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Chapter 1 

1.0  Foundations.   

A new means to select weights on a target benchmark stock portfolio is presented, which 

results in better performance than that of the target market index.  This is accomplished 

using the simugram as described in section 1.3 and in chapter 2.  The simugram applied 

to financial engineering problems is a time-indexed risk profile showing the entire 

distribution of outcomes of a stochastic experiment.  Using the simugram to maximize a 

portfolio return objective function subject to risk-tolerance constraints, we show that the 

resulting simugram portfolios exhibit at least twice the return as the equivalent target 

market index, and up to 50 times the terminal dollar value over two study periods of at 

least 25 years.  Important conclusions on the distribution of portfolio returns and terminal 

values are made, as well as on the effectiveness of the Nelder-Mead optimization 

algorithm in high dimensions.  The effectiveness of the simugram portfolio as an 

investing or trading program is also demonstrated. 

 

1.1  Problem Statement 

This dissertation tests a major and several subsequent hypotheses regarding a new type of 

portfolio selection process.  For brevity, the problem setup and statement uses 

mathematical language.  Those interested in the direct hypothesis statement can skip to 

page 4. 

 

Let SM  be the market for equity securities where they might be exchanged for money, 

and let and PM  be the market for all privately held, restricted, preferred, or for any other 
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issue not thought of as common stock, and let CM  be the market for all publicly traded 

common equity securities (common stocks).  Put M= CM = \S PM M  and let a “selection 

universe” MΩ  be the collection of all publicly traded common stocks, and suppose 

M MΩ ⊂ . 

 

Let , be a common stock so that( ), 0M
i iX X t t∈Ω = ≥ MX  can be arrayed as the nxN 

matrix [ ]1 2 NX X X" , N < ∞ .  Let P be a portfolio of stocks iX  given weights  

with , 

iw

[ ]1 1 2 2 k kP w X w X w X= " 1T
k iw w c= =∑ .  Usually, .  Then 

, 

1c =

[ 1 1 2 2
M

N NP w X w X w X= " ] 1 1T
Nw = , is Sharpe and Lintner’s price-adjusted, 

“net asset value” market portfolio (Markowitz, [37]).  Markowitz makes clear in his 

review that their definition is strictly in terms of a row vector of weights, with 

i
i

iX Vos
w

X Vos
⋅

=
⋅

, or the ratio of the value of iX  to the total market value, as determined by 

the price, ( ),iX t  and shares outstanding ( )Vos τ , where tτ >> . 

 

We must next define some stochastic processes.  We can model ( )iX t  as a stochastic 

process ( 1)( ); 0X t t ≥  with distribution function , and 
iXF ( )MX t  is jointly distributed 

M
XF .  Let  be a measurable “return function” ( )r ⋅ ( ( ), ( ))r X t X t t− ∆  which generates 

some sort of differential price change, with .  ( )M Mr r X= Mr  can be modeled as a 

                                                 

r

1  The probabilistic context is that  is defined on the underlying probability space ( , .  This 

notation should not appear again, except for the distributions  induced on the target space of X, which will be 
used in the portfolio setting. 

( )X t ,{ },P)tΩ F F
,XF F
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stochastic process with distribution function M
rF , which experience has shown is not 

quite multivariate normal