that, the assumption that we are only interested in
i. i. d. sampling is very limiting. There are many interesting problems involving
time series, spatial statistics, and so forth in which there is no i. i. d. sequence
of random variables. And last but not least, right at the outset we made an
assumption that our statistical model has densities. That may not seem limiting,
but it is.

Thus we now switch from what should be fairly familiar territory to a theory
having vast generality. The very generality of the theory necessitates it being
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highly abstract and thus difficult to understand, but it does make clear many
facts about likelihood inference without superfluous regularity conditions. It is
thus well worth understanding.

Before we start that theory, let us examine the behavior of the log likelihood
itself (rather than the MLE) at the same level of handwaving as the rest of this
section. If we expand the log likelihood itself, rather than its first derivative as
we did in (2.4), and this time keep three terms of the Taylor series, we get

ln(θ)− ln(θ0) ≈ ∇ln(θ0)(θ − θ0) + 1
2 (θ − θ0)′∇2ln(θ0)(θ − θ0). (2.8)

If we try to fix this up so that the right hand side converges to something,
we immediately see that simply multiplying by a constant doesn’t do the job
because (2.3a) shows that we need to multiply the second term by 1/n to get
convergence and (2.3b) we need to multiply the first term by 1/

√
n to get

convergence. A different trick, however, does do the job.
From (2.7) it is clear that we are interested in parameter values that are on

the order of 1/
√
n in distance from θ0. That suggests we replace θ in (2.8) by

θ0 + n−1/2δ giving

ln(θ0 + n−1/2δ)− ln(θ0) ≈
1√
n
∇ln(θ0)δ +

1

2n
δ′∇2ln(θ0)δ (2.9)

which is the right size to get convergence. The right hand side converges in law
to the random function q defined by

q(δ) = δ′Z − 1

2
δ′I(θ0)δ

where
Z ∼ N

(
0, I(θ0)

)
.

This random quadratic function q having nonrandom Hessian matrix −I(θ0)
and random gradient vector Z is the limiting form of the log likelihood function
in “nice” cases.

2.3 Contiguity

Eventually we want to consider statistical models to be families of prob-
ability measures rather than families of probability densities with respect to
one fixed measure. This may seem like useless generality. When does one ever
consider models like that in real applications? But it turns out that the extra
generality comes at no extra cost. Assuming densities buys nothing. Most of
the mathematical difficulty of this section would still remain.

Eventually we will consider sequences of statistical models

Pn = {Pn,θ : θ ∈ Θn } (2.10)

But to start we consider just comparing two measures in each such model. Thus
consider two sequences of probability measures {Pn} and {Qn} such that Pn
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and Qn have the same sample space for each n (they are both in Pn in terms
of the preceding discussion).

We want to consider the likelihood ratio for comparing these two measures.
But what is that when they don’t have densities? In fact they always do have
densities with respect to the measure λn = Pn + Qn by the Radon-Nikodym
theorem (there may be no measure that dominates the whole family Pn but
λn always dominates the two measures Pn and Qn). If pn denotes the Radon-
Nikodym derivative of Pn with respect to λn, then qn = 1 − pn is the Radon-
Nikodym derivative of Qn with respect to λn, and

Zn =
qn
pn

=
1− pn
pn

is the likelihood ratio comparing Qn to Pn. We use the convention that Zn =
+∞ when pn = 0 so that Zn is always well defined. We also use the conventions
log(0) = −∞ and log(+∞) = +∞ so that the log likelihood ratio logZn is
always well defined.

If Pn and Qn have densities fn and gn with respect to some other measure,
then

pn =
fn

fn + gn
and qn =

gn
fn + gn

and
Zn =

qn
pn

=
gn
fn

when these ratios are well defined, that is, when fn and gn are not both zero.
Thus we see that our device of using densities with respect to λn solves two prob-
lems: (1) it handles the case of families that are not dominated by one measure
(2) it handles the case of densities that are zero at some points. Otherwise, it
just does what you expect.

For this section we define boundedness in probability as follows. A sequence
of extended-real-valued random variables Xn is bounded in probability under Pn
if

lim
M→∞

lim sup
n→∞

Pn(|Xn| ≥M) = 0.

The usual definition would have sup instead of lim sup and would therefore
require Pn(|Xn| = ∞) = 0 for all n, which makes it useless for variables that
take infinite values with nonzero probability. For finite-valued random variables,
the two concepts are equivalent (Problem 2-1). For random vectors, we continue
to use the old definition (which is equivalent to tightness).

Theorem 2.1. Using the notation defined in the preceding discussion, the fol-
lowing properties are equivalent.

(a) Every sequence of random variables that converges in probability to zero
under Pn also converges in probability to zero under Qn.

(b) Every sequence of random variables that is bounded in probability under Pn
is also bounded in probability under Qn.
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(c) Zn is bounded in probability under Qn.

(d) Zn is uniformly integrable under Pn and Qn(Zn =∞)→ 0.

(e) Zn is uniformly integrable under Pn and EPn
(Zn)→ 1.

Note that if we assumed Qn was always absolutely continuous with respect
to Pn, which would be the case if they were measures in a dominated family of
measures having densities that are everywhere strictly positive, this would only
simplify the theorem by collapsing the last two conditions to “Zn is uniformly
integrable under Pn” since we would then haveQn(Zn =∞) = 0 and EPn

(Zn) =
1 for all n. The theorem would still be a very powerful result. That is what we
meant by “assuming densities buys nothing.”

Proof. We will prove these implications in the following order. First we show
(d) ⇐⇒ (e) and (c) ⇐⇒ (d). Then we finish by showing (a) =⇒ (b) =⇒
(c) =⇒ (a). But before we start on any of these implications we establish the
following identity. For any M ≥ 0

EPn

(
Zn1{Zn≥M}

)
=

∫

pn>0

qn1{Zn≥M} dλn

=

∫
qn1{M≤Zn<∞} dλn

= Qn(M ≤ Zn <∞).

(2.11)

Now (d)⇐⇒ (e). The case M = 0 in (2.11) gives

EPn
(Zn) = Qn(Zn <∞) = 1−Qn(Zn =∞), (2.12)

which proves (d)⇐⇒ (e).
Next (c)⇐⇒ (d). By (2.11)

Qn(Zn ≥M) = EPn

(
Zn1{Zn≥M}

)
+Qn(Zn =∞),

so (c) holds if and only if

lim
M→∞

lim sup
n→∞

EPn

(
Zn1{Zn≥M}

)
= 0 (2.13)

and
lim sup
n→∞

Qn(Zn =∞) = 0.

Uniform integrability of Zn under Pn is

lim
M→∞

sup
n∈N

EPn

(
Zn1{Zn≥M}

)
= 0. (2.14)

We must show that (2.13) and (2.14) are equivalent. Clearly (2.14) implies
(2.13) so we only have to show the converse. To show (2.14) we must show that
for every ǫ > 0 there is an M such that

EPn

(
Zn1{Zn≥M}

)
≤ ǫ, (2.15)
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for all n. Since (2.13) implies that for every ǫ > 0 there are an M and N such
that (2.15) holds for all n ≥ N , we only need to show that by increasing M we
can get (2.15) to hold for n < N too. By (2.11) we see that (2.15) is finite for
each n and M , hence by dominated convergence

lim
M→∞

EPn

(
Zn1{Zn≥M}

)
= EPn

(
Zn1{Zn=∞}

)
= 0.

Thus by increasing M we can get (2.15) to hold for all n, which proves (c)⇐⇒
(d).

Next (a) =⇒ (b). Assume (a), suppose Xn is bounded in probability under
Pn, and suppose to get a contradiction that Xn is not bounded in probability
underQn. Then there exists an ǫ > 0 such that for allM > 0 we haveQn(|Xn| >
M) > ǫ infinitely often; in particular, there is a subsequence nk such that

Qnk
(|Xnk

| > k) > ǫ, for all k. (2.16)

Since Xn is bounded in probability under Pn, for every δ > 0 there exists an
Mδ such that Pn(|Xn| > Mδ) < δ for all n. This implies Pnk

(|Xnk
| > k) < δ for

all large enough k. Letting Yk be the indicator variable of the event |Xnk
| > k,

this implies Yk converges in probability to zero under Pnk
so by (a) it also

converges in probability to zero under Qnk
. But this contradicts (2.16). Hence

(a) =⇒ (b).
Next (b) =⇒ (c). Equation (2.12) implies EPn

(Zn) ≤ 1, so by Markov’s
inequality Pn(Zn ≥ M) ≤ 1/M , so Zn is bounded in probability under Pn.
Thus (b) implies Zn is also bounded in probability under Qn, so (b) =⇒ (c).

Finally (c) =⇒ (a). Suppose to get a contradiction that (c) holds but (a)
does not. Then there is a sequence of random variables Xn that converges in
probability to zero under Pn but not under Qn, hence there is an ǫ > 0 such
that Pn(|Xn| > ǫ) → 0 but Qn(|Xn| > ǫ) 6→ 0. Letting An denote the event
|Xn| > ǫ, this means Pn(An) → 0, but there is a δ > 0 and a subsequence nk
such that Qnk

(Ank
) ≥ δ for all k. Note that Zn = 1/pn − 1, so

Qn(An) = Qn(An and pn ≤ η) +Qn(An and pn > η)

≤ Qn(pn ≤ η) +

∫

An and pn>η

Znpn dλn

≤ Qn
(
Zn ≥

1

η
− 1

)
+

1

η
Pn(An)

Property (c) implies that we can choose η > 0 and N such that

Qn

(
Zn ≥

1

η
− 1

)
< δ, n ≥ N,

but this contradicts Qnk
(Ank

) ≥ δ. Hence (c) =⇒ (a).

If any one (and hence all) of the properties in the theorem holds, then we
say that the sequence {Qn} is contiguous to the sequence {Pn}. If {Pn} is
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also contiguous to {Qn} we say the sequences are contiguous. We will only be
interested in the symmetric case when the sequences are contiguous.

By L(Xn | Pn) we mean the law of the random variable Xn under Pn, that
is, Pn ◦X−1

n .

Theorem 2.2 (Le Cam’s Third Lemma). Using the notation defined in the
preceding discussion, and letting Xn be a random element of a Polish space E
defined on the common sample space of Pn and Qn, the following properties are
equivalent.

(a) L((Xn, Zn) | Pn)→ H, a probability measure on E×R and Qn is contiguous
to Pn.

(b) L((Xn, Zn) | Qn)→ H ′, a probability measure on E × R.

When (a) and (b) hold, H ′(dx, dz) = zH(dx, dz).

Proof. First note that under (b) Zn is bounded in probability underQn (because
convergence in law implies boundedness in probability) hence by part (c) of
Theorem 2.1 Qn is contiguous to Pn. Thus both parts (a) and (b) of the lemma
assert the same contiguity statement, which we may thus assume.

Let g be a bounded continuous function on E × R. Then

EQn
{g(Xn, Zn)} =

∫

pn=0

g(Xn, Zn)qn dλn +

∫

pn>0

g(Xn, Zn)Znpn dλn

= EQn

{
g(Xn, Zn)1{Zn=∞}

}
+ EPn

{g(Xn, Zn)Zn}
Under (a) the second term on the right converges to

∫
g(x, z)zH(dx, dz) because

Zn is uniformly integrable by part (d) of Theorem 2.1. Under (b) the left hand
side converges to

∫
g(x, z)H ′(dx, dz). Thus it only remains to be shown that

the first term on the right hand side converges to zero under either (a) or (b).
Since g is bounded, say by M ,

∣∣EQn

{
g(Xn, Zn)1{Zn=∞}

}∣∣ ≤MEQn
(Zn =∞).

Under (a) this converges to zero by part (d) of Theorem 2.1. Under (b) Zn
converges in law under Qn to a random variable Z with law Q concentrated on
R. Thus the portmanteau theorem implies

lim sup
n→∞

Qn(Zn =∞)→ Q(Z =∞) = 0.

Corollary 2.3. Using the notation defined above, the following properties are
equivalent.

(a) L(Zn | Pn)→ H, a probability measure on R and Qn is contiguous to Pn.

(b) L(Zn | Qn)→ H ′, a probability measure on R.

When (a) and (b) hold, H ′(dz) = zH(dz).

Proof. In the theorem, take the case where E is a space with only one point.
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2.4 Local Asymptotic Normality

Consider a sequence of statistical models Pn = {Pn,θ : θ ∈ Θn } having
parameter spaces Θn that are subsets of R

d. In the i. i. d. case all of the models
Pn will be n-fold products of one family P = {Pθ : θ ∈ Θ }. That is, for each n
we have Θn = Θ and

Pn,θ = Pθ × · · · × Pθ︸ ︷︷ ︸
n terms

If the family P is dominated by a measure λ, so there are densities fθ = dPθ/dλ,
then the log likelihood for the family Pn is given by (2.2), and looking back at
(2.9) we see that our inference will depend on the asymptotic properties of the
log likelihood ratio

ln(θ0 + n−1/2δ)− ln(θ0)
Thus in order to have the log likelihood converge to a nontrivial limit we have
to change parameters from the original parameter θ to the new parameter δ,
the two parameters being related by

δ =
√
n(θ − θ0) or θ = θ0 + n−1/2δ (2.17)

In general, however, we adopt no restrictions on the models Pn other than
that they have parameter spaces of the same (finite) dimension. Thus even with
i. i. d. sampling, we make no assumption that the same parameterization is used
for all n, and hence there is no guarantee that (2.17) is the right reparameteri-
zation. When the sequence of models Pn does not arise from i. i. d. sampling,
there is, in general, no simple change of parameters that does the job of making
the log likelihood converge to a nontrivial limit. Thus there is no notation that
can indicate the required reparameterization. We will simply have to assume
that there is such a reparameterization and that it has been done.

We specify log likelihood ratios by the device used in the preceding section.
For any two parameter values θ, ϑ ∈ Θ, let λn,θ,ϑ = Pn,θ + Pn,ϑ and let pn,θ be
the Radon-Nikodym derivative of Pn,θ with respect to λn,θ,ϑ, so 1− pn,θ is the
Radon-Nikodym derivative of Pn,ϑ with respect to λn,θ,ϑ. Then

ln(ϑ, θ) = log
1− pn,θ
pn,θ

is the log likelihood ratio for comparing the two distributions.

Definition 2.1 (Locally Asymptotically Normal). A sequence of statistical
models Pn with true parameter values θn is locally asymptotically normal (LAN)
if the following three conditions hold

(a) For any M > 0, the parameter space Θn contains a ball of radius M centered
at θn for all but finitely many n.

(b) For any bounded sequence δn in R
d, the sequences Pn,θn

and Pn,θn+δn
are

contiguous.
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(c) There exist sequences of random vectors Sn and random almost surely pos-
itive definite matrices Kn defined on the sample space of Pn such that Kn

converges in probability to a nonrandom positive definite matrix K and for
every bounded sequence δn in R

d

ln(θn + δn, θn)−
[
δ′nSn − 1

2δ
′
nKnδn

] P−→ 0 (2.18)

under Pn,θn
.

Note that condition (a) guarantees that θn + δn is in Θn for all sufficiently
large n. Thus in the other two conditions the notation Pn,θn+δn

and ln(θn +
δn, θn) makes sense for sufficiently large n. The same Sn and Kn must work for
all bounded sequences {δn}. Although (c) only requires the left hand side of
(2.18) to converge in probability to zero under Pn,θn

, the contiguity assumed in
(b) implies that it also converges in probability to zero under Pn,θn+δn

.
Note that there is no mention of the normal distribution in the definition of

LAN. The following theorem shows how the normal distribution comes in. In
the following we change notation from L(Xn | Pθn

) to L(Xn | θn) to save one
level of subscripts.

Theorem 2.4. If the LAN condition holds for a sequence of models, and δn →
δ, then

L(Sn | θn + δn)→ N (Kδ,K).

Proof. Conditions (b) and (c) of Theorem 2.1 taken together imply that ln(θn+
δn, θn) is bounded in probability under Pθn+δn

for any bounded sequence δn.
Hence from the definition of LAN, the sequence Sn is also bounded in probabil-
ity. Thus by Prohorov’s theorem it has convergent subsequences Snk

→ S. By
the definition of LAN and Slutsky’s theorem

Zn = eln(θn+δn,θn)

is equal to

eδ
′

nSn− 1
2 δ

′

nKnδn

plus a term that converges in probability to zero. Hence under Pθn

Znk

L−→ exp
{
δ′S − 1

2δ
′Kδ

}

and by Condition (e) of Theorem 2.1 it follows that the expectation of the right
hand side is one. Thus

E exp (δ′S) = exp
{

1
2δ

′Kδ
}

Since this is true for all vectors δ, this shows that the moment generating func-
tion of S is that of the N (0,K) distribution. Thus we have shown

L(Snk
| θnk

)→ N (0,K).
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Since the limit does not depend on the subsequence chosen, the whole sequence
must converge to this limit.

