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1 Basics of Measure Theory

We want to define functions that measure the size of subsets of a given set.
We are familiar with a few such functions - length of intervals of R, area of of
regions in R2, and volume of solids in R3. We would like to generalize to more
arbitrary sets.

It turns out we cannot construct a measure on the power set on R which
extends basic properties of the measures listed above, such as translation invari-
ance.

Therefore, we will only look at certain subsets - members of sigma algebras.

A σ -Algebra F on a set Ω is a collection of subsets of Ω satisfying:

1. ∅ ∈ F

2. A ∈ F =⇒ Ac ∈ F

3. Ai ∈ F =⇒ ⋃∞
i=1Ai ∈ F

The sigma algebra generated by a set A is the smallest sigma algebra con-
taining A. It is defined as the intersection of all sigma algebras containing A,
which can easily be verified to be a sigma algebra.

The sigma algebra most relevant for probability theory is the Borel sigma
algebra, which is generated by open sets:

Bk := σ(O(Rk))

Sets in a sigma algebra are called measurable sets. Next, we define the
notion of a measure on such sets.

Given a measurable space (Ω,F), a function f : F → R is called a mea-
sure on Ω iff:

1. 0 ≤ µ(A) ≤ ∞

2. µ(∅) = 0

1



3. µ

( ∞⋃
n=1

An

)
=

∞∑
n=1

µ(An) ∀An ∈ F disjoint

(Ω,F , µ) is a measure space.

If µ(Ω) = 1, then µ is a probability measure, usually denoted p(.), and
(Ω,F , p) is a probability space.

Measures extends the following properties of length:

1. (Monotonicity) A ⊂ B =⇒ µ(A) ≤ µ(B)

2. (Subadditivity) µ

( ∞⋃
n=1

An

)
≤
∞∑
n=1

µ(An)

3. (Continuity) IfA1 ⊂ A2 . . . (orA1 ⊃ A2 . . .), then µ
(

lim
n→∞

An

)
= lim
n→∞

µ(An)

where limn→∞ µ(An) =
⋃∞
n=1An (or

⋂∞
n=1An)

2 Cumulative Distribution Function

Given a probability space (R,B, P ), the Cumulative Distribution Function
of P is the function F : R→ [0, 1] defined by:

F (x) = P ((−∞, x]) ∀x ∈ R

Properties:

1. limx→−∞ F (x) = 0

2. limx→∞ F (x) = 1

3. F nondecreasing

4. F right-continuous

3 Product Measure

Sometimes we want to measure the size of subsets of a cross product of two sets,
for example, a region R ⊂ R2 = R× R.

To take the measure, we need a sigma-algebra. Unfortunately, the cross
product of sigma algebras is not generally a sigma algebra, so instead, we take
the sigma algebra generated by the product of sigma algebras. Thus:

Given sets (Ωi,Fi) i = 1 . . . n, we build the measurable space:(
n∏
i=1

Ωi, σ

(
n∏
i=1

Fi
))
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The next question is whether measures distribute across products of sets
like it does across disjoint unions. We will need to restrict our discussion to
sigma-finite measures - measures that are finite on every member of a countable
decomposition of the space:

The next question is whether measures distribute across products of sets
like it does across disjoint unions. We will need to restrict our discussion to
sigma-finite measures - measures that are finite on every member of a countable
decomposition of the space:

A measure µ on (Ω,F), is σ -finite iff ∃{Ai}∞i=1 s.t:

1. Ω =
⋃∞
i=1Ai

2. µ(Ai) <∞ ∀i ∈ N

For example, the Lebesgue Measure is sigma-finite on R, since it is finite on
every interval (−n, n) and R is exhausted by countably many such intervals.

Another example is the counting measure, which is sigma-finite iff the space
is sigma-finite.

Given {(Ωi,Fi, µi)}ni=1, where the µi are σ-finite measures, there exists a
unique measure µ1× . . .×µn on (

∏n
i=1 Ωi, σ (

∏n
i=1 Fi)), called the the product

measure, which satisfies:

∏
i

µi

(∏
i

Ai

)
=
∏
i

µi(Ai)

4 Joint Cumulative Distribution Function

Now that are we able to measure subsets of a product space, we can define a
CDF associated with the product measure:

Given a probability space (Rk,Bk, p), the joint CDF of p is the function
F : Rk → [0, 1] defined by:

F (x1, . . . , xk) = p((−∞, x1]× . . .× (−∞, x2]), xi ∈ R

It turns out that there is a 1:1 correspondence between probability measures
on the above space and joint CDFs on Rk - a given probability measure defines
a joint CDF, and a joint CDF corresponds to a unique probability measure.

Given a joint CDF, we can find the marginal CDFs:

F1(x) = lim
xj→∞ ∀j 6=i

F (x1, . . . , xi−1, xi+1 . . . xk)

Given the marginal CDFs, we generally can’t find the joint CDF.
A special case is when the joint CDF factors into a product of the marginals:

F (x1, . . . xn) = F (x1)F (x2) . . . F (xn) ∀(x1, . . . xn) ∈ Rk

In this case , the probability measure associated with F is the product measure.
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5 Inverses of Set Functions

Given f : Ω→ Λ, and a set B ⊂ Λ, the inverse image of B under f is:

f−1(B) = {w ∈ Ω : f(w) ∈ B} ≡ {f ∈ B}

If |f−1(y)| = 1 ∀y ∈ B, then f−1 is a function and f is injective.

Inverse functions commute with complements/unions:

1. f−1(Bc) = (f−1(B))c ∀B ∈ Λ

2. f−1(∪Bi) = ∪f−1(Bi) ∀B ∈ Λ

6 Measurable Functions

Let (Ω,F), (Λ,G) be measurable spaces and f : Ω→ Λ
f is a measurable function from (Ω,F) to (Λ,G) iff f−1(G) ⊂ F

A random variable (aka Borel function) is a measurable function from
(Ω,F) to (R,B)

f−1(G) is a sub-sigma field of G. It is the σ field generated by f
Now that we have defined what a random variable is, we show that there

enough functions that meet the definition of RV. In particular, instead of re-
quiring that pullbacks of ANY borel set are measurable sets, it suffices to look
at open right-infinite intervals. Furthermore, given two borel functions, we can
construct others through linear combinations, products, quotients, limits and
compositions. We also establish the connection between continuous functions
and Borel functions - continuous mappings of Borel sets into R are measurable.

Let (Ω,F) be a measurable space. Then:

1. f Borel ⇐⇒ f−1(a,∞) ∈ F

2. f, g Borel⇒ fg, af + bg, f/g Borel, where a, b ∈ R and g(ω) 6= 0 ∀ω ∈ Ω

3. {fn}∞n=1 Borel⇒ sup fn, inf fn, lim sup fn, lim sup fn Borel, provided these
limits exist. Otherwise, if we define A = {ω ∈ Ω : limn→∞ fn(ω) exists }
∈ F , then the following function is Borel:

h(ω) =

{
limn→∞ fn(ω), if ω ∈ A
f1(ω) else

4. If f is measurable from (Ω,F) to (Λ,G) and g is measurable from (Λ,G)
to (∆,H), then g ◦ f is measurable from (Ω,F) to (∆,H).

5. Let Ω be a Borel set in Rp. Then if f : Ω → Rq is continuous, then f is
measurable.
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7 Cumulative Distribution Functions

We have defined CDFs as real valued functions associated with measures. We
now define CDFS associated with measurable functions (RV), as well as distri-
butions of RV:

Let (Ω,F , µ) be a measure space, and f be a measurable function from
(Ω,F) to (Λ,G).

f induces a measure µ ◦ f−1 on G, defined as:

µ ◦ f−1(B) = µ(f−1(B)), ∀B ∈ G

If µ = p a probability measure, and f = X a random variable, then P ◦X−1

is the distribution/law of X, denoted Px. The cdf associated with the measure
Px is the c.d.f of X, denoted FX

8 Simple Functions

A simple function φ : Ω → R has the form: φ(ω) =
∑n
i=1 aiIAi

(ω) where
ai ∈ R and Ai are measurable sets.

Properties of simple functions:

1. σ(φ) = σ({A1, . . . , An})
2. φ ≥ 0 ⇐⇒ ai ≥ 0 i = 1 . . . n

9 Integration

We define the integral of a simple function as a linear combination of the mea-
sures of the sets its defined over. Integrals of Borel functions are defined as
supremums over integrals of lesser simple functions.

To deal with functions taking on negative values, we decompose a function
into the difference of its non-negative and negative values, and integrate each
component using the above definition.

To integrate a measurable function over a set, we integrate the product of
the function with the set’s indicator function over the whole space.

1.