By Le Cam’s third lemma, (Sn, Zn) must also converge under Pθn+δn
. The

only remaining task is to apply the lemma to find the distribution. Suppose

L((Sn, Zn) | θn)→ H

L((Sn, Zn) | θn + δn)→ H ′

Then the lemma says H ′(ds, dz) = zH(ds, dz). The measure H is degenerate

Z = exp
{
δ′S − 1

2δ
′Kδ

}
(2.19)

holds with probability one and S ∼ N (0,K). Thus the measure H ′ is also
degenerate, (2.19) holding with probability one. Write the density of S with
respect to Lebesgue measure under H as

f(s) = c exp
(
− 1

2s
′K−1s

)

where c is a constant (its value doesn’t matter). Then the density of S with
respect to Lebesgue measure under H ′ is

f ′(s) = zf(s)

= c exp
(
δ′s− 1

2δ
′Kδ − 1

2s
′K−1s

)

= c exp
{
− 1

2 (s−Kδ)′K−1(s−Kδ)
}

which is the N (Kδ,K) distribution asserted by the theorem.

2.5 Asymptotic Equivalence

We say that two sequences of estimators θ̂n and θ̃n of a parameter sequence
θn are asymptotically equivalent if

θ̃n − θ̂n = op(θ̂n − θn). (2.20a)

The notation means, for any ǫ > 0,

Pr
(
‖θ̃n − θ̂n‖ ≤ ǫ‖θ̂n − θn‖

)
→ 1, as n→∞, (2.20b)

where ‖ · ‖ is any norm on R
d.

We check that this is, as the name implies, an equivalence relation among
estimating sequences. We must check three properties, that the relation is
reflexive, symmetric, and transitive. To introduce a notation for the relation in
question, write θ̃n � θ̂n if (2.20a) holds.

Reflexivity is the requirement that θ̂n � θ̂n hold for any estimating sequence
θ̂n. This is trivial.
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Symmetry is the requirement that θ̃n � θ̂n implies θ̂n � θ̃n for any estimating
sequences θ̂n and θ̃n. This is proved as follows. By the triangle inequality

‖θ̃n − θ̂n‖ ≤ ǫ‖θ̂n − θn‖ (2.21a)

implies
‖θ̃n − θ̂n‖ ≤ ǫ‖θ̃n − θn‖+ ǫ‖θ̃n − θ̂n‖

which if ǫ < 1 is the same as

‖θ̃n − θ̂n‖ ≤
ǫ

1− ǫ‖θ̃n − θn‖. (2.21b)

Thus θ̃n � θ̂n implies that (2.21a) can has probability converging to one when-
ever 0 < ǫ < 1, which in turn implies (2.21b) has probability converging to one

for all such ǫ, and this in turn implies θ̂n � θ̃n.
Transitivity is the requirement that θ∗n � θ̃n and θ̃n � θ̂n imply θ∗n � θ̂n for

any estimating sequences θ∗n, θ̂n, and θ̃n. This is proved as follows. Again by
the triangle inequality

‖θ∗n − θ̃n‖ ≤ ǫ1‖θ̃n − θn‖ (2.22a)

and
‖θ̃n − θ̂n‖ ≤ ǫ2‖θ̂n − θn‖ (2.22b)

imply

‖θ∗n − θ̂n‖ ≤ ‖θ∗n − θ̃n‖+ ‖θ̃n − θ̂n‖ ≤ ǫ1‖θ̃n − θn‖+ ǫ2‖θ̂n − θn‖

and if ǫ1 < 1 this implies, by the implication of (2.21b) by (2.21a),

‖θ∗n − θ̂n‖ ≤
(

ǫ1
1− ǫ1

+ ǫ2

)
‖θ̂n − θn‖. (2.22c)

Thus θ∗n � θ̃n and θ̃n � θ̂n imply (2.22a) and (2.22b) have probability converging
to one whenever 0 < ǫ1 < 1 and 0 < ǫ2, which in turn implies (2.22c) has
probability converging to one for all such ǫ1 and ǫ2, and this in turn implies
θ∗n � θ̂n.

2.6 Efficient Likelihood Estimators

Roughly speaking, the LAN condition says that ln(θn + δ, θ0) considered as
a function of δ is well approximated by the random quadratic function δ′Sn −
1
2δ

′Knδ. The maximizer of this random quadratic function is K−1
n Sn. The

corresponding estimator of θ is

θ̂n = θn +K−1
n Sn. (2.23)

We say that a sequence of estimators θ̃n is an efficient likelihood estimator
(ELE) of the parameter θn of a model satisfying the LAN condition if it is
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asymptotically equivalent to (2.23). It is clear from our proof that asymptotic
equivalence is indeed an equivalence relation on estimating sequences that every
ELE is asymptotically equivalent to every other ELE.

Note that the definition is not useful in calculating an ELE, because it refers
to the true parameter value θn, which is unknown. Hence it is an open question
to be answered by further investigation whether an ELE can be calculated. In
“nice” models the MLE is an ELE, but we will have to do a fair amount of work
to see that. Also we haven’t yet defined efficiency or said what that has to do
with ELEs.

We say that a sequence of estimators θ̃n is a regular estimator of the param-
eter θn of a model satisfying the LAN condition if the limiting distribution of
θ̃n − (θn + δn) under Pθn+δn

is the same for any bounded sequence δn.

Corollary 2.5. If the LAN condition holds for a sequence of models, δn → δ,
and θ̃n is an ELE, then

L(θ̃n − θn | θn + δn)→ N (δ,K−1), (2.24)

and θ̃n is a regular estimator.

Proof. By definition of ELE θ̃n − θn = K−1
n Sn + op(1) and hence converges in

distribution under Pθn+δn
to K−1S where S ∼ N (Kδ,K) by Theorem 2.4 and

Slutsky’s theorem. Clearly, K−1S is normal with mean δ and variance K−1.
This proves (2.24).

In the definition of regular estimator we do not assume δn → δ, only that δn
is bounded, but then there are convergent subsequences δnk

→ δ and for such a
subsequence, the first part of the proof implies

L(θ̃nk
− (θnk

+ δnk
) | θnk

+ δnk
)→ N (0,K−1).

Since every such subsequence converges to the same limit, the whole sequence
θ̃n − (θn + δn) converges to this limit under Pθn+δn

. Since the limit does not
depend on the sequence δn, the estimator is regular.

2.7 The Parametric Bootstrap

Readers who have heard of the bootstrap have most likely heard of the non-
parametric bootstrap, which approximates sampling distributions by resampling
the data with replacement. In the same paper in which Efron introduced the
nonparametric bootstrap, he also pointed out the connections with the para-
metric bootstrap, which approximates sampling distributions by simulating new
data from a fitted parametric model.

The nonparametric bootstrap was a completely new idea. Though vaguely
related to the jackknife and to permutation tests, it was much more widely
applicable and had a much more general theory. In contrast, the parametric
bootstrap was not new at all. Efron had just given a new name to something
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people had done since the beginnings of statistics. This was clear from Efron’s
examples of the parametric bootstrap, which were z and t confidence intervals.

Suppose X1, . . ., Xn are i. i. d. N (µ, σ2) random variables, and suppose we
want a confidence interval for µ. We base the confidence interval on the quantity

R(X1, . . . ,Xn, µ) = Xn − µ. (2.25)

The confidence interval will be the set of all µ such that |R(X1, . . . ,Xn, µ)| < c,
where c is chosen so that the the confidence interval has the right coverage
probability. The problem is that we do not know the sampling distribution of
(2.25). It is, of course, N (0, σ2), but we do not know σ. The bootstrap principle
tells us to simulate the sampling distribution of (2.25) using the fitted model,
that is we simulate new data X∗

1 , . . ., X∗
n that are i. i. d. N (µ̂n, σ̂

2
n), where µ̂n

and σ̂2
n are any consistent estimators of µ and σ. We calculate the critical value

c from the sampling distribution of

R(X∗
1 , . . . ,X

∗
n, µ̂n) = X

∗
n − µ̂n. (2.26)

where X
∗
n is the sample mean of the X∗

i . The replacement of µ by µ̂n makes
sense because µ̂n is the true mean of the X∗

i . Of course, in this simple example,
we do not have to calculate the distribution of (2.26) by simulation. We know
that it is N (0, σ̂2

n/n) and hence the appropriate value of c for a 95% confidence
interval is 1.96σ̂n/

√
n and the 95% confidence interval is the usual z confidence

interval

Xn ± 1.96 · σ̂n√
n

The t confidence interval is produced by the same argument applied to a
different “root”. We replace (2.25) by the pivotal quantity

R(X1, . . . ,Xn, µ) =
Xn − µ
Sn/
√
n

where now we use a particular estimator of variance

S2
n =

1

n− 1

n∑

i=1

(Xi −Xn)
2

Then (2.26) becomes

R(X∗
1 , . . . ,X

∗
n, µ) =

X
∗
n − µ̂n
S∗
n/
√
n

and again we do not have to simulate to find the sampling distribution. It is
exactly t(n − 1). Denoting the appropriate critical value for a 100(1 − α)%
confidence interval by tα/2, the confidence interval becomes

Xn ± tα/2 ·
Sn√
n
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In these well-known examples, the “parametric bootstrap” argument seems
just a way of making something simple seem complicated, but it gives us a
method of great generality that can be applied to any parametric model. Sup-
pose X had distribution Pθ, where θ is an unknown parameter and R(X, θ)

is any scalar-valued function of the data and parameter. Suppose θ̂(X) is an
estimator of θ. The parametric bootstrap says to approximate the sampling
distribution of R(X, θ) by simulating new data X∗ from Pθ̂(X) and calculating

by simulation (or analytically if possible) the distribution of

R
(
X∗, θ̂(X)

)
(2.27)

consideringX fixed (that is, conditioning on the observed value of the real data).
From the simulations, we find a c such that

Pr
{
R
(
X∗, θ̂(X)

)
< c

∣∣ X
}

= 1− α

Then the parametric bootstrap principle says to take

{ θ : R(X, θ) < c }

as an approximate 100(1− α)% confidence region for θ.
Of course, in general there is no guarantee that the parametric bootstrap

does the right thing, because θ̂(X) is not the true parameter value, hence the
sampling distribution of (2.27) is not exactly the same as the sampling distribu-
tion of R(X, θ) when θ is the true parameter value, which is the distribution we
should use to determine the critical value. Even in our simple examples, it did
exactly the right thing only in the t example. In the z example, it did approxi-
mately the right thing, producing the usual asymptotic confidence interval. In
other situations, it may not do the right thing, even approximately.

Thus the parametric bootstrap is a heuristic that gives us a procedure that
may or may not be valid. It leaves us the theoretical question of whether it
provides a valid approximation to the sampling distribution in question. And
let us stress again that, although the language may seem a bit strange, the para-
metric bootstrap includes what we do in every parametric statistical problem.
We never know the true parameter value and must always rely on estimating it.
And we always need some argument that explains why using an estimate instead
of the truth does not destroy the validity of the procedure. The “parametric
bootstrap” is just a general framework that encompasses all such situations.

With this explanation of the parametric bootstrap, we can now see the point
of regular estimators. If the LAN condition holds for a sequence of models, and
θ̂n is a regular estimator, then the parametric bootstrap gives a valid approxi-
mation of the sampling distribution of θ̂n. More precisely, let

H(n, δ) = L(θ̂n − (θn + δ) | θn + δ),

then the parametric bootstrap is the procedure of using H(n, θ̂n − θn) as an
approximation of H(n, 0), the latter being the true sampling distribution of

θ̂n − θn and the former being its parametric bootstrap approximation.
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By definition of “regular,” for any bounded sequence δn

L(θ̂n − (θn + δn) | θn + δn)→ L (2.28)

for some law L that does not depend on the sequence δn. In particular

L(θ̂n − θn | θn)→ H(n, 0),

so we see that L = H(n, 0) and that another notation for (2.28) is

H(n, δn)→ H(n, 0) (2.29)

whenever δn is bounded.

By the Skorohod theorem we can find random variables

θ̂∗n ∼ L(θ̂n | θn)
Z ∼ H(n, 0)

such that

θ̂∗n − θn
a. s.−−→ Z, as n→∞

Then for every ω not in the null set for which this convergence fails

θ̂∗n(ω)− θn −→ Z(ω), as n→∞ (2.30)

Let d be any metric that metrizes weak convergence. Fristedt and Gray
(1997, Section 18.7) discuss one such metric, the Prohorov metric. But the
details do not matter, only that there is such a metric. Thus (2.29) and (2.30)
imply

d
(
H(n, θ̂∗n(ω)− θn),H(n, 0)

)
−→ 0

or, dropping the ω’s,

d
(
H(n, θ̂∗n − θn),H(n, 0)

) a. s.−−→ 0,

and, since almost sure convergence implies convergence in probability, we also
have convergence in probability. But then we can drop the stars, since con-
vergence in probability only depends on the laws of variables and the variables
with and without stars have the same laws. Thus

d
(
H(n, θ̂n − θn),H(n, 0)

) P−→ 0.

or

H(n, θ̂n − θn) P−→ H(n, 0).

This is a formal statement of the sense in which the parametric bootstrap
“works.” Note that the crucial assumption was that θ̂n is regular.
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2.8 The Hájek Convolution Theorem

Theorem 2.6 (Hájek Convolution Theorem). If the LAN condition holds
for a sequence of models, and θ̃n is a regular estimator, then

L(θ̃n − θn | θn) −→ L(X +W )

where X ∼ N (0,K−1) and W is independent of X. If W = 0 with probability
one, then θ̃n is an ELE.

Proof. Write θ̂n = θn +K−1
n Sn. This is an ELE, so by Corollary 2.5

L(θ̂n − θn | θn) −→ L(X).

We first prove the theorem under the additional assumption that θ̃n and θ̂n
converge jointly under Pθn

(θ̃n − θn, θ̂n − θn) L−→ H0

(the theorem without this assumption will then follow from Prohorov’s theorem
and the subsequence principle). Then Le Cam’s Third Lemma implies, if δn → δ,
then under Pθn+δn

(θ̃n − θn, θ̂n − θn) L−→ Hδ

where

Hδ(dy, dx) = exp{δ′Kx− 1
2δ

′Kδ} ·H0(dy, dx). (2.31)

We know from Corollary 2.5 that the marginal distribution of X under Hδ is
N (δ,K−1). We also know from the regularity assumption that the marginal
distribution of Y − δ under Hδ does not depend on δ. What we need to show is
that Y = X +W with W independent of X.

We do this using a trick. Give δ a N (0,Γ−1) prior distribution. Then the
joint distribution of the triple (Y,X, δ) has the measure

M(dy, dx, dδ) = C exp{δ′Kx− 1
2δ

′(K + Γ)δ} ·H0(dy, dx) dδ

where C is a constant (its value doesn’t matter). Define B = (K + Γ)−1K and
introduce the new variables

V = BX

Z = Y − V
ξ = δ − V

Since this is a linear change of variables, the Jacobian is constant. In the new
variables

δ′Kx− 1
2δ

′(K + Γ)δ = 1
2V

′(K + Γ)V − 1
2ξ

′(K + Γ)ξ
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Note that fixing (X,Y ) fixes (V,Z) and vice versa. Conditioning on either pair
of variables, we see that the conditional distribution of ξ is N

(
0, (K + Γ)−1

)
.

Since this distribution does not depend on (V,Z), we conclude that ξ ⊥ (V,Z).

Now note that Y − δ = Z − ξ, so both sides have the same distribution.
Note that Z and ξ are independent and we know the distribution of ξ. By the
regularity assumption L(Y − δ | δ) does not depend on δ. Hence this law is also
the marginal of Y − δ, which is equal to the marginal of Z − ξ. Thus we have
established that L(Y − δ | δ) is the convolution of L(Z), which is unknown, and
the N

(
0, (K + Γ)−1

)
distribution of ξ.

Now let Γ→ 0. This does not affect L(Y − δ | δ) which does not depend on
Γ. However, the distribution of ξ converges to N (0,K−1), and the distribution
of Z = Y − BX converges to L(Y − X). Thus we see that L(Y − δ | δ) is
the convolution of N (0,K−1) and some other distribution L(Y −X). And that

proves the theorem under the additional assumption that θ̃n and θ̂n converge
jointly under Pθn

.

To remove this assumption, note that under the conditions of the theorem θ̃n
and θ̂n both converge marginally under Pθn

. Hence both are tight. Hence their
joint distributions are tight. Thus every subsequence has a jointly convergent
subsubsequence by Prohorov’s theorem. By what we have proved above, every
such sequence has the same limit. (If ϕY , ϕX , and ϕW are the characteristic
functions of Y , X, and W = Y −X, and X and W are independent, then ϕY =
ϕXϕW , and since ϕX is never zero, ϕW = ϕY /ϕX . Thus the distribution of W
is determined by those of Y and X, which are determined by the hypotheses of
the theorem.) Hence the whole sequence converges to the same limit, and that
proves the theorem.

The last assertion of the theorem, the case when W = 0 almost surely, is

now obvious: then θ̃n − θ̂n
L−→ 0, hence these estimators are asymptotically

equivalent, hence θ̃n is an ELE too.

What the theorem says is that no regular estimator can beat an ELE. The
asymptotic distribution of any regular estimator has the form X +W with X
the asymptotic distribution of any ELE and W independent of X. Thus the
regular estimator makes whatever error the ELE makes and then adds the error
W on top of that. Hence it is worse unless W is concentrated at 0, in which
case it does as well but no better than any ELE. This is easiest to see when W
has a second moment. Then the asymptotic variance of the regular estimator
is K−1 + Var(W ), which is clearly no better than the asymptotic variance K−1

of an ELE.

Much more is said about contiguity theory in Le Cam and Yang (1990),
although your humble author finds it hard to read. In fact the guide for our
Theorems 2.1 and 2.2 was Jacod and Shiryaev (1987, Chapter V, Section 1a).
Our guide for the Hájek convolution theorem was Le Cam and Yang (1990) who
attribute their proof to van der Vaart.
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2.9 Exponential Families Revisited

We return to exponential families to provide a concrete example to which
all this theory applies and to get a much stronger theorem than Theorem 1.5 of
the preceding chapter.

We now consider a sequence of standard exponential families with natural
statistics (and natural parameters) of the same dimension, but for the present
we make no other assumptions. Hence let λn be a sequence of measures on R

d

having Laplace transforms cn, cumulant functions kn, densities with respect to
λn

fn,θ(x) =
1

cn(θ)
e〈x,θ〉

for θ ∈ dom cn = dom kn. As in the rest of this chapter, we denote the true
parameter value in the n-th model by θn.

Note that in the log likelihood for this sequence of families,

ln(θ) = 〈Xn, θ〉 − kn(θ),
where Xn is the data for the n-th family, the first term, which is linear in the
parameter, is the only random term, the other term (the cumulant function),
which has all the curvature, is nonrandom. Thus whether the log likelihood
close to quadratic or not only depends on the cumulant function.

Definition 2.2 (LAQ Exponential Families). A sequence kn of cumulant
functions on R

d (or the corresponding sequence of standard exponential families)
is locally asymptotically quadratic (LAQ) if there exists a sequence of vectors
bn and a positive definite matrix K such that for every δ ∈ R

d

kn(θn + δ)− kn(θn)− 〈bn, δ〉 → 1
2 〈δ,Kδ〉, as n→∞.

Note that it is part of the definition that K is (strictly) positive definite,
although the term “locally asymptotically quadratic” doesn’t explicitly indicate
this.

We interrupt our treatment of exponential families for a brief discussion of
convergence of convex functions.

Theorem 2.7. Let fn be a sequence of extended-real-valued convex functions
on R

d converging pointwise on a dense subset of R
d to a limit that is finite on

some open subset of R
d. Then there exists a unique extended-real-valued lower-

semicontinuous convex function f on R
d such that fn converges to f uniformly

on every compact set that does not contain a boundary point of dom f .

The proof of this is rather complicated and uses a lot of convexity theory that
we don’t want to take time to develop here. So we will merely give a reference
to the literature. This is part of Theorem 7.17 in Rockafellar and Wets (1998).

Corollary 2.8. If the LAQ condition is satisfied, the convergence is actually
uniform on compact sets, that is, for every compact set C in R

d

sup
δ∈C

∣∣kn(θn + δ)− kn(θn)− 〈bn, δ〉 − 1
2 〈δ,Kδ〉

∣∣→ 0, as n→∞.
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This is a straightforward consequence of the theorem. Here the limit function
δ 7→ 1

2 〈δ,Kδ〉 is everywhere finite, so its effective domain is all of R
d, and we

have uniform convergence on compact subsets of R
d.

Lemma 2.9. If Xn are random variables from a sequence of exponential families
with cumulant functions kn satisfying the LAQ condition and true parameter
values θn, then

µn = ∇kn(θn)
Kn = ∇2kn(θn)

(2.32)

exist for all but finitely many n, and

µn − bn → 0

Kn → K

where bn and K are defined in the LAQ condition. Moreover,

Xn − bn L−→ N (0,K),

and for any bounded sequence δn the sequence

e〈Xn−bn,δn〉

is uniformly integrable.

Proof. By the theory of moment and cumulant generating functions, the deriva-
tives in (2.32) exist as soon as kn is finite on a neighborhood of θn. Corollary 2.8
implies this occurs for all but finitely many n.

Now, Xn − bn has moment generating function

Mn(t) = E
{
e〈Xn−bn,t〉}

=

∫
e〈x−bn,t〉fn,θn

(x)λn(dx)

=
1

cn(θn)

∫
e〈x−bn,t〉e〈x,θn〉λn(dx)

=
e−〈bn,t〉

cn(θn)

∫
e〈x,θn+t〉λn(dx)

=
cn(θn + t)e−〈bn,t〉

cn(θn)

and by the LAQ condition, this converges to the moment generating function
t 7→ exp(1

2 〈t,Kt〉) of a N (0,K) random vector. Since moment generating func-
tion convergence also implies convergence of moments, we also have

E(Xn − bn) = µn − bn → 0
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and
Var(Xn − bn) = Kn → K.

Moment generating function convergence also implies the random variables
e〈Xn−bn,t〉 are uniformly integrable for any fixed vector t. We can pick a fi-
nite set T = {t1, . . . , tk} such that the entire sequence δn is contained in the
convex hull of T (the vertices of a sufficiently large cube, for example). This
means every δn can be written as a convex combination

δn =
k∑

i=1

si,nti

where the sin are nonnegative and s1n + · · ·+ skn = 1. Then by the convexity
inequality

e〈Xn−bn,δn〉 ≤
k∑

i=1

si,ne
〈Xn−bn,ti〉

Hence this sequence is uniformly integrable.

We now want to show that an LAQ sequence of exponential families is LAN,
but in light of Corollary 2.8, it satisfies a much stronger property, which we now
define.

Definition 2.3 (Uniformly Locally Asymptotically Normal). A sequence
of statistical models Pn with true parameter values θn is uniformly locally
asymptotically normal (ULAN) if conditions (a) and (b) of the LAN defini-
tion (Definition 2.1) hold and condition (c) of that definition is strengthened
to

(c’) There exist sequences of random vectors Sn and random almost surely pos-
itive definite matrices Kn defined on the sample space of Pn such that Kn

converges in probability to a nonrandom positive definite matrix K and for
every compact set C in R

d

sup
δ∈C

∣∣ln(θn + δ, θn)−
[
δ′Sn − 1

2δ
′Knδ

]∣∣ P−→ 0 (2.33)

under Pn,θn
.

The remarks that follow the LAN condition also apply here, since the ULAN
condition is a strengthening of the LAN condition. There is an additional issue
involved in the ULAN condition. It is not clear that the supremum in (2.33) is
measurable. If is is not, then the left hand side is not even a random variable
and hence it is meaningless to talk about it converging in probability. It turns
out that in “nice” situations the supremum is measurable1 so we won’t worry
about this issue.

1Here is what is true. We say a subset of a Polish space is universally measurable if it is in
the completion of the Borel σ-field for every with respect to every Borel probability measure
(Bertsekas and Shreve 1978, p. 167). The class of all universally measurable sets is a σ-field
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Theorem 2.10. An LAQ sequence of exponential families is ULAN. The MLE
exists with probability converging to one and is an ELE.

The proof depends on the following lemma about minimizers of convex func-
tions.

Lemma 2.11. Suppose fn and f are as in Theorem 2.7. Suppose also that f is
a proper convex function and has a unique local minimizer x that is an interior
point of dom f . Then

inf fn → f(x), as n→∞. (2.34a)

In addition, suppose xn is a sequence satisfying

fn(xn)− inf fn → 0, as n→∞. (2.34b)

Then xn → x as n→∞.

Proof. The assumption that f is proper makes f(x) finite. It is one of the
assertions of Theorem 2.7 that f is a lower semicontinuous function. Define

B(x, ǫ) = { y : |y − x| ≤ ǫ }

and let S(x, ǫ) be the boundary of B(x, ǫ). Choose ǫ > 0 is small enough so
that B(x, ǫ) ⊂ dom f ,

Note that since S(x, ǫ) is a compact set and f is lower semicontinuous, the
infimum over this set is achieved and must be greater than f(x), say f(x) + δ
with δ > 0, because x is assumed to be the unique minimizer.

Then the uniformity of convergence asserted by Theorem 2.7 guarantees that
for any η satisfying 0 < η < δ/4 there is an integer N such that for all n ≥ N
the following three inequalities all hold

inf
y∈S(x,ǫ)

fn(y) ≥ f(x) + δ − η (2.35a)

inf
y∈B(x,ǫ)

fn(y) ≥ f(x)− η (2.35b)

fn(x) ≤ f(x) + η (2.35c)

Now consider any point z /∈ B(x, ǫ). Then λ = ǫ/|z − x| is strictly between
zero and one, and w = (1−λ)x+λz lies in S(x, ǫ). Thus the convexity inequality
implies

fn(w) ≤ (1− λ)fn(x) + λfn(z)

called the universal σ-field. Suppose S and T are Polish spaces and f : S ×T → R is a jointly
Borel measurable function, then for any Borel subset B of T the function gB : S → R defined
by

gB(x) = sup
y∈B

f(x, y), x ∈ S,

is universally measurable (not necessarily Borel measurable) (Bertsekas and Shreve 1978,
Corollary 7.42.1 and Proposition 7.47). Thus so long as our sample space and parameter
spaces are both Polish spaces and our likelihood is a jointly Borel measurable function of data
and parameters, the supremum in (2.33) will be measurable with respect to the completion

of Pn,θn , and that is all we need.
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or

fn(z) ≥
fn(w)− (1− λ)fn(x)

λ

≥ f(x) + δ − η − (1− λ)[f(x) + η]

λ

=
λf(x) + δ − (2− λ)η

λ

≥ f(x) +
2η

λ

Since λ < 1 for all such z we have

inf
y/∈B(x,ǫ)

fn(y) ≥ f(x) + 2η (2.36)

Thus for n ≥ N

f(x)− η ≤ inf fn ≤ fn(x) ≤ f(x) + η,

and, since η can be chosen as small as we please, this proves (2.34a).
Also, still for n ≥ N , combining (2.35c) and (2.36) gives

fn(z)− inf fn ≥ fn(z)− fn(x) ≥ η, z /∈ B(x, ǫ).

comparing with (2.34b) we see that the sequence xn must be eventually in
B(x, ǫ). Since ǫ can be chosen as small as we please, this proves xn → x.

Proof of the theorem. Let Xn ∼ Pn,θn
and define µn and Kn as in (2.32). Then,

if we define Sn = Xn − µn, we have

ln(θn + δ, θn)−
[
〈Sn, δ〉 − 1

2 〈δ,Knδ〉
]

= kn(θn)− kn(θn + δ)− 〈µn, δ〉+ 1
2 〈δ,Knδ〉

which is not random and converges uniformly to zero on compact sets by Corol-
lary 2.8 and Lemma 2.9. Thus the sequence of models satisfies condition (c) of
the ULAN definition. Condition (b), contiguity, follows from the uniform inte-
grability assertion in Lemma 2.9, which implies that, for any bounded sequence
δn, the likelihood

exp{ln(θn + δn, θn)} = exp{〈Xn − µn, δn〉+ kn(θn)− kn(θn + δ)− 〈µn, δ〉}

is uniformly integrable, thus the measures Pθn
and Pθn+δn

are contiguous by
condition (d) of Theorem 2.1.

Recall from the discussion in Section 1.8 that the function θ̂n : R
d → R

d∪{u}
defined by

θ̂n(x) =

{
τ−1
n (x), x ∈ int(dom kn)

u, otherwise
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where τn(θ) = ∇kn(θ), is measurable. We define θ̂n(Xn) to be the MLE.
By Lemma 2.9 Xn − µn → N (0,K), so by the Skorohod theorem there are

random variables

X∗
n ∼ Pn,θn

Z ∼ N (0,K)

all defined on the same probability space such that X∗
n − µn

a. s.−−→ Z. Then

l∗n(θn + δ, θn) = 〈X∗
n, δ〉 − kn(θn + δ) + kn(θn)

= 〈X∗
n − µn, δ〉 − kn(θn + δ) + kn(θn) + 〈µn, δ〉

a. s.−−→ 〈Z, δ〉 − 1
2 〈δ,Kδ〉

Defining the right hand side to be a function

qZ(δ) = 〈Z, δ〉 − 1
2 〈δ,Kδ〉

we see that we have almost sure pointwise convergence of the log likelihood to
the random function qZ . Since log likelihoods are concave and since qZ has all
of R

d for its effective domain and has a unique maximizer K−1Z, we see that
for each ω for which the almost sure convergence holds θ̂n

(
X∗
n(ω)

)
is defined

(not u) for all but finitely many n and

θ̂n
(
X∗
n(ω)

)
− θn → K−1Z(ω)

by Lemma 2.11. Since K−1
n [X∗

n(ω) − µn] also converges to the same limit the
MLE is an ELE for data X∗

n. But whether an estimator is an ELE or not
only depends on laws not variables, hence the MLE is an ELE for any data
Xn ∼ Pn,θn

.

Problems

2-1. Prove the assertion about the equivalence of the two concepts of bound-
edness in probability made in the text. If X1, X2, . . . are real-valued random
variables, then

lim
M→∞

lim sup
n→∞

Pr(|Xn| ≥M) = 0 (2.37a)

holds if and only if
lim
M→∞

sup
n∈N

Pr(|Xn| ≥M) = 0. (2.37b)



34 CHAPTER 2. ASYMPTOTIC EFFICIENCY



Chapter 3

Classical Likelihood Theory

3.1 Asymptotics of Maximum Likelihood

Following Ferguson (Chapter 18) we use the notation

Ψ(x, θ) = ∇θ log fθ(x)

Ψ̇(x, θ) = ∇2
θ log fθ(x)

(3.1)

If derivatives with respect to θ can be passed under the integral sign in the
identity

∫
fθ dν = 1, then the Bartlett identities

EθΨ(X, θ) = 0 (3.2a)

Varθ Ψ(X, θ) = −EθΨ̇(X, θ) (3.2b)

hold, in which case either side of (3.2b) is the Fisher information I(θ). We
also follow Ferguson in using the notation l̇n and l̈n instead of ∇ln and ∇2ln,
respectively. Define the matrix norm

‖A‖∞ = max
i,j
|aij |, (3.3)

for any matrix A with components aij .

Theorem 3.1. Let { fθ : θ ∈ Θ } be a family of densities with respect to a
measure ν, and let X1, X2, . . . be i. i. d. with density fθ0 , for some θ0 ∈ Θ.
Suppose

(1) Θ is a subset of R
d and a neighborhood of θ0 in R

d,

(2) second partial derivatives of fθ(x) with respect to θ exist and are continuous
on the interior of Θ for all x, and the Bartlett identities (3.2a) and (3.2b)
hold at θ = θ0,

35
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(3) there exists a function K(x) such that Eθ0K(X) < ∞ and a ρ > 0 such
that Sρ = { θ : |θ − θ0| ≤ ρ } is contained in Θ and

∥∥∥Ψ̇(x, θ)
∥∥∥
∞
≤ K(x), for all x and all θ ∈ Sρ,

(4) the Fisher information I(θ0) is positive definite,

(5) θ̂n is a measurable function of X1, . . ., Xn taking values in Θ such that

θ̂n
P−→ θ0

(6) and
1√
n
l̇n(θ̂n)

P−→ 0.

Then √
n
(
θ̂n − θ0

)
L−→ N

(
0, I(θ0)

−1
)
. (3.4)

Conditions (1) through (4) of this theorem will be referred to as the “usual”
or “Cramér style” regularity conditions for maximum likelihood, after the fa-
mous book (Cramér 1946), which had the first rigorous proof of something like
this theorem. Cramér’s conditions actually involved third derivatives. So Fergu-
son again makes an error of attribution in naming this theorem after Cramér—or
obeys “Stigler’s law of eponomy” (no scientific discovery is named after its in-
ventor) if you prefer to think of it that way. I do not know who introduced the
line of argument that involves only first and second derivatives. Of course, the
“usual” here is also misleading. There are dozens of sets of “usual” conditions
that have been used in the literature, all slightly different. There are also the
“Le Cam style” conditions (LAN and so forth). What’s “unusual” about them?
All you really can expect when someone mentions the “usual” regularity condi-
tions is that an argument involving Taylor series is coming. But in this course
we will always use “usual” to refer to conditions (1) through (4) of this theorem.

We break up the proof into several lemmas.

Lemma 3.2. Under conditions (1) through (3) of the theorem,

sup
θ∈Sρ

∥∥∥ 1
n l̈n(θ)− µ(θ)

∥∥∥
∞

a. s.−−−→ 0, (3.5)

where
µ(θ) = Eθ0Ψ̇(X, θ),

and µ is continuous on Sρ.

Proof. Theorem 16(a) in Ferguson says that if Ψ̇kl are the components of Ψ̇ and
µkl those of µ

max
k,l

sup
θ∈Sρ

∣∣∣∣∣
1

n

n∑

i=1

Ψ̇kl(Xi, θ)− µkl(θ)
∣∣∣∣∣

a. s.−−→ 0.
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The order of the max and sup can be interchanged (either way it is the max over
both), the sum is recognized as 1

n l̈n(θ), and this proves (3.5). The continuity of
µ is established in the proof of Theorem 16(a).

Now we apply the fundamental theorem of calculus to the function

s 7→ l̇n
(
θ0 + s(θ − θ0)

)

obtaining

l̇n(θ)− l̇n(θ0) =

∫ 1

0

l̈n
(
θ0 + s(θ − θ0)

)
(θ − θ0) ds. (3.6)

Defining

Bn(θ) = −
∫ 1

0

1

n
l̈n
(
θ0 + s(θ − θ0)

)
ds, (3.7)

(3.6) can be rewritten as

1√
n
l̇n(θ)−

1√
n
l̇n(θ0) = −Bn(θ)

√
n(θ − θ0). (3.8)

Lemma 3.3. Under conditions (1), (2), (3), and (5) of the theorem,

Bn(θ̂n)
P−→ I(θ0), (3.9)

where Bn(θ) is defined by equation (3.7).