∫
Ω

φdµ :=

n∑
i=1

aiµ(Ai)

2. Let f be a non-negative Borel function and

Sf := {φ a simple fn s.t φ(ω) ≤ f(ω) ∀ω ∈ Ω}

Then the integral of f w.r.t µ is:∫
Ω

fdµ := sup
φ∈Sf

∫
Ω

φdµ
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⇒ For any Borel function f , there exists a sequence φ1 . . . φn of simple
functions s.t. 0 ≤ φn ≤ f ∀n and:

lim
n→∞

φndµ =

∫
fdµ

3. Any Borel function f can be written as: f(ω) = f+(ω) + f−(ω), where

f+(ω) = max{f(ω), 0} ≥ 0

f−(ω) = max{−f(ω), 0} ≤ 0∫
f
dµ exists iff one of

∫
f+dµ,

∫
f−dµ is finite. It is defined as:∫

f

dµ =

∫
f+dµ−

∫
f−dµ

4. If both
∫
f+dµ,

∫
f−dµ <∞, then f is integrable. The integral of f over

a measurable set A w.r.t measure µ is defined as:∫
A

fdµ :=

∫
Ω

IAf

10 Notation for Integrals in Probaiblity Theory

Given a R.V. X from (Ω,F , P ) to (R,B), the expectation of X is:

E(X) :=

∫
Ω

XdP

If F is the C.D.F of probability measure P on (Rk,Bk), then∫
Ω

f(x)dF :=

∫
Ω

f(x)dP

11 Properties of Integrals of Measurable Func-
tions

1. Integration is a linear operator

2. Given (Ω,F , µ) and f, g Borel functions:

(a) f ≤ g a.e⇒
∫
fdµ ≤

∫
gdµ (Monotonicity)

(b) f ≥ 0,
∫
fdµ = 0 =⇒ f = 0 a.e

3.
∣∣∫ fdµ∣∣ ≤ ∫ |f |dµ (Triangle Inequality)

4. f = g a.e =⇒
∫
fdµ =

∫
gdµ

5. f ≥ 0 a.e =⇒
∫
fdµ ≥ 0
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12 The Lebesgue Measure / Integral

The measure which motivated Measure Theory is the Lebesgue Measure - the
unique measure on subsets of sigma algebras of Rn which agrees with length for
intervals, and shares its properties when it comes to more arbitrary subsets.

As the Lebesgue measure generalizes the notion of length, the Lebesgue inte-
gral generalizes the Reiman integral. The two agree on Rieman integrable func-
tions (continuous, bounded functions over compact sets), but the Lebesgue inte-
gral is defined for all Lebsgue-measurable functions, which may not be Reimann
integrable.

Given a a random variable X on probability space (Ω,F , P ), we can con-
struct a probability measure on (R,F) called the distribution of X and a CDF
associated with X (=CDF of the measure)

Random variables provide a way to use measures on arbitrary sets to measure
sets in R(Borel sets). There are two functions associated with a random variable
- a distribution, which measures any borel sets, and a CDF, which measures sets
(−∞, x).

13 Convergence Theorems

Next, we answer the question of when a limit and an integral can be inter-
changed. There are 3 results providing sufficient conditions for this:

Let f1, f2 . . . be Borel functions( µ-measurable functions from (Ω,F) to
(R),B). Then:

1. (Fatou’s Lemma) fn ≥ 0 =⇒ lim inf
∫
fn ≤

∫
lim inf fn

2. (Dominated Convergence Theorem) IF limn→∞ fn = f a.e and ∃g integrable s.t.
|fn| ≤ g a.e , THEN lim

∫
fdµ =

∫
lim fdµ

3. (Monotone Convergence Theorem) IF 0 ≤ f1 ≤ f2 ≤ . . . and limn→∞ fn =
f a.e , THEN lim

∫
fdµ =

∫
lim fdµ

14 Change of Variables Theorem

The Change of Variables Theorem defines the integral of a composition of a
measurable function and a borel function:

Let f be measurable from (Ω,F , µ) to (Λ,G) and g be measurable from
(Λ,G) to (R,B). Then: ∫

Ω

g ◦ fdµ :=

∫
Ω

gd(µ ◦ f−1)
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15 Fubini’s Theorem

Let µi be sigma-finite measures on (Ωi,Fi) and f a borel function on
∏

(Ωi,Fi),
and either f ≥ 0 or

∫
|f |dµ1 × µ2 <∞.

Then g(ω2) =
∫

Ω1
f(ω1, ω2)dµ1 exists and is a Borel function on Ω2 whose

integral w.r.t µ2 exists and∫
Ω1×Ω2

f(ω1, ω2)dµ1 × µ2 =

∫
Ω2

[∫
Ω1

f(ω1, ω2)dµ1

]
dµ2

16 The Radon-Nikodym Derivative

Let µ, λ be measures on (Ω,F). λ is absolutely continuous w.r.t µ, denoted
λ << µ, if

µ(A) = 0 =⇒ λ(A) = 0 ∀A ∈ F
Given µ, we can construct an absolutely continuous measure λ by setting:

µ(A) :=

∫
A

fdµ ∀A ∈ F

where f is a non-negative Borel function. It turns out that under some as-
sumptions, every λ << µ can be uniquely written this way.