Proof. Note that with µ as defined in Lemma 3.2 µ(θ0) = −I(θ0). Hence

‖Bn(θ̂n)− I(θ0)‖∞ =

∥∥∥∥
∫ 1

0

[
1

n
l̈n
(
θ0 + s(θ̂n − θ0)

)
− µ(θ0)

]
ds

∥∥∥∥
∞

≤
∫ 1

0

∥∥∥∥
1

n
l̈n
(
θ0 + s(θ̂n − θ0)

)
− µ(θ0)

∥∥∥∥
∞
ds

≤
∫ 1

0

∥∥∥∥
1

n
l̈n
(
θ0 + s(θ̂n − θ0)

)
− µ

(
θ0 + s(θ̂n − θ0)

)∥∥∥∥
∞
ds

+ sup
0≤s≤1

∥∥∥µ
(
θ0 + s(θ̂n − θ0)

)
− µ(θ0)

∥∥∥
∞

The term on the bottom line converges in probability to zero by the continuity
of µ and the weak consistency of θ̂n. The term on the next to bottom line also
converges in probability to zero because for any ǫ > 0

Pr

(∫ 1

0

∥∥∥∥
1

n
l̈n
(
θ0 + s(θ̂n − θ0)

)
− µ

(
θ0 + s(θ̂n − θ0)

)∥∥∥∥
∞
ds > ǫ

)

≤ Pr
(
θ̂n /∈ Sρ

)
+ Pr

(
sup
θ∈Sρ

∥∥∥∥
1

n
l̈n(θ)− µ(θ)

∥∥∥∥
∞
> ǫ

)

the first term on the right going to zero by consistency of θ̂n and the second
term on the right going to zero by Lemma 3.2. Hence we have proved (3.9).
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As was noted in a homework problem the map w : A 7→ A−1 is continuous,
even differentiable on the space of nonsingular square matrices of a particu-
lar dimension, which is an open subset of the space of all square matrices of
that dimension. We want to apply this function to arbitrary matrices so we
define w(A) = 0 when A is not invertible. This map is still continuous and
differentiable at every invertible A.

Proof of Theorem 3.1. From the Bartlett identities and the central limit theo-
rem

1√
n
l̇n(θ0)

L−→ N (0, I(θ0)) . (3.10)

By the comment preceding the proof, the map w is continuous at I(θ0) be-
cause this matrix is assumed to be nonsingular. Hence the continuous mapping
theorem and Lemma 3.3 imply

w
(
Bn(θ̂n)

) P−→ I(θ0)
−1.

Condition (6) of the theorem and equation (3.8) imply

1√
n
l̇n(θ0) = Bn(θ̂n)

√
n(θ̂n − θ0) + op(1) (3.11)

and this implies

√
n(θ̂n − θ0) = w

(
Bn(θ̂n)

) 1√
n
l̇n(θ0) + op(1) (3.12)

because w
(
Bn(θ̂n)

)
Bn(θ̂n) is equal to the identity with probability converging

to one. Now Slutsky’s theorem and (3.10) imply

√
n(θ̂n − θ0) L−→ I(θ0)

−1Z (3.13)

where Z ∼ N (0, I(θ0)), and this implies (3.4).

For any vector v with components vi define the norms ‖v‖∞ = maxi|vi| and
‖v‖1 =

∑
i|vi|. Then for any matrix A with components aij

‖Av‖∞ = maxi

∣∣∣
∑
j aijvj

∣∣∣
≤ maxi

∑
j |aij | · |vj |

≤ ‖A‖∞‖v‖1
The special case where A is a row vector gives ‖〈u, v〉‖∞ ≤ ‖u‖∞‖v‖1. Also

|〈v,Av〉| =
∣∣∣
∑
i

∑
j aijvivj

∣∣∣
≤∑i

∑
j |aij | · |vi| · |vj |

≤ ‖A‖∞
∑
i

∑
j |vi| · |vj |

= ‖A‖∞‖v‖21
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Corollary 3.4 (Theorem 18 in Ferguson). Under conditions (1) through (4)
of the theorem and condition (5) (identifiability) of Theorem 17 in Ferguson, if

θ̂n is the global maximizer of the log likelihood over Sρ, then θ̂n is a strongly
consistent estimator of θ0 and (3.4) holds.

Proof. To show strong consistency we need to apply Theorem 17 in Ferguson,
all of the conditions of that theorem obviously hold except for (3), which we
have to check. We expand s 7→ U

(
x, θ0 + s(θ− θ0)

)
in a two-term Taylor series

with the integral form of remainder

U(x, θ) = 〈Ψ(x, θ0), (θ−θ0)〉+
∫ 1

0

〈(θ−θ0), Ψ̇
(
x, θ0 +s(θ−θ0)

)
(θ−θ0)〉(1−s) ds

Hence

sup
θ∈Sρ

U(x, θ) ≤ λ‖Ψ(x, θ0)‖∞ +
λ2

2
K(x) (3.14)

where λ = supθ∈Sρ
‖θ−θ0‖1 ≤

√
dρ. Thus condition (3) of Theorem 17 also holds

and we conclude that θ̂n
a. s.−−→ θ0. This implies condition (5) of Theorem 3.1.

Also for almost all ω we have θ̂n(ω) in the interior of Sρ for all large enough

n and this implies that l̇n(θ̂n(ω)) is zero for all large enough n, which in turn
implies condition (6) of Theorem 3.1. Hence we obtain the conclusion (3.4).

3.2 Uniformly Locally Asymptotically Normal

What is the connection between the conditions of Theorem 3.1 and local
asymptotic normality (LAN) studied earlier? The conditions of Theorem 3.1
are much stronger than the LAN condition, they in fact imply the model is
ULAN (Definition 2.3) and more besides.

Lemma 3.5. Under conditions (1) through (3) of Theorem 3.1 for any η > 0

sup
|δ|≤η

θ0+n
−1/2δ∈Θ

∣∣∣ln(θ0 + n−1/2δ)− ln(θ0)− 〈δ, Sn〉+ 1
2 〈δ,Kδ〉

∣∣∣ P−→ 0, (3.15)

where

Sn =
1√
n
l̇n(θ0) (3.16)

and K = I(θ0). Also

sup
|δ|≤η

θ0+n
−1/2δ∈Θ

∥∥∥∥
1√
n
l̇n(θ0 + n−1/2δ)− Sn +Kδ

∥∥∥∥
∞

P−→ 0 (3.17)

and

sup
|δ|≤η

θ0+n
−1/2δ∈Θ

∥∥∥∥
1

n
l̈n(θ0 + n−1/2δ) +K

∥∥∥∥
∞

P−→ 0. (3.18)
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Moreover, Pn,θ0+n−1/2δn
is contiguous to Pn,θ0 for any bounded sequence δn,

where Pn,θ is the joint distribution of X1, . . ., Xn for true parameter value θ.

The contiguity statement and (3.15) are the ULAN conditions. Equations
(3.17) and (3.18) have no analogs in LAN theory, which doesn’t assume anything
about derivatives of the log likelihood. Hence the “usual regularity conditions”
for maximum likelihood, the conditions assumed in Theorem 3.1, are much
stronger than ULAN, which in turn is much stronger than LAN.

Proof. Equation (3.18) follows from Lemma 1. For n such that n−1/2η ≤ ρ

sup
|δ|≤η

∥∥∥∥
1

n
l̈n(θ0 + n−1/2δ) +K

∥∥∥∥
∞

≤ sup
θ∈Sρ

∥∥∥ 1
n l̈n(θ)− µ(θ)

∥∥∥
∞

+ sup
|δ|≤η

∥∥∥µ(θ0 + n−1/2δ) +K
∥∥∥
∞
.

The first term on the right converges almost surely to zero by Lemma 3.2, and
the second term on the right converges to zero by continuity of µ, which is
another conclusion of Lemma 3.2.

Equation (3.8) with θ = θ0 + n−1/2δ is

1√
n
l̇n(θ0 + n−1/2δ)− Sn = −Bn(θ0 + n−1/2δ)δ

Plugging in the definition of Bn(θ) in (3.7) we get

1√
n
l̇n(θ0 + n−1/2δ)− Sn +Kδ =

∫ 1

0

[
1

n
l̈n
(
θ0 + sn−1/2δ

)
+K

]
δ ds.

So for n such that n−1/2η ≤ ρ

sup
|δ|≤η

∥∥∥∥
1√
n
l̇n(θ0 + n−1/2δ)− Sn +Kδ

∥∥∥∥
∞

≤ sup
|δ|≤η

∥∥∥∥
1

n
l̈n
(
θ0 + sn−1/2δ

)
+K

∥∥∥∥
∞
‖δ‖1

and the the right hand side converges in probability to zero by (3.18), which we
have already established. This proves (3.17).

To prove (3.15) we need a two-term Taylor series for the function s 7→
ln
(
θ0 + s(θ − θ0)

)
with the integral form of the remainder

ln(θ) = ln(θ0) +
〈
l̇n(θ0), θ − θ0

〉

+

∫ 1

0

〈
θ − θ0, l̈n

(
θ0 + s(θ − θ0)

)
(θ − θ0)

〉
(1− s) ds
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Plugging in θ = θ0 + n−1/2δ gives

ln(θ0 + n−1/2δ) = ln(θ0) + 〈δ, Sn〉 − 1
2 〈δ,Kδ〉

+

∫ 1

0

〈
δ,

[
1

n
l̈n(θ0 + sn−1/2δ) +K

]
δ

〉
(1− s) ds.

So for n such that n−1/2η ≤ ρ

sup
|δ|≤η

∣∣∣ln(θ0 + n−1/2δ)− ln(θ0)− 〈δ, Sn〉+ 1
2 〈δ,Kδ〉

∣∣∣

≤ 1

2
sup
|δ|≤η

∥∥∥∥
1

n
l̈n(θ0 + n−1/2δ) +K

∥∥∥∥
∞
‖δ‖21.

and again the the right hand side converges in probability to zero by (3.18)
proving (3.15).

The statement about contiguity is proved as follows. Define

Zn = exp
(
ln(θ0 + n−1/2δn)− ln(θ0)

)

where δn is a bounded sequence. One way to prove contiguity is to show that
this sequence is uniformly integrable under Pn,θ0 .

First assume δn → δ. Then (3.15) shows that

Zn = exp
(
〈δn, Sn〉 − 1

2 〈δn,Kδn〉
)

+ op(1)

so Zn
L−→ Z, where

Z = exp
(
〈δ, S〉 − 1

2 〈δ,Kδ〉
)

and S ∼ N (0,K).

Now we use a fact about uniform integrability (Billingsley 1968, Theo-

rem 5.4) if Zn
L−→ Z and E(Zn) → E(Z) and these variables are nonnegative,

then the sequence Zn is uniformly integrable. Moreover, the “Fatou lemma” for

convergence in distribution (Billingsley 1968, Theorem 5.3) says that Zn
L−→ Z

implies E(Z) ≤ lim infnE(Zn) if the variables are nonnegative. Thus we only
need to show that lim supnE(Zn) ≤ E(Z) in order to establish uniform inte-
grability.

Returning to our definitions of Zn and Z,

Ee〈δ,S〉 = exp
(

1
2 〈δ,Kδ〉

)

(the moment generating function of a multivariate normal). Hence E(Z) = 1.
Now

Zn =

n∏

i=1

fθ0+n−1/2δn
(Xi)

fθ0(Xi)
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and each term has expectation less than or equal to one because

Eθ0

{
fθ0+n−1/2δn

(Xi)

fθ0(Xi)

}
=

∫

fθ0
(x)>0

fθ0+n−1/2δn
(x)

fθ0(x)
fθ0(x) ν(dx)

=

∫

fθ0
(x)>0

fθ0+n−1/2δn
(x) ν(dx)

≤ 1

That proves uniform integrability under the additional assumption δn → δ.
To finish the proof we need a “subsequence principle” for uniform integrability.
Uniform integrability of the sequence Zn is the property that for every ǫ > 0,
there exists and a ∈ R such that

∫

Zn≥a
Zn dPn,θ0 ≤ ǫ.

Assume to get a contradiction that Zn is not uniformly integrable. Then there
exists an ǫ > 0 and a subsequence nk such that

∫

Znk
≥k
Znk

dPnk,θ0 ≥ ǫ.

Clearly, it is not possible to pick out a uniformly integrable subsubsequence.
But we can always pick a subsubsequence such that δnkj

→ δ and we proved

above that Znkj
is uniformly integrable, which is a contradiction. Hence Zn is

uniformly integrable, and we are done.

Corollary 3.6 (The MLE is an ELE). Any estimator θ̂n satisfying the con-
ditions of Theorem 3.1 is an efficient likelihood estimator.

Proof. In the proof of Theorem 3.1 we find (3.12) that

√
n(θ̂n − θ0) = w

(
Bn(θ̂n)

)
Sn + op(1) = K−1Sn + op(1)

where Sn is given by (3.16) and K = I(θ0). The ULAN condition (3.15) implies
the model is LAN, in which case any estimator of the form K−1Sn+ op(1) is an
ELE.

An alternative (deeper) proof would just cite the Hájek convolution theorem.

This corollary has a sort of converse.

Corollary 3.7. Under conditions (1) through (4) of Theorem 3.1, any ELE
satisfies satisfies conditions (5) and (6) of that theorem.

Hence we can also think of the theorem as characterizing the behavior of
ELE’s under the “usual regularity conditions.”
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Proof. Let θ̂n be any ELE. This means

θ̂n = θ0 + I(θ0)
−1 1

n
l̇n(θ0) + op(1)

This is a consistent estimator, hence satisfies condition (5) of Theorem 3.1.
Since Lemma 3.3 applies to any consistent estimator, that is, it does not require

condition (6) of Theorem 3.1, this implies Bn(θ̂n)
P−→ I(θ0). Plugging in θ̂n for

θ in (3.8) gives

1√
n
l̇n(θ̂n)−

1√
n
l̇n(θ0) = −Bn(θ̂n)

√
n(θ̂n − θ0)

= −Bn(θ̂n)I(θ0)−1 l̇n(θ0) + op(1)

and this implies condition (6) of Theorem 3.1.

3.3 One-Step Updates

Recall from Section 2.5 the definition of asymptotic equivalence of estima-
tors: θ̂n and θ∗n are asymptotically equivalent estimators of θ0 if

θ∗n − θ̂n = op(θ̂n − θ0).

Lemma 3.8. Suppose √
n
(
θ̂n − θ0

) L−→ Z, (3.19)

where Z is any random variable satisfying Pr(Z = 0) = 0, and suppose

√
n
(
θ̂n − θ∗n

) P−→ 0. (3.20)

Then θ∗n and θ̂n are asymptotically equivalent.

Proof. For any ǫ > 0 and δ > 0

Pr
(
‖θ̂n − θ∗n‖ ≥ ǫ‖θ̂n − θ0‖

)
≤ Pr

(√
n‖θ̂n − θ∗n‖ > ǫδ

)
+ Pr

(√
n‖θ̂n − θ0‖ ≤ δ

)
.

The first term on the right converges to zero by (3.20) and the second term has
limit superior less than or equal to Pr(Z ≤ δ) by the portmanteau theorem, and
Pr(Z ≤ δ) → 0 as δ → 0 by continuity of probability. Hence the second term
can be made as small as desired for all sufficiently large n, and that proves what
we want.

Theorem 3.9. Under the conditions (1) through (4) of Theorem 3.1, if θ̃n is
an auxiliary estimator such that

√
n(θ̃n− θ0) is bounded in probability, then the

one-step Newton update estimator

θ̄n = θ̃n − w
(
l̈n(θ̃n)

)
l̇n(θ̃n) (3.21)
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is an ELE, where the function w(A) is defined (as in the proof of Theorem 3.1)
to be A−1 if A is nonsingular and the zero matrix otherwise.

If the Fisher information I(θ) is continuous at θ0, then the one-step scoring
update estimator

θ∗n = θ̃n +
1

n
I(θ̃n)

−1 l̇n(θ̃n) (3.22)

is also an ELE.

Proof. Lemma 3.3 applies to any consistent estimator in place of θ̂n; it does not

require condition (6) of Theorem 3.1. Hence it implies Bn(θ̃n)
P−→ I(θ0) and

also Bn(θ̄n)
P−→ I(θ0). Let θ̂n be any ELE. By Corollary 3.7, we may assume

it satisfies the conditions of Theorem 3.1. So all of the formulas in the proof of
that theorem hold.

Plugging in θ̃n for θ in (3.8) gives

1√
n
l̇n(θ̃n)−

1√
n
l̇n(θ0) = −Bn(θ̃n)

√
n(θ̃n − θ0). (3.23)

Subtracting (3.11) from (3.23) gives

1√
n
l̇n(θ̃n) = −Bn(θ̃n)

√
n(θ̃n − θ0) +Bn(θ̂n)

√
n(θ̂n − θ0) + op(1).