(Radon-Nikodym Theorem) Suppose µ is a σ-finite measure on (Ω,F), and
λ << µ is also a measure on (Ω,F). Then there exists a non-negative Borel
function f on Ω s.t:

λ(A) =

∫
A

fdµ ∀A ∈ F

f is called the Radon-Nikodym derivative of µ, denoted
dλ

dµ
and is unique a.e µ

When λ(Ω) =
∫

Ω
fdµ = 1, λ is a probability measure, and f is its probability

density function (p.d.f).
When λ is the probability measure induced by a R.V X (λ = P ◦X−1), f

is the p.d.f of X (or of FX)

(Discrete CDF) Let a1 < a2 < . . . and and p1, p2 . . . be sequences in R, with∑
i pi = 1. We can define a c.d.f F : R→ [0, 1] as follows:

F (x) =

{∑n
i=1 pi if x ∈ [an, an + 1)

0 otherwise

F is associated with a probability measure P on (R,B).
Let µ be the counting measure.
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Then P << µ, and by R-N theorem:

P (A) =
∑
i∈I

pi =
∑
i∈I

f(ai),where I = {i : A ∩ [ai, ai+1) 6= ∅}

dP

dµ
= f(ω) =

{
pi if w = ai

0 otherwise

Let F a CDF differentiable in the calculus sense and f = F ′. From FTC:

F (x) =

∫ x

−∞
f(y)dy

Let P be the probability measure on (R,B) associated with F . Then by
Radon-Nikodym Theorem on lebesgue measure µ, with P << µ, there exists
non-negative Borel function f s.t.:

P (A) =

∫
A

fdµ ∀A ∈ B

f =
dP

dµ
is the p.d.f of F w.r.t. Lebesgue measure µ. It agrees with the p.d.f

obtained by differentiating F using calculus.
We can relax the assumption that F is differentiable - it need only be abso-

lutely continuous.
A function F is absolutely continuous on R if ∀ε > 0,∃δ > 0 such that

∀{(ai, bi)}ni=1 finite collections of disjoint, bounded open intervals,∑
|bi − ai| < δ =⇒

∑
|F (bi)− F (ai)| < ε

A function is µ−differentiable ⇐⇒ it is absolutely continuous on R

17 Moments and their Properties

Properties of 1st/2nd Moment:

1. Cov(Xi, Xj) ≤ V ar(Xi)V ar(Xj)

2. Variance matrix is non-negative definite (ytV ar(X)y ≥ 0 ∀y)

3. Independence =⇒ Correlation

4. Y = cTX =⇒ E[Y ] = cTE[X] and V ar(E) = cTV ar(X)c

Three useful inequalities:

1. (Cauchy-Schwartz Inequality): [E(XY )]2 ≤ [E(X)E(Y )]2, for R.V X,Y

2. (Jensen’s Inequality:) f(E[X]) ≤ E[f(X)], convex function f andR.V.X
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3. (Chebyshev’s Inequality) Let X be a RV and φ : R→ [0,∞) nondecreas-
ing, even function. Then

φ(t)P (|X| ≥ t) ≤
∫
{|X|≥t}

φ(X)dP ≤ E[φ(X)], ∀t ≥ 0

Given a random vector X ∈ Rk :

1. The Moment Generating Function of X (or PX) is Ψ : R→ R given by:

Ψx(t) = E[et
TX ], t ∈ Rk

2. The Characteristic Function of X (or PX) is φ : R→ C given by:

φX(t) = E[eit
TX ], t ∈ Rk

3. The Cumulant Generating Function of X (or PX) is:

κX(t) = log ΨX(t), if 0 < ΨX(t) <∞

18 Properties of m.g.f and c.h.f

1. If mgf is finite in a neighbourhood of 0, then all moments exist

2. y = ATX + c

=⇒ Ψ(u) = E[eu
T (ATX+c)] = ec

TuΨ(Au)

=⇒ φ(u) = E[eiu
T (ATX+c)] = eic

Tuφ(Au)

3. X1 . . . Xk are independent and Y =
∑k
i=1Xi, then:

ΨY (t) =

k∏
i=1

ψXi
(t) and φY (t) =

k∏
i=1

φXi
(t)

4. (Uniqueness of mgf/chf). Suppose X,Y are random vectors. Then:

(a) φX(t) = φY (t) ∀t ∈ Rk =⇒ PX = PY

(b) ψX(t) = ψY (t) <∞ ∀t in a neighborhood of 0 =⇒ PX = PY

5. (Symmetry) (A random vector X is symmetric about 0 iff X and −X have
the same distribution.)

X is symmetric about 0 ⇐⇒ φX is real valued
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Figure 1: Mechanics of a random variable
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