Combining with (3.22) gives

θ∗n− θ̂n = (θ̃n− θ̂n)+ I(θ̃n)
−1
[
Bn(θ̂n)(θ̂n − θ0)−Bn(θ̃n)(θ̃n − θ0) + op(n

−1/2)
]

I(θ) is continuous by assumption. Hence I(θ̃n)
−1Bn(θ̂n) converges in probability

to the identity matrix, and so does I(θ̃n)
−1Bn(θ̃n), and this implies

θ∗n − θ̂n = op(1)(θ̂n − θ0) + op(1)(θ̃n − θ0) + op(n
−1/2) = op(n

−1/2)

since both θ̂n − θ0 and θ̃n − θ0 are Op(n
−1/2), the first by Theorem 3.1 and the

second by the assumption of this theorem. Thus
√
n(θ∗n − θ̂n) = op(1) and θ∗n

and θ̂n are asymptotically equivalent by the preceding lemma.
The proof of the asymptotic equivalence of θ̄n and θ̂n is entirely analo-

gous. The only point where a bit more argument is required is in showing that
1
n l̈n(θ̃n)

P−→ −I(θ0), but this follows from Lemma 3.2 by an argument similar
to those in Lemma 3.3 or Lemma 3.5.

What this theorem says is that it is not hard to find ELEs, provided one has
any root-n-consistent estimator, where “root-n-consistent” is a shorthand that
describes and estimator θ̃n satisfying the condition of the theorem

θ̃n = θ0 +Op(n
−1/2).

Such estimators are easy to find in some problems and impossible in others.
Method of moments estimators are always root-n-consistent (even asymptoti-
cally normal) by the delta method, provided only that they are differentiable
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functions of the sample moments used and those sample moments have vari-
ances (that is, population moments exist up to twice the order of any sample
moments used). Method of moments estimators typically aren’t efficient but
they are root-n-consistent. Applying a one-step Newton update or Fisher scor-
ing update to them gives ELEs.

3.4 Good Heuristics and Good Optimization

3.4.1 Asymptotics as Heuristics

What use is asymptotic theory? Why are we interested in what happens
as n goes to infinity? Where is the data set having a sample size that is going
anywhere, much less to infinity? Asymptotic theory describes what happens in
a mythical land “asymptopia” that has no direct connection to the real world.

In the real world, a data set has the sample size it has, and n is not going
anywhere. Asymptotic theory applied to such a problem gives an asymptotic
approximation that may or may not be close enough to the exact sampling
distribution in question to be of any use. No theorem in asymptotics comes with
a “remainder term” that bounds the error of approximation. So theory cannot
tell us how good an asymptotic approximation is. It only says the approximation
would be good if the sample size were very large, perhaps much larger than the
sample size of the data at hand. So, strictly speaking, asymptotics says nothing
at all about any real-world problem.

The accuracy of asymptotic approximations can be checked by computer
simulations. Statisticians have been doing such simulations for decades. Many
simulations show asymptotics working well. Other simulations show it working
badly. The result of all that simulation is inconclusive. Although a few rules of
thumb have been devised for simple situations (like the n > 30 rule for the z-
test of hypotheses about the mean and the “at least 5 expected in each cell” for
chi-square tests in contingency tables), even these rules are known to be wrong
in some situations, and in more complicated situations, there are no rules. You
can’t learn anything about your particular application from simulations in other
applications. Each application requires its own simulation (a. k. a., parametric
bootstrap).

In summary,

Asymptotics are only heuristics. They provide approximations
that may or may not work.

If you are worried about accuracy, you simulate. Theory is no
help.

There are no good or bad theorems. There are only theorems (true state-
ments with proofs) and non-theorems (statements, true, false, or undecided,
without proofs, including those having asserted proofs that are incorrect, i. e.
non-proofs). There are, however, good and bad heuristics. Thus it makes sense
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to ask whether a theorem about asymptotics provides a good or bad heuris-
tic, although the answer may depend on exactly what heuristic we think the
theorem provides.

The one-step update theorem of the preceding section provides a bad heuris-
tic. It seems to say that one should actually do in practice what the theorem
describes, a one-step Newton or Fisher scoring update of a root-n-consistent
starting point. To see why this is a bad idea, we need to look at some optimiza-
tion theory.

3.4.2 Good Optimization Algorithms

Asymptotics of Optimization

This section briefly sketches an entirely different kind of asymptotics from the
kind studied in the rest of the course. So for one section, just forget probability
and statistics. We are maximizing a function f , called the objective function in
optimization theory, and we do so using an algorithm that produces a sequence
xn of iterates converging to a solution x of the problem. Generally we assume
that x is a local maximum of f .

The algorithm is said to converge linearly if

xn+1 − x = O(|xn − x|). (3.24)

Note that this says almost nothing about the performance of the algorithm. By
itself (3.24) doesn’t even imply xn → x. This is the worst type of convergence an
optimization algorithm can have. The algorithm is said to converge superlinearly
if

xn+1 − x = o(|xn − x|) (3.25)

and quadratically if

xn+1 − x = O(|xn − x|2). (3.26)

As we shall see, this is the best type of convergence an optimization algorithm
can be expected to have on any wide class of optimization problems.

Newton

Newton’s algorithm is more commonly called the Newton-Raphson algorithm
by statisticians, but it is so important in optimization and has so many vari-
ants, quasi-Newton, safeguarded Newton, and so forth, that the longer eponym
would be cumbersome. Newton’s algorithm is a method of solving simultaneous
nonlinear equations. Suppose g : R

n → R
n is a differentiable map and we are

to solve the equation g(x) = 0. Write J(x) = ∇g(x). J(x) is an n × n matrix,
generally nonsymmetric, called the Jacobian of the map g at the point x. At
any point xn

g(x) = g(xn) + J(xn)(x− xn) + o(|x− xn|).
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Setting this to zero and ignoring higher order terms, yields

x = xn − J(xn)
−1g(xn)

if J(xn) is nonsingular.
If the one-term Taylor expansion is a perfect approximation, this is the

solution. In general it is not, but we take it to be the next point in an iterative
scheme. Let x1 be any point, and generate a sequence x2, x3, . . . by

xn+1 = xn − J(xn)
−1g(xn).

One hopes the sequence converges to the solution, but in general this is only a
hope. There is usually no guarantee of convergence.

In the context of unconstrained optimization, Newton’s method tries to find
a zero of the gradient of the objective function f . Write g(x) = ∇f(x) and
H(x) = ∇2f(x) for the gradient and Hessian of the objective function, then
H(x) is the Jacobian of g(x), and the Newton update becomes

xn+1 = xn −H(xn)
−1g(xn).

Now the Hessian is a symmetric matrix (unlike a general Jacobian).
Another way to look at Newton’s algorithm applied to optimization is that

it replaces the objective function f with a quadratic model

wn(x) = f(xn) + 〈x− xn, g(xn)〉+ 1
2 〈x− xn,H(xn)(x− xn)〉 (3.27)

The model function wn has no maximum unless H(xn) is negative definite.
It makes no sense to accept a Newton update unless the Hessian is negative
definite.

What’s Good About Newton

When it converges, Newton converges superlinearly, usually quadratically.

Theorem 3.10. Suppose xn is a sequence of Newton iterations for maximizing
an objective function f converging to a local maximum x∗. Suppose g(x) =
∇f(x) and H(x) = ∇2f(x) are continuous in a neighborhood of x∗ and H(x∗)
is strictly negative definite. Then Newton is superlinearly convergent.

Proof. By the assumptions about g(x) and H(x),

g(y) = g(x) +H(x)(y − x) + o(|y − x|) (3.28)

holds for all x and y in some neighborhood of x∗, and

H(y) = H(x∗) + o(1)

A characterization of the Newton update is

0 = g(xn) +H(xn)(xn+1 − xn). (3.29)
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Plugging in Taylor expansions around x∗ for g(xn) and H(xn) in (3.29) gives

0 = g(x∗) +H(x∗)(xn − x∗) + o(|xn − x∗|) + [H(x∗) + o(1)] (xn+1 − xn)
= H(x∗)(xn+1 − x∗) + o(|xn − x∗|) + o(|xn+1 − xn|)

because g(x∗) = 0. Writing εn = xn − x∗ gives

0 = H(x∗)εn+1 + o(|εn|) + o(|εn+1 − εn|)
= H(x∗)εn+1 + o(|εn|) + o(|εn+1|)
= H(x∗)εn+1 + o(|εn|),

where we have used the triangle inequality and the fact that o(|εn+1|) is neg-
ligible compared to H(x∗)εn+1. Since H(x∗) is strictly negative definite, it is
invertible. This proves

εn+1 = o(|εn|),
which is superlinear convergence (3.25).

Quadratic convergence requires a bit more than (3.28).

Theorem 3.11. Suppose xn is a sequence of Newton iterations for a function
f converging to a local maximum x∗. Let g(x) = ∇f(x) and H(x) = ∇2f(x).
Suppose H(x∗) is strictly negative definite, and suppose

g(y) = g(x) +H(x)(y − x) +O(|y − x|2) (3.30)

and
H(y) = H(x) +O(|y − x|) (3.31)

for all x and y in some neighborhood of x∗. Then Newton converges quadrati-
cally.

Equation (3.31) is referred to as a Lipschitz condition. Equation (3.30)
is similar, but not usually referred to by that terminology. Both would be
implied by Taylor’s theorem with remainder if third derivatives of f exist and
are continuous in some neighborhood of x∗.

Proof. A characterization of the Newton update is

0 = g(xn) +H(xn)(xn+1 − xn).

Using (3.30) and (3.31) to expand around x∗ gives

0 = g(x∗) +H(x∗)(xn − x∗) +O(|xn − x∗|2)
+ [H(x∗) +O(|xn − x∗|)] (xn+1 − xn)

Since x∗ is a local min, g(x∗) = 0. Thus, writing εn = xn − x∗,

0 = H(x∗)εn+1 +O
(
|εn|2 + |εn| |εn+1 − εn|

)

= H(x∗)εn+1 +O
(
|εn|2 + |εn| |εn+1|

)

= H(x∗)εn+1 +O
(
|εn|2

)
,
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the last equality using Theorem 3.10. Since H(x∗) is invertible, this proves

εn+1 = O
(
|εn|2

)
,

which is quadratic convergence (3.26).

Not only does Newton converge quadratically (under fairly weak regular-
ity conditions). Any algorithm that converges superlinearly is asymptotically
equivalent to Newton.

Theorem 3.12 (Dennis-Moré). Suppose xn → x∗ is a sequence of iterations
of an optimization algorithm converging to a local maximum of f . Let g(x) =
∇f(x) and H(x) = ∇2f(x), and suppose H(x∗) is strictly negative definite.
If the algorithm converges superlinearly, then it is asymptotically equivalent to
Newton, in the sense that

xn+1 − xn = ∆n + o(|∆n|), (3.32)

where
∆n = −H(xn)

−1g(xn)

is the Newton step at xn.

Proof. Write δn = xn+1 − xn for the steps taken by the algorithm, and write
εn = xn − x∗. So εn+1 = δn + εn. The hypothesis of superlinear convergence
is that εn+1 = o(|εn|) or that δn = −εn + o(|εn|). Similarly the superlinear
convergence of Newton asserted by Theorem 3.10 implies ∆n = −εn + o(|εn|),
and this implies δn = ∆n + o(|εn|) and δn = ∆n + o(|∆n|). The latter is
(3.32).

Corollary 3.13. All superlinearly convergent algorithms are asymptotically
equivalent.

Note again that all of the results in this section have nothing to do with
statistical asymptotics. They describe the performance of an optimization al-
gorithm on a fixed objective function.

Safeguarding

In the preceding section we found that Newton or asymptotically equivalent
algorithms such as quasi-Newton (Fletcher 1987, Chapter 3) are the best of
all possible algorithms, asymptotically speaking. When close to convergence,
they are the best one can do. The theorems say nothing at all about their
performance when not close to a solution.

Newton can be really terrible algorithm. It has no guarantee of convergence,
and this is not a merely theoretical problem. There are many practical problems
in which Newton does fail to converge unless started close to a solution. For
this reason, optimization textbooks do not recommend Newton for any prob-
lem. They always recommend some modification of Newton that has better
convergence properties.
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The first property that one should ask of a maximization algorithm is that
each iteration go uphill, that is,

f(xn+1) > f(xn)

where xn is the sequence of iterates and f is the objective function. Any algo-
rithm that doesn’t have this property is exceedingly bad and should never be
used. Newton doesn’t have this property, hence should never be used.

But merely going uphill is a fairly weak property. It is also important that
the algorithm make good progress toward a solution. Consider a problem with
a twice continuously differentiable objective function and hence a quadratic
approximation wn given by (3.27). The Newton update and many similar update
methods are based on this quadratic approximation. Recall that the quadratic
approximation only makes sense when it is strictly concave, that is, when its
Hessian H(xn) is (strictly) negative definite. Moreover, the approximation is
only good in a neighborhood of xn. When x is far from xn, the approximation
may be very bad, and hence should not be used. One way to test whether
we are using the approximation outside the range of its validity is to compare
the predicted increase for a step wn(xn+1) − wn(xn) with the actual increase
f(xn+1) − f(xn). If wn is a good approximation to f at the point xn+1, then
the predicted and actual increase will be very close, and if wn is not a good
approximation we shouldn’t be using it.

This leads to the following idea. Choose a constant 0 < α < 1. The value
is not important, α = 1/2 works fine. Then we impose two requirements on
each iterate. First, we require the quadratic approximation wn to be strictly
concave. Second, we require

f(xn+1)− f(xn) ≥ α[wn(xn+1)− wn(xn)] (3.33)

The first assures that the quadratic model wn has a maximum. The second
assures a certain amount of uphill progress.

If the Newton step satisfies both of these conditions, then we can take it.
Otherwise, we need to do something else in order to have a good algorithm.
This is called “safeguarded” Newton.

What to do when the Newton step doesn’t satisfy these conditions? There
are many possibilities. Here we outline only one that is related to “restricted
step” or Levenberg-Marquardt (Fletcher 1987, Chapter 5). The basic idea is
that if the quadratic approximation wn is only good in some ball B(xn, ǫ), we
should only use it in that ball. Thus we should only use the Newton step if it
makes |xn − x| ≤ ǫ. Otherwise we maximize wn over B(xn, ǫ). The solution
to this restricted problem will occur on the boundary of the ball (if it occurred
in the interior, it would be the Newton step). We find the solution using the
method of Lagrange multipliers, we maximize

wn(x)− λ〈x− xn, x− xn〉 = f(xn) + 〈x− xn, g(xn)〉
+ 1

2 〈x− xn, [H(xn)− λI](x− xn)〉 (3.34)
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where λ is the Lagrange multiplier. This has gradient

g(xn) + [H(xn)− λI](x− xn),

and solution

xn+1 = xn − [H(xn)− λI]−1g(xn). (3.35)

The Lagrange multiplier λ is determined by the requirement |xn+1 − xn| = ǫ.
Generally determining the correct Lagrange multiplier is a bit difficult (Fletcher
1987, pp. 103 ff.), so we won’t go into details. We will just use (3.35) as a
heuristic. Suppose we consider safeguarding steps of the form (3.35) where we
do not bother to choose λ to obtain a fixed step length (we generally don’t know
how to fix the step length anyway). We will just regard λ as a parameter chosen
to get an acceptable update step.

Note that (3.34) is also a quadratic model. Its maximum occurs at xn+1

given by (3.35). Certainly, the Hessian H(xn) − λI is negative definite if we
choose λ large enough. Also note that as λ→∞

xn+1 − xn = −[H(xn)− λI]−1g(xn)

= λ−1g(xn) + o(λ−1)

and hence

fn(xn+1)− fn(xn) = λ−1|g(xn)|2 +O(λ−2).

Thus unless the gradient g(xn) is exactly zero, this type of step goes uphill for
large enough λ. It will also satisfy the sufficient progress condition (3.33) for
large enough λ because wn is close to f when xn+1 is close to xn.

Thus we see that unless the gradient g(xn) is exactly zero, there is a range
of λ values of the form λ0 ≤ λ < ∞ for which steps of the form (3.33) are
good steps. If the gradient is exactly zero, then we are at a local maximum, in
which case the algorithm may terminate because we have a solution, or we are
at a local minimum or a saddle point, in which case we have a problem, but we
expect this to occur so rarely that we will not deal with it.

Safeguarding Maximum Likelihood

We now return to finding ELEs by one-step updates. The question is what
does safeguarding do to the one-step update theorem (Theorem 3.9). The answer
is nothing. The one-step updates described by Theorem 3.9 violate the sufficient
progress condition (3.33) with probability converging to zero. Hence whatever
we do in the way of safeguarding, does not affect the asymptotic properties of
the estimator.

Lemma 3.14. Under the conditions of Theorem 3.9, for 0 < α < 1, the esti-
mators θ̄n and θ̃n defined in that theorem satisfy

ln(θ̄n)− ln(θ̃n) ≥ α[wn(θ̄n)− wn(θ̃n)] ≥ 0
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with probability converging to one, where

wn(θ) = ln(θ̃n) +
〈
l̇n(θ̃n), θ − θ̃n

〉
+

1

2

〈
θ − θ̃n, l̈n(θ̃n)(θ − θ̃n)

〉
,

and the estimators θ∗n and θ̃n defined in that theorem satisfy the analogous equa-
tions with θ∗n replacing θ̄n and −nI(θ̃n) replacing l̈n(θ̃n).

Proof. As in the proof of Theorem 3.9 we will just do the Fisher scoring case,
the Newton case being very similar. In this case the quadratic model is

wn(θ) = ln(θ̃n) +
〈
l̇n(θ̃n), θ − θ̃n

〉
− n

2

〈
θ − θ̃n, I(θ̃n)(θ − θ̃n)

〉

and the predicted increase is

wn(θ
∗
n)− wn(θ̃n) =

1

2n

〈
l̇n(θ̃n), I(θ̃n)

−1 l̇n(θ̃n)
〉

this is nonnegative with probability converging to one because I(θ0) is positive
definite, I(θ) is assumed continuous at θ0, and θ̃n is consistent.

Using a two-term Taylor series with remainder expanded about θ̃n, we see
that the actual increase is

ln(θ
∗
n)− ln(θ̃n) =

〈
l̇n(θ̃n), θ

∗
n − θ̃n

〉

+

∫ 1

0

〈
θ∗n − θ̃n, l̈n

(
θ̃n + s(θ∗n − θ̃n)

)
(θ∗n − θ̃n)

〉
(1− s) ds

= wn(θ
∗
n)− wn(θ̃n)

+
1

2n

〈
l̇n(θ̃n), I(θ̃n)

−1Dn(θ̃n)I(θ̃n)
−1 l̇n(θ̃n)

〉

where

Dn(θ̃n) = I(θ̃n) +
2

n

∫ 1

0

l̈n
(
θ̃n + s(θ∗n − θ̃n)

)
(1− s) ds

and hence

∥∥∥Dn(θ̃n)
∥∥∥
∞
≤
∥∥∥I(θ̃n)−K

∥∥∥
∞

+ 2

∫ 1

0

∥∥∥∥K +
1

n
l̈n
(
θ̃n + s(θ∗n − θ̃n)

)∥∥∥∥
∞

(1− s) ds

where, as usual, K = I(θ0). The first term on the right converges in probability
to zero by the root-n-consistency of θ̃n. We claim the second term also converges
in probability to zero because the norm term in the integrand converges in
probability to zero. This is shown as follows. For any ǫ > 0 there exists an
η > 0 such that

Pr{√n|θ̃n − θ0| ≤ η and
√
n|θ∗n − θ0| ≤ η} ≥ 1− ǫ
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by the assumed root-n-consistency of θ̃n and θ∗n. Hence for any M > 0

Pr

{∥∥∥∥K +
1

n
l̈n
(
θ̃n + s(θ∗n − θ̃n)

)∥∥∥∥
∞
> M

}

≤ ǫ+ Pr





sup
|δ|≤η

θ0+n
−1/2δ∈Θ

∥∥∥∥
1

n
l̈n(θ0 + n−1/2δ) +K

∥∥∥∥
∞
>
M

2





and the second term on the right converges in probability to zero by (3.18).
Thus we see that

ln(θ
∗
n)− ln(θ̃n) = wn(θ

∗
n)− wn(θ̃n) + op

(
wn(θ

∗
n)− wn(θ̃n)

)

which implies what was to be proved.

Thus we see that there is no reason not to use safeguarding in producing an
ELE from a root-n-consistent starting point. The safeguarding will actually be
used with probability that goes to zero as n goes to infinity and hence does not
affect the asymptotic properties of the estimator.

If it has no effect, why use it? It has no effect in asymptopia. It does have
a very important effect in the real world, where n isn’t going anywhere.

We also note that there is no reason to stop with one iteration of Newton
or Fisher scoring. Applying the theorem twice shows that two-step updates of
root-n-consistent starting points are ELEs. Further iteration shows that m-step
updates for any fixed m are ELEs. Thus there is no reason not to do as many
iterations as we please.

3.5 When the Model is Wrong

What happens to maximum likelihood when the model is wrong? Suppose
our model is { fθ : θ ∈ Θ } and the true distribution of the data has density g
that is not equal to any fθ. Let’s review the theory of Section 17 in Ferguson and
see what changes. Let U(x, θ) = log fθ(x)− log g(x). Then Jensen’s inequality
still implies that

λ(θ) = EU(X, θ) =

∫
log

fθ(x)

g(x)
g(x)ν(dx) ≤ 0,

but we no longer know that λ achieves its maximum at θ0 (there is no θ0!) We
are forced to add the analogous property as an additional assumption. Then
the whole rest of the theory goes through.

Theorem 3.15. Let X1, X2, be i. i. d. with true density g. If

1. Θ is compact.

2. fθ(x) is upper semicontinuous in θ for each x.
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3. For every θ ∈ Θ there exists a ρ0 > 0 such that

ϕ(x, θ, ρ) = sup
θ′∈Θ

|θ′−θ|<ρ

U(x, θ′)

is a measurable function of x for 0 < ρ ≤ ρ0,

4. Eϕ(X, θ, ρ0) <∞,

5. there is a θ∗ ∈ Θ such that

λ(θ) < λ(θ∗), θ ∈ Θ, θ 6= θ∗

then, for any sequence of maximum likelihood estimates θ̂n

θ̂n
a. s.−−−→ θ∗.

As was mentioned in class the densities fθ may be defective. We require∫
fθ dν ≤ 1, but allow strict inequality. All that is required is

∫
g dν = 1. Then

the Jensen’s inequality argument goes through.

3.6 Estimating Equations

Doing maximum likelihood when the model is wrong is a special case of
the notion of “estimating equations.” Often when people claim to be doing
maximum likelihood, they do not maximize anything but merely find a point θ
such that ∇ln(θ) = 0. In fact our Theorem 3.1 only required this.

Let us generalize this to the following. We are given a vector-valued function
Ψ(x, θ). If the parameter space Θ is a subset of R

d, then Ψ(x, θ) takes values
in R

d. Given i. i. d. data X1, . . ., Xn, we form

un(θ) =
n∑

i=1

Ψ(Xi, θ).

Then un is a random function from R
d to R

d. Since un represents d equations
in the d unknown parameters we may be able to solve un(θ) = 0 under certain

conditions. The solution will be our estimator θ̂n. (“Estimator of what?” the
alert reader should now ask.)

Since the functions Ψi(x, θ) now have no connection whatsoever with the

probability densities in the model, it does no good to say that θ̂n is an estimator
of θ0. As in the preceding section, there is no θ0. However, suppose there is a
point θ∗ ∈ Θ such that

EΨ(Xi, θ
∗) = 0 (3.36)

The “E” here refers to the true state of nature. We don’t say “Eθ0” because
the “parameter space” Θ may have nothing to do with the distributions in
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the model. When (3.36) holds we say that Ψ(Xi, θ) are unbiased estimating

equations for θ∗. We may expect θ̂n to converge to θ∗, because

1
nun(θ̂n) = 0

is an “empirical” expectation that mimics (3.36).
This is in fact just what we have done in Theorem 3.1. With Ψ as defined

there, un = l̇n. EΨ(Xi, θ0) = 0 by the first Bartlett identity. So l̇n are unbiased
estimating equations for θ0 and indeed under the “usual regularity conditions”
we get the asymptotic normality result (3.4).

Now we want to drop the connection between Ψ(x, θ) and the likelihood
function. We let Ψ be an arbitrary function, and impose only enough regularity
conditions to let an argument analogous to the proof of Theorem 3.1 go through.

The first problem is that the Bartlett identities are gone. The first Bartlett
identity (3.2a) is replaced by the requirement (3.36) that the estimating equa-
tions be unbiased. The second Bartlett identity has no analog. In fact Ψ̇(x, θ)
will no longer be a symmetric matrix, since it is no longer a matrix of second
derivatives of a scalar function, but a matrix of first derivatives of a vector
function. The analogs of the two sides of the second Bartlett identity (3.2b) are

Σ = Var Ψ(Xi, θ
∗) (3.37a)

J = EΨ̇(Xi, θ
∗) (3.37b)

Being a covariance matrix, Σ is symmetric and positive semidefinite, but J need
not even be symmetric. There is no possibility of equality between these two
matrices. For this reason we have not put a minus sign in (3.37b) as occurs
in (3.2b). There would be no point. We see now, that in the usual theory of
maximum likelihood, the Fisher information I(θ0) plays two roles, that of Σ
and that of −J . We can carry through the argument as long as we are careful
to separate these two roles.

Theorem 3.16. Let X1, X2, . . . be i. i. d., and let Ψ(x, θ) be estimating equa-
tions. Suppose

(1) Θ is a subset of R
d and a neighborhood of θ∗ in R

d,

(2) partial derivatives of Ψ(x, θ) with respect to θ exist and are continuous on
the interior of Θ for all x,

(3) the estimating equations are unbiased (3.36), the expectations in (3.37a)
and (3.37b) exist, Σ and J are nonsingular,

(4) there exists a function K(x) such that EK(Xi) <∞ and a ρ > 0 such that
Sρ = { θ : |θ − θ∗| ≤ ρ } is contained in Θ and

∥∥∥Ψ̇(x, θ)
∥∥∥
∞
≤ K(x), for all x and all θ ∈ Sρ,

(5) θ̂n
P−→ θ∗,
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(6) and
1√
n
u̇n(θ̂n)

P−→ 0.

Then √
n
(
θ̂n − θ∗

)
L−→ N

(
0, J−1Σ(JT )−1

)
. (3.38)

The proof is the same, word for word, as that of Theorem 3.1 with l̇n and l̈n
replaced by un and u̇n, respectively, θ0 is replaced by θ∗, and I(θ0) replaced by
−J everywhere except in (3.10), where it is replaced by Σ, all the way down to
the last sentence, which is changed to: Now Slutsky’s theorem and (3.10) [with
Σ replacing I(θ0)] imply (3.13) [with −J replacing I(θ0)], that is

√
n(θ̂n − θ∗) L−→ −J−1Z

where Z ∼ N (0,Σ), and this implies (3.38).

3.6.1 The Sandwich Estimator

If we can do the integrals in (3.37a) and (3.37b) we may use those integrals

with θ̂n plugged in for θ∗ to estimate Σ and J . Often we cannot do the inte-
grals or do not wish to specify a “true” distribution of the data to be used in
computing these expectations. Then we must estimate Σ and J . The natural
estimate of Σ is

Σ̂n =
1

n

n∑

i=1

Ψ(Xi, θ̂n)
2

and the natural estimate of J is

Ĵn =
1

n

n∑

i=1

Ψ̇(Xi, θ̂n)

and our natural estimate of J−1Σ(JT )−1 is Ĵ−1
n Σ̂n(Ĵ

T
n )−1. This is often referred

to as the “sandwich estimator.”
Use of the sandwich estimator results in a procedure that is partially non-

parametric. The estimating equations are parametric, but the variance esti-
mate is nonparametric. The only model assumptions in Theorem 3.16 are that
Ψ(X, θ∗) has finite variance, Ψ̇(X, θ∗) has finite expectation, and K(X) has
finite expectation. The class of distributions that satisfy these conditions is
indeed nonparametric, too large to be continuously indexed by a subset of a
finite-dimensional vector space.



Chapter 4

Likelihood Ratio and

Related Tests

4.1 The Wilks Theorem

In this section we take a first pass at the theorem that twice the log likelihood
ratio is asymptotically chi-squared. We will take the following as our basic
“regularity condition.”

Definition 4.1 (ULAN at rate αn). A sequence of statistical models

Pn = {Pn,θ : θ ∈ Θ }

is said to satisfy the ULAN conditions at rate αn, where αn is a sequence of
positive numbers converging to zero, if

(a) Θ is a neighborhood of θ0 in R
d.

(b) For any bounded sequence δn in R
d, the sequences Pn,θ0 and Pn,θ0+αnδn

are
contiguous.

(c) There exist sequences of random vectors Sn and random almost surely pos-
itive definite matrices Kn defined on the sample space of Pn such that Kn

converges in probability to a nonrandom positive definite matrix K and for
every compact set C in R

d

sup
δ∈C

θ0+αnδ∈Θ

∣∣ln(θ0 + αnδ, θ0)−
[
〈δ, Sn〉 − 1

2 〈δ,Knδ〉
]∣∣ P−→ 0 (4.1)

under Pn,θ0 , where ln(θ, θ0) is the log likelihood ratio comparing θ and θ0.

We know from Lemma 3.5 that under the “usual regularity conditions” for
the i. i. d. case the model is ULAN at rate αn = n−1/2. The specific rate
plays no role in what follows, so we gain a little bit of generality by allowing an
arbitrary rate sequence αn.
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Theorem 4.1. Suppose the conditions of Definition 4.1. Let θ̂n be an ELE for
the full model and let θ∗n be an ELE for the restricted model that fixes the first
r components of θ, then

Ln = 2
(
ln(θ̂n)− ln(θ∗n)

)
. (4.2)

has an asymptotic chi2(r) distribution, where ln(θ) is any log likelihood for the
problem.

The last phrase of the theorem refers to the fact that we do not know θ0,
hence do not know ln(θ, θ0). If we can write ln(θ, θ0) as a difference ln(θ)−ln(θ0)
then the ln(θ0) part will cancel in calculating the log likelihood ratio.

Of course the ELE for the large model is

θ̂n = θ0 + αnK
−1
n Sn + op(1).

For the small model we have to first convince ourselves that this model is ULAN
and determine what the ELE is in that model. It will help if we adopt the
“partitioned” matrix and vector notation, writing vectors as

δ =

(
δ1
δ2

)

and

K =

(
K11 K12

K21 K22

)

and so forth. Here we want the top part of the partition to have r rows and the
bottom part to have d − r rows (and similarly for columns of matrices). The
small model fixes θ1, the first part of the partition, so the corresponding part
of δ, that is, δ1 is zero. Thus we have

〈Sn, δ〉 = 〈Sn,2, δ2〉
〈δKn, δ〉 = 〈δ2,Kn,22δ2〉

Thus it is easy to see that the ULAN property transfers from the larger to the
smaller model and that

θ∗n =

(
0
θ∗n,2

)

where

θ∗n,2 = θ0,2 + αnK
−1
n,22Sn,2 + op(1).

Hence

θ∗n = θ0 + αnHnSn + op(1). (4.3)

where

Hn =

(
0 0
0 K−1

n,22

)
(4.4)
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Proof. The ULAN condition and Corollary 2.5 imply that

δ̂n = α−1
n

(
θ̂n − θ0

)

is bounded in probability, hence for any ǫ1 > 0 there is a compact set C such
that Pr(δ̂n /∈ C) ≤ ǫ1 for all n. By the ULAN condition for any ǫ2 > 0 and
ǫ3 > 0 there is an N2 such that

Pr


 sup

δ∈C
θ0+αnδ∈Θ

∣∣ln(θ0 + αnδ, θ0)−
[
〈δ, Sn〉 − 1

2 〈δ,Knδ〉
]∣∣ > ǫ3


 ≤ ǫ2

for all n ≥ N2. Hence

Pr
(∣∣∣ln(θ̂n, θ0)−

[
〈δ̂n, Sn〉 − 1

2 〈δ̂n,Knδ̂n〉
]∣∣∣ > ǫ3

)
≤ ǫ1 + ǫ2

for all n ≥ N2, and this implies that

ln(θ̂n, θ0)−
(
〈δ̂n, Sn〉 − 1

2 〈δ̂n,Knδ̂n〉
)

converges in probability to zero, that is,

ln(θ̂n, θ0) = 〈δ̂n, Sn〉 − 1
2 〈δ̂n,Knδ̂n〉+ op(1)

= 〈Sn,K−1
n Sn〉 − 1

2 〈K−1
n Sn,KnK

−1
n Sn〉+ op(1)

= 1
2 〈Sn,K−1

n Sn〉+ op(1)

(4.5)

Similarly

ln(θ
∗
n, θ0) = 〈Sn,HnSn〉 − 1

2 〈Sn,HnKnHnSn〉+ op(1) (4.6)

where Hn is given by (4.4). Subtracting (4.6) from (4.5) and multiplying by
two gives

2
(
ln(θ̂n)− ln(θ∗n)

)
= 〈Sn, AnSn〉+ op(1) (4.7)

where
An = K−1

n − 2Hn +HnKnHn (4.8)

Thus by the assumptions in the ULAN condition and Corollary 2.5 (4.7) con-
verges in law to 〈S,AS〉, where

S ∼ N (0,K)

A = K−1 − 2H +HKH

and

H =

(
0 0
0 K−1

22

)
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It only remains to be shown that this has the chi-square distribution asserted
by the theorem.

First note that

HK =

(
0 0
0 K−1

22

)(
K11 K12

K21 K−1
22

)
=

(
0 0

K−1
22 K21 I

)
(4.9)

where I denotes the identity matrix, so

HKH =

(
0 0

K−1
22 K21 I

)(
0 0
0 K−1

22

)
=

(
0 0
0 K−1

22

)
= H (4.10)

Hence A = K−1 − H. Now we want to use the lemma about the chi-square
distribution that is Exercise 2 of Section 9 in Ferguson: 〈X,PX〉 is chi2(r) if
X ∼ N (0, I) and P is a projection of rank r. To put what we have in this form
define X = K−1/2S and

P = K1/2AK1/2 = I −K1/2HK1/2 (4.11)

so 〈X,PX〉 = 〈S,AS〉 and X is as specified in the lemma. Thus it only remains
to be proved that (4.11) is a projection of rank r. Since HKH = H by (4.10),

P 2 = I − 2K1/2HK1/2 +K1/2HK1/2K1/2HK1/2

= I − 2K1/2HK1/2 +K1/2HKHK1/2

= I − 2K1/2HK1/2 +K1/2HK1/2

= P

and P is a projection. Hence all its eigenvalues are zero or one and the trace
calculates the rank. Now

tr(P ) = tr(I)− tr(K1/2HK1/2)

= tr(I)− tr(HK)

and the trace of the identity is d and the matrix HK given in (4.9) is clearly
the trace of the identity matrix in the 2-2 block of the partition, which is d− r.
Thus the rank of P is d− (d− r) = r, and we are done.

4.2 The Rao Test

Theorem 4.2. Suppose conditions 1 through 4 of Theorem 3.1 (the “usual reg-
ularity conditions” for maximum likelihood) and suppose the Fisher information

I(θ) is continuous at θ0. Let θ̂n be an ELE for the full model and let θ∗n be an
ELE for the restricted model that fixes the first r components of θ, then

Rn =
1

n
〈l̇n(θ∗n), I(θ∗n)−1 l̇n(θ

∗
n)〉 (4.12)

is asymptotically equivalent to the likelihood ratio test statistic (4.2).
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Proof. The “usual regularity conditions” imply those of Lemma 3.5 hence equa-
tion (3.17) of that lemma holds with Sn and Kn as in the lemma. This implies
by an argument similar to the beginning of the proof of the Wilks theorem

1√
n
l̇n(θ

∗
n) = Sn +Kn

√
n(θ∗n − θ0) + op(1)

and by consistency of θ∗n and the assumed continuity of I(θ)

I(θ∗n)
−1 = K−1

n + op(1)

Since the model is ULAN by Lemma 3.5 the analysis preceding the proof of the
Wilks theorem holds with αn = n−1/2 and from (4.3)

√
n(θ∗n − θ0) = HnSn + op(1)

where Hn is given by (4.4). Hence

1√
n
l̇n(θ

∗
n) = (I −KnHn)Sn + op(1)

and
Rn = 〈Sn, AnSn〉+ op(1)

where An is given by (4.8). Comparison with (4.7) shows the two test statistics
are asymptotically equivalent, so we are done.

The test using the statistic Rn called the Rao test or the score test or the
Lagrange multiplier test. An important point about the Rao test statistic is
that, unlike the likelihood ratio test statistic, it only depends on the MLE for
the null hypothesis θ∗n. The MLE for the alternative hypothesis θ̂n does not
have to be computed. This allows us to do a test asymptotically equivalent to
the likelihood ratio test when only θ∗n is computable.

4.3 The Wald Test

The Wald test is complementary to the Rao test. The Rao test depends only
on the MLE for the null hypothesis; the Wald test depends only on the MLE
for the alternative hypothesis θ̂n.

Theorem 4.3. Suppose the conditions of Definition 4.1 with αn = n−1/2. Let
θ̂n be an ELE for the full model. Let G be the constant r× d matrix of the form
G =

(
I 0

)
where I is the r × r identity matrix. Then

Wn = n
〈
G(θ̂n − θ0), (GK−1

n G′)−1G(θ̂n − θ0)
〉

(4.13)

is asymptotically equivalent to the likelihood ratio test statistic (4.2) or the Rao
test statistic (4.12).
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The proof is left as an exercise. Here we will just explain a bit more fully
what the test statistic is and give a simple proof that it is asymptotically chi2(r)
distributed.

Although the theorem does not explicitly mention this, the intended null hy-
pothesis is obviously the same as for the Wilks and Rao theorems, that is, it fixes
the first r components of the parameter θ. Otherwise why use an asymptotically
equivalent test statistic?

The matrix G “picks off” these components; Gθ̂n is just the vector of length
r that is the first r components of the MLE. These are fixed under the null
hypothesis H0, so their value in under the alternative is a sensible test statistic.
Note also that although θ0 is unknown even under the H0 (because we have a
compound null hypothesis), Gθ0 is known, being the first r components, which

are fixed under H0. Thus despite first appearances G(θ̂n − θ0) is a statistic
under H0

We know from Corollary 2.5 that

√
n
(
θ̂n − θ0

) L−→ Z

where Z ∼ N (0,K−1). Then by the delta method

√
nG
(
θ̂n − θ0

) L−→ GZ

Write X = GZ, then X ∼ N (0, GK−1G′). The variance GK−1G′ here is a
nonsingular r × r matrix. Then from Lemma 1 of Section 9 in Ferguson

X ′(GK−1G′)−1
X = Z ′G′(GK−1G′)−1

GZ

has a chi2(r) distribution. And this is clearly the limiting distribution of the
Wald test statistic Wn given by (4.13).
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Some Differential Geometry

5.1 Morphisms

A function g : U → R
d where U is an open set in R

k is said to be Cp for
some positive integer p if it is p times continuously differentiable on U . We also
say that g is C0 if it is merely continuous and C∞ if it is infinitely differentiable.
We also use the terms map and morphism as synonyms for “function.” So “Cp

morphism” means a function that has p continuous derivatives.
A map g : U → V , where U and V are open subsets of R

d, is called a Cp

isomorphism if g is invertible and both g and g−1 are Cp morphisms. Such a
map is called a local Cp isomorphism at a point x if U is a neighborhood of x.

An important tool in differential geometry (and many other areas of math-
ematics) is the inverse function theorem.

Theorem 5.1 (Inverse Functions). If g : U → V , where U and V are open
subsets of R

d, is a Cp morphism with p ≥ 1 and ∇g(x) is invertible at some
point x ∈ U , then there exists an open neighborhood W of x in U such that the
restriction of g to W is a Cp isomorphism, and

∇g−1(y) = [∇g(x)]−1 (5.1)

where y = g(x).

No proof is given here. The statement we give here is taken from Lang
(1993, Theorem 1.2 of Chapter XIV). Higher derivatives of g−1 are obtained by
applying the chain rule and the product rule to the formula for the derivative
of an matrix inverse.

Thus in order to check that g is a Cp isomorphism it is only necessary to
check

• g has an inverse function,

• g is Cp, and

63



64 CHAPTER 5. SOME DIFFERENTIAL GEOMETRY

• ∇g(x) is nonsingular at each x.

Then the fact that g−1 is p times continuously differentiable follows from the
inverse mapping theorem.

A Cp isomorphism provides a global change of coordinates for R
d. A local

Cp isomorphism provides a local change of coordinates.

5.2 Manifolds

We begin with the definition of “manifold” that we will use.1

Definition 5.1 (Manifold). A subset M of R
d is said to be a k-dimensional

Cp manifold if for every x ∈ M there is a local Cp isomorphism g : U → V at
x such that

M ∩ U = g−1(S ∩ V )

for some k-dimensional subspace S of R
d.

The idea of the definition is that M may be a curved subset of R
d but at

every point x there is a local change of coordinates that makes it flat, V ∩ S
being an open subset of the subspace S.

It may not be possible to find a global change of coordinates that does the
same job. The surface of a sphere in R

3 is a 2-dimensional manifold. At every
point of this manifold there is a local change of coordinates that flattens it out,
but there can be no global change of coordinates that does the same job, because
the sphere is a compact set with no boundary, and no compact set in R

2 has
that property.

A function g : X → Y between topological spaces is a homeomorphism (also
called topological isomorphism or C0 isomorphism) if it is invertible and both
g and g−1 are continuous. By definition of continuity, this means that both g
and g−1 map open sets to open sets.

If X is any topological space and Y is a subset of X, then the standard way
to define a topology for Y is to declare that a set is open in Y if and only if it
is of the form Y ∩W for some open set W in X. Sets that are open in Y are
typically not open in X. Sometimes the terminology “relatively open” is used
to indicate “open in Y ” as opposed to “open in X.” When the topology of Y is
defined this way we say Y is a topological subspace of X (as opposed to being
just a subset of X) and the topology of Y is the subspace topology.

Using this definition we see that M is a topological subspace of R
d, and a

subset of M is (relatively) open in M if and only if it is of the form M ∩W for

1This is less general than the abstract definition found in differential geometry books in
two respects. First, what we are really definining is a k-dimensional submanifold of R

d. The
definition of k-dimensional manifold in differential geometry books defines it as an intrinsic
object with no reference to an enclosing space R

d. However this makes the description of the
tangent space much more abstract and harder to visualize. Thus our approach. Second, what
we describe is sometimes called a manifold “without boundary” in contrast to a more general
notion of a manifold “with boundary” that models curved subsets of R

d with “edges.”
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some open set W in R
d. Furthermore, if g is a local isomorphism having the

properties asserted in the definition of “manifold” then g is a homeomorphism
from U to V , and this implies that its restriction to M ∩U is a homeomorphism
from M ∩ U to S ∩ V . To see this consider a relatively open set in M ∩ U ,
which is necessarily of the form M ∩U ∩W for some set W open in R

d. This is
mapped by g to S∩V ∩g(W ), which is relatively open in S∩V because g maps
open sets to open sets so g(W ) is open. The argument about g−1 is exactly the
same.

It is always possible to choose the Cp isomorphism g in the definition of
“manifold” so that the k-dimensional subspace S is R

k. Then if we write

g(x) =
(
g1(x), . . . , gd(x)

)
,

then

x←→
(
g1(x), . . . , gk(x)

)

is a one-to-one correspondence between the relatively open set M ∩ U of the
manifold and the relatively open set R

k ∩ V of R
k, and this correspondence is

a homeomorphism. Thus a manifold is topologically equivalent to R
k locally.

Lemma 5.2 (Change of Local Coordinates). If M is a k-dimensional Cp

manifold in R
d and g : U → V , where U and V are open in R

d, is a local Cp

isomorphism at x that maps M∩U bijectively onto R
k∩V and h1 : R

k∩V → R
k

is another local Cp isomorphism, define a map h : V → R
d by

h(y1, y2) =
(
h1(y1), y2),

then there exists an open set U1 in R
d such that x ∈ U1 ⊂ U and the restriction

of h ◦ g to U1 is a local Cp isomorphism at x that maps M ∩U1 bijectively onto
R
k ∩W1, where W1 = h[g(M ∩ U1)].

Proof. Since

∇h(y1, y2) =

(
∇h1(y1) 0

0 I

)

it has full rank and the inverse function theorem says there is an open set V1

in R
d such that the restriction of h to V1 is a local Cp isomorphism. Now

let U1 = g−1(V1) and W1 = h(V1). Then the restriction of h ◦ g to U1 is a
Cp isomorphism because the composition of Cp isomorphisms is another Cp

isomorphism by the chain rule, and it maps M ∩ U1 bijectively onto R
k ∩W1

by construction.

Note that in the lemma g maps d-vectors to d-vectors and h1 maps k-vectors
to k-vectors. The lemma says that once we have found one set of local coordi-
nates any Cp isomorphism h1 of the local coordinates produces another set of
local coordinates.
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5.3 Constructing Manifolds

There are two ways in which manifolds naturally arise, either as the solution
set of a constraint function or as the image of a mapping. To be a bit more
precise, we say h : U → R

d−k with U an open set in R
d and 0 < k < d is a

“constraint function” if we use it to define the set

M = {x ∈ U : h(x) = 0 }

Under certain conditions, explained below, M is a k-dimensional manifold. The
other method uses a function h : U → R

d with U an open set in R
k, then the

set
M = {h(x) : x ∈ U }

is again a k-dimensional manifold if certain conditions are satisfied.

Lemma 5.3 (Construction of Manifolds I). Suppose h : U → R
d−k, with

U an open set in R
k and 0 < k < d, is a Cp mapping, p ≥ 1, such that ∇h(x)

is surjective for every x ∈ U , then the set

M = {x ∈ U : h(x) = 0 }

is either empty or a k-dimensional Cp manifold.

In matrix terminology, the hypothesis that ∇h(x) is surjective is the same
as saying it has full rank.

Proof. Fix x ∈ M such that h(x) = 0 (if there is no such x the theorem is
trivially true).

Write R
d = V1+V2, where V1 is the null space of∇h(x) and V2 is any comple-

mentary subspace, so that any x ∈ R
d has a unique representation x = x1 + x2

with xi ∈ Vi. This correspondence x ↔ (x1, x2) sets up a linear isomorphism
between R

d and V1 × V2. The dimension of V1 is k and the dimension of V2 is
d− k. Consider the map

g : (x1, x2) 7→
(
x1, h(x)

)

The derivative of this map can be written as the partitioned matrix

∇g(x) =

(
I 0
0 ∇2h(x)

)

where ∇2h(x) denotes the partial derivative of h with respect to x2, the partial
derivative with respect to x1 being zero by definition of “null space.” Since

∇h(x) =
(
0 ∇2h(x)

)

has rank k by the hypothesis of the theorem, ∇2h(x) has rank k and is invertible.
Thus ∇g(x) is also invertible, hence g is a local Cp isomorphism by the inverse
mapping theorem. By definition, (x1, x2) ∈ M if and only g(x1, x2) = (x1, 0),
thus g provides a one-to-one mapping of a neighborhood of x in M to a neigh-
borhood of 0 in V1. Hence M is a d− k dimensional Cp manifold.
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Lemma 5.4 (Construction of Manifolds II). Suppose h : U → R
d, with U

a nonempty open set in R
k and 0 < k < d, is a Cp mapping, p ≥ 1, such that

∇h(x) is injective for every x ∈ U , then the set

M = {h(x) : x ∈ U }

is a k-dimensional Cp manifold provided that h is a homeomorphism from U to
M .

The additional condition that h is a homeomorphism rules out the kind of
nonsense shown in the figure. The arrow means the vertical part of the curve

?

extends to the intersection but does not contain the point of intersection. This
curve behaves like a 1-dimensional manifold locally but not globally.

Proof. Let V1 be the range of ∇h(x) and V2 any complementary subspace, so
that any y ∈ R

d has a unique representation y = y1 + y2 with yi ∈ Vi. This
correspondence y ↔ (y1, y2) sets up a linear isomorphism between R

d and V1 ×
V2. The dimension of V1 is k and the dimension of V2 is d − k. Consider the
map

q : U × V2 → V1 × V2

defined by
q(x, y2) 7→

(
h1(x), h2(x)

)
+ (0, y2).

Fix y0 ∈M . Then y0 = h(x0) for some x0 ∈ U . Note that q(x0, 0) = y0 and

∇q(x0, 0) =

(
∇h1(x0) 0
∇h2(x0) I

)

Since

∇h(x0) =

(
∇h1(x0)
∇h2(x0)

)

maps onto the first component by the definition of V1, it must be that ∇h2(x) =
0 and hence ∇h1(x) has full rank, from which it follows that ∇q(x, 0) also has
full rank. Hence by the inverse function theorem there exists an open set W in
U ×V2 containing (x0, 0) such that q restricted to W is a local Cp isomorphism
at (x0, 0). Let q̄ denote this restriction. Then q̄−1 is a Cp isomorphism from
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q(W ) to W . So q̄ is a local Cp isomorphism at (x0, 0) and q̄−1 is a local Cp

isomorphism at y0.
Note that it is q̄−1 that is analogous to the g in the definition of “manifold,”

from which we see that the only thing that remains to be shown is that

M ∩ q(W ) = q̄(U ∩W ) = h(U ∩W )

or, if that does not hold, that we can make it hold by shrinking the set W , that
is, there exists a open set W1 in R

d that is a neighborhood of (x0, 0) such that

M ∩ q(W1) = h(U ∩W1). (5.2)

Now we use the condition that h−1 : M → U is a topological isomorphism, this
means that there is an open subset M1 in M that is a neighborhood of y0 such
that x ∈ U ∩W whenever y ∈M1. By definition of “subspace topology” M1 is
necessarily of the form M ∩ Z1 for some open set Z1 in R

d, that is,

M ∩ Z1 ⊂ h(U ∩W )

and this implies

M ∩ Z1 = h
(
U ∩ q−1(Z1)

)

and since q
(
q−1(Z1)

)
= Z1 we have (5.2) with W1 = q−1(Z1).

5.4 Tangent Spaces

If M is a k-dimensional Cp manifold (p ≥ 1) in R
d and x ∈M , the tangent

space at x, denoted TM (x) is the vector subspace of R
d consisting of all vectors

v of the following form: there exists a sequence of points xn ∈M and a sequence
of scalars τn decreasing to zero such that

xn − x
τn

→ v.

The definition invites us to think of the tangent space as the set of directions
along which a sequence in M can converge to x.

If we look at the local coordinates provided by a local Cp isomorphism
g : U → V that maps M ∩ U onto S ∩ V where S is a k-dimensional vector
subspace of R

d, we see that

g(xn)− g(x)
τn

→ w,

where w ∈ S. By the rule for the product of limits

‖g(xn)− g(x)‖
‖xn − x‖

· ‖xn − x‖
τn

→ ‖w‖,
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and the first term on the left converges because g is differentiable; hence the
second term on the left also converges, say to c. Then

g(xn)− g(x)
‖xn − x‖

→ ∇g(x)v

by the definition of differentiability. Thus

w = c∇g(x)v,

and, if c > 0 and we write y = g(x),

v = c−1∇g−1(y)w.

Since g maps into a full k-dimensional neighborhood S ∩ V and c can be any
nonnegative real number, it is clear that the set of vectors w that can arise in this
fashion is the entire subspace S. Hence TM (x) is the image of the k-dimensional
vector space S under the linear transformation ∇g−1(y), that is

TM (x) = { g−1(y)w : w ∈ S }.

This shows us that the tangent space is a k-dimensional vector space and even
gives us a formula for calculating it once we have found a local Cp isomorphism
g. But the original definition is a better characterization to use as a definition
because it doesn’t depend on the particular local coordinates chosen and hence
gives an intrinsic characterization of the tangent space.

5.5 Manifolds as Parameter Spaces

Now we want to allow Cp manifolds as parameter spaces. How can we do
that? Up to now we have only allowed subsets of R

d that are neighborhoods
of the true parameter value θ0 as parameter sets. A manifold is (as we have
defined it) a subset of R

d, but in order to be a neighborhood in R
d of one of

its points it would have to be a d-dimensional manifold, which is trivial (just
a complicated way of describing an open set in R

d). So allowing k-dimensional
manifolds in R

d with k < d is something new.
In general, there is no reason why a parameter space has to satisfy the

condition we have up to now imposed. At first, a parameter space is just an
index set Θ in a description of a statistical model F = { fθ : θ ∈ Θ }. In order
to serve as an index set it doesn’t have to have any properties other than being
a set. In fact, we can dispense with the notion of a parameter space entirely
and just say our model F is a family of densities with no further description,
or alternatively we could make F itself the index set with the trivial formula
F = { f : f ∈ F }.

It is only when we start discussing convergence that we need at least a
topology and preferably a metric on the parameter space. But there is still
no reason why we want subspaces of R

d until we get to asymptotic normality.
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Normal distributions live on a finite-dimensional vector spaces. If they are
“nondegenerate,” then they live on the full vector space under consideration
rather than a proper subspace. It was our desire to have the space where the
asymptotic distribution lives be the same vector space R

d as the vector space
containing the parameter set and to have a nondegenerate limit that dictated
our condition that the parameter space be a neighborhood of the true parameter
value in R

d.
Now we drop that condition and replace it with the following

Condition M. The parameter space Θ is a k-dimensional manifold in R
d.

This is a bit less general than our previous condition in the case k = d
because it would require M to be a open set in R

d, whereas before we allowed
any neighborhood of the true parameter value, open or not. But Ferguson
always required an open neighborhood of the true parameter value, so we are
now being as restrictive as he is.2

What happens to all the theory we have developed so far when we allow
this generalization? In one sense, nothing much because we can always choose
local coordinates that map some relatively open neighborhood Θ∩U of the true
parameter value θ0, where U is open in R

d, to an open subset of R
k by a Cp

isomorphism g so that

θ ←→
(
g1(θ), . . . , gk(θ)

)

is a homeomorphism between Θ ∩ U and its image g(Θ ∩ U). If we write Φ =
g(Θ∩U) and denote the restriction of g−1 to Φ by h, then h : Φ→ Θ∩U gives us
a parameterization that satisfies the old condition, that is, Φ is a neighborhood
in R

k of the true parameter value ϕ0 = g(θ0). Hence we can apply all the
asymptotic theory developed so far in the “ϕ coordinates” (assuming the other
regularity conditions are met in these coordinates).

In another sense, something profound happens to the theory, since we are
not really interested in the “ϕ coordinates” but in the original parameterization
“θ coordinates.” What happens there? Suppose we have asymptotic normality
in the “ϕ coordinates” √

n(ϕ̂n − ϕ0)
L−→ Z,

where Z ∼ N (0,K−1) for some invertible k×k matrix K. Well θ = h(ϕ), so we
apply the delta method. This requires that h and hence g−1 be differentiable,
so we need p ≥ 1. Then applying the delta method gives

√
n(θ̂n − θ0) L−→ ∇h(ϕ0)Z. (5.3)

This formula tells us many things. First, θ̂n is also asymptotically normal.
Second, since Z is k-dimensional, the right hand side of (5.3) is a normal random
vector of dimension at most k, and hence is degenerate considered as a random
element of R

d. Third, Z lives on R
k and ∇h(ϕ0) = ∇g−1(ϕ0, 0) maps R

k onto

2If we wanted to introduce “manifolds with boundaries” we could keep the generality we
had before in the k = d case, but it does not seem worth the trouble.
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the tangent space TΘ(θ0), so the right hand side of (5.3) lives on the tangent
space. Fourth, since ∇g−1(ϕ0, 0) is invertible (because g is a Cp isomorphism
with p ≥ 1), it maps k-dimensional subspaces to k-dimensional subspaces, so
the right hand side of (5.3) is a nondegenerate normal random vector on the
subspace TΘ(θ0) of R

d.

What degree of smoothness p should we require? Obviously, we want to
impose the weakest conditions that will do the job, but what are they? It is
clear from the analysis above that we need at least p ≥ 1 in order to apply the
delta method.

The fact that C1 isomorphisms do transfer asymptotic properties via the
delta method suggests that C1 manifolds are enough and there is no reason
to consider C2 manifolds or manifolds with higher degrees of smoothness. But
this is not quite all there is to be said on the subject, since our theorems about
maximum likelihood involve regularity conditions. How do we apply them to
parameter spaces that are manifolds?

As we did before, we can apply all the previously developed theory by trans-
forming to local coordinates, called “ϕ coordinates” above, and applying the
regularity conditions in those coordinates. To recapulate that analysis, we al-
ways can consider that the model has been given in terms of an open subset Φ
of R

k containing the unknown parameter value ϕ0 and a Cp map h : ϕ → R
d

satisfying the conditions of Lemma 5.4 so that h(Φ) is a Cp manifold in R
d

containing the true parameter value θ0 = h(ϕ0). We may not have been given
the model in this form, but there always exists a Cp isomorphism that puts it
in this form. If we can verify the regularity conditions in the “ϕ coordinates,”
then any asymptotic results can be transferred to the “θ coordinates” by the
delta method.

However, it would be very unsatisfactory if the regularity conditions only
held in some “magic” local coordinates. What if you couldn’t figure out the
“magic” parameterization? Then there would be an asymptotic result, the
model stated in terms of the manifold Θ would satisfy the regularity conditions,
but you couldn’t prove that it satisfied the conditions. This would be a very
unsatisfactory state of affairs. Fortunately, it can’t happen. Whether a model
satisfies the regularity conditions, at least those we have studied, does not de-
pend on the choice of local coordinates. By Lemma 5.2 all local coordinates are
related by local Cp isomorphisms. Hence the following theorem does exactly
what we need.

Theorem 5.5. If a model is ULAN at rate αn, then it is also ULAN at rate
αn after a reparameterization by a C1 isomorphism.

Before starting the proof, we need an observation and a lemma. Every linear
operator on a finite-dimensional vector space is bounded, that is, if ‖ · ‖ is any
norm for R

d, the corresponding operator norm for a linear operator A : R
d → R

d

defined by

‖A‖ = sup
x6=0

‖Ax‖
‖x‖
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is finite. This implies ‖Ax‖ ≤ ‖A‖ · ‖x‖ for all operators A and vectors x.

Lemma 5.6. If g : Φ → Ψ is a C1 isomorphism, where Φ and Ψ are open
subsets of R

k, ϕ ∈ Φ, ψ0 = g(ϕ0), and αn is any sequence converging to zero,
and if B(x, ρ) denotes the closed ball in R

k centered at x with radius ρ, then for
any r > 0, there exists a ρ > 0 and an integer N depending on ρ such that

g
(
B(ϕ0, rαn) ∩ Φ

)
⊂ B(ψ0, ραn), whenever n ≥ N. (5.4)

In fact we can choose any ρ > ‖∇g(ϕ0)‖.

This lemma doesn’t seem very simple, but the idea is simple. As a shorthand
we summarize this lemma as the assertion that a C1 isomorphic reparameter-
ization eventually (meaning for n ≥ N) maps bounded balls to bounded balls
“on the αn scale.”

Proof. A point ϕ ∈ B(ϕ0, rαn) ∩Θ has the form

ϕ = ϕ0 + αnδ

for some δ with ‖δ‖ ≤ r. This ϕ maps to

ψ = ψ0 + αnη

say, where

η =
ψ − ψ0

αn
= ∇g(ϕ0)δ + ‖δ‖ · w(αnδ)

where w is some function continuous at zero with w(0) = 0. Still assuming
‖δ‖ ≤ r, this implies for any ǫ > 0 there is an integer N such that ‖w(αnδ)‖ ≤ ǫ
whenever n ≥ N . Thus

‖η‖ ≤ r
(
‖∇g(ϕ0)‖+ ǫ

)
, n ≥ N.

That proves (5.4) and the assertion about the choice of ρ.

Proof of the theorem. By definition a C1 isomorphism g maps an open neigh-
borhood of ϕ0 to an open neighborhood of ψ0.

By the lemma, if
ψ0 + αnηn = g(ϕ0 + αnδn),

then ηn is a bounded sequence if and only if δn is a bounded sequence. Thus
contiguity trivially transfers from one parameterization to the other.

Since the true parameter value ψ0 = g(ϕ0) is fixed throughout, let ln
denote the log likelihood in the “ψ coordinates” and let us change notation
from ln(ψ,ψ0) to ln(ψ), keeping the same meaning. This enables us to write
the log likelihood for the parameter ϕ = g−1(ψ) as l̃n = ln ◦ g. Note that
ln(ψ0) = l̃n(ϕ0) = 0.
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Now we assume the “ULAN at rate αn” condition holds in the “ϕ coordi-
nates” so for any ρ > 0

sup
δ∈B(0,ρ)
ϕ0+αnδ∈Φ

∣∣∣l̃n(ϕ0 + αnδ)−
[
〈δ, Sn〉 − 1

2 〈δ,Knδ〉
]∣∣∣

converges in probability to zero for some random variables vectors Sn and ma-
trices Kn with Kn converging in probability to a constant matrix K. We must
show that a similar condition then also holds in the “ψ coordinates.” Now write

ψ0 + αnη = g(ϕ0 + αnδ),

so

η =
g(ϕ0 + αnδ)− g(ϕ0)

αn
= Aδ + o(1)

where A = ∇g(ϕ0). Introduce the random variables

Rn = A−1Sn

Jn = A−1KnA
−1

Then, again using the lemma, for any r > 0 there is an ρ > 0 such that

sup
η∈B(0,r)
ψ0+αnη∈Ψ

∣∣ln(ψ0 + αnη)−
[
〈η,Rn〉 − 1

2 〈η, Jnη〉
]∣∣

≤ sup
δ∈B(0,ρ)
ϕ0+αnδ∈Φ

∣∣(ln ◦ g)(ϕ0 + αnδ)−
[
〈δ, Sn〉 − 1

2 〈δ,Knδ〉
]∣∣+ op(1)

because Sn and Kn are bounded in probability.

5.6 Submanifolds

If M1 is a k1-dimensional Cp manifold in R
d, we say that M0 ⊂ M1 is

a k0-dimensional Cp submanifold of M1 if there for each x ∈ M0 a local Cp

isomorphism at x, denote it g : U → V that maps M1∩U to S1∩V and M0∩U
to S0 ∩ V , where S1 and S0 are subspaces of dimension k1 and k0, respectively.
Obviously, this requires S0 ⊂ S1.

We will not go into detail, but merely remark that the two construction
methods in Lemmas 5.3 and 5.4 also work for submanifolds (this is almost
completely obvious) after transformation to local coordinates.
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5.7 Tests Revisited

5.7.1 The Likelihood Ratio Test

Theorem 5.7. Suppose a model having a k1-dimensional C1 manifold as a
parameter space satisfies the ULAN conditions at rate αn. Let θ̂n be an ELE
for the full model and let θ∗n be an ELE for the restricted model that constrains
θ to lie in a k0-dimensional C1 submanifold of the parameter space of the full
model (k0 < k1), then

Ln = 2
(
ln(θ̂n)− ln(θ∗n)

)
. (5.5)

has an asymptotic chi2(k1 − k0) distribution, where ln(θ) is any log likelihood
for the problem.

Proof. Transform to local coordinates and apply Theorem 4.1

The point is that although the proof (at least our method of proof) requires

transformation to local coordinates, the calculation of θ̂n and θ∗n do not. The
method of Lagrange multipliers allows one to find maxima of functions defined
on manifolds defined by constraint equations (as in Lemma 5.3) without using
transformation to local coordinates.

5.7.2 The Rao Test

The Rao test does not really have a similar form that is independent of local
coordinates. The trouble is that we don’t really know what ∇ln(θ) is supposed
to mean when θ takes values in a manifold. Essentially, the calculation requires
transformation to local coordinates in order to calculate this derivative.

There is one special case, however, this is worth some study. If we let the
full model have a parameter space that is an open subset of R

d then ∇ln(θ)
means just what it always has.

Theorem 5.8. Suppose conditions 1 through 4 of Theorem 3.1 (the “usual reg-
ularity conditions” for maximum likelihood) and suppose the Fisher information

I(θ) is continuous at θ0. Let θ̂n be an ELE for the full model having an open
subset of R

d for its parameter space, and let θ∗n be an ELE for the restricted
model that constrains θ to lie in a k-dimensional C1 submanifold of R

d with
k < d,

Rn =
1

n
〈∇ln(θ∗n), I(θ∗n)−1∇ln(θ∗n)〉 (5.6)

is asymptotically equivalent to the likelihood ratio test statistic (5.5).

Proof. Transform to local coordinates and apply Theorem 4.2. The only issue is
to show that the Rao statistic (5.6) is actually invariant under such a transfor-
mation. Suppose ϕ = g(θ) is the coordinate transformation, and write h = g−1

so θ = h(ϕ). Also write ϕ∗
n = g(θ∗n) and An(ϕ) = ∇h(ϕ). The log likelihood in

the transformed coordinates is

l̃n(ϕ) = (ln ◦ h)(θ)
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so the score vector is

s̃n(ϕ
∗
n) = ∇l̃n(ϕ∗

n) = ∇ln(θ∗n)An(ϕ∗
n) (5.7)

by the chain rule. This formula makes sense when we think of the derivation
via the chain rule. Both objects on the right are derivatives so ∇ln(θ∗n) is
represented as a 1 × n matrix and An(ϕ

∗
n) as a n × n matrix. But if we want

to think of the ∇ln(θ∗n) and ∇l̃n(ϕ∗
n) in “the usual way” as a “column vectors”

we have to have to write the equation the other way around as

s̃n(ϕ
∗
n) = An(ϕ

∗
n)sn(θ

∗
n).

We worked out in a homework exercise that the transformation rule for Fisher
information is

Ĩ(ϕ) = An(ϕ)I(θ)An(ϕ)

where θ = h(ϕ) so the Rao statistic in “ϕ coordinates” is

s̃n(ϕ
∗
n)

′Ĩ(ϕ)−1s̃n(ϕ
∗
n) = sn(θ

∗
n)

′An(ϕ
∗
n)
[
An(ϕ

∗
n)I(θ

∗
n)An(ϕ

∗
n)
]−1

An(ϕ
∗
n)sn(θ

∗
n)

= sn(θ
∗
n)

′I(θ∗n)
−1sn(θ

∗
n)

hence the same as in “θ coordinates.”

5.7.3 The Wald Test

The Wald test also does not have a general form that can be stated without
transformation to local coordinates. There is, as with the Rao test, a special
case worth some study. Suppose, as we did with the Rao test, that the full model
has a parameter space Θ1 that is an open subset of R

d and the null hypothesis
is given by a constraint function

Θ0 = { θ ∈ Θ1 : h(θ) = 0 }

where h : Θ1 → R
d−k satisfies the conditions of Lemma 5.3. Now write H(θ) =

∇h(θ).

Theorem 5.9. Suppose the conditions of Definition 4.1. Let θ̂n be an ELE for
the full model. Let h and H be as described above, and write hn = h(θ̂n) and

Hn = H(θ̂n). Then

Wn = nh′nHn(HnK
−1
n H ′

n)
−1Hnhn (5.8)

is asymptotically equivalent to the likelihood ratio test statistic (5.5) or the Rao
test statistic (5.6).

The proof is the same as the proof for the Rao statistic. We derive this
theorem from Theorem 4.3 by showing that the statistic (5.8) is invariant under
coordinate transformation and that in the special case of a local coordinate
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transformation that maps Θ0 bijectively onto a relatively open subset of R
k we

get (4.13).
The second point is easy to see. The constraint that sets the first k coordi-

nates of θ to a specified value θ0 is of the form

h(θ) = G(θ − θ0) = 0

where G =
(
I 0

)
. The gradient of a linear function is the same function so

H(θ) = G. Plugging these in to (5.8) gives (4.13). The invariance part of the
proof is much the same as with the Rao statistic. Use the chain rule and note
that the “Jacobian matrices” cancel.



Appendix A

Odds and Ends

A.1 Big Oh Pee and Little Oh Pee

A sequence of random variables Xn is said to be op(1) if

Xn
P−→ 0.

This is just a convenient notational variant. A sequence of random variables
Xn is said to be Op(1) if it is bounded in probability, which is the condition
for Prohorov’s theorem (that is, Op(1) implies that there exists a subsequence
Xnk

converging in law to some random variable). This too is just a convenient
notational variant.

The notations gain power when we consider pairs of sequences. Suppose Xn

and Yn are random sequences taking values in any normed vector space, then

Xn = Op(Yn)

means Xn/‖Yn‖ is bounded in probability and

Xn = op(Yn)

means
Xn

‖Yn‖
P−→ 0.

These notations are often used when the sequence Yn is deterministic, for
example Xn = Op(n

−1/2). But they are also used when both are deterministic,
for example, we say two sequences Xn and Yn are asymptotically equivalent if

Xn − Yn = op(Yn).

Problems

A-1. Prove the following

77
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(a) Op(Xn)Op(Yn) = Op(XnYn).

(b) Op(Xn)op(Yn) = op(XnYn).

(c) op(Xn)op(Yn) = op(XnYn).

(d) o
(
Op(Xn)

)
= op(Xn).
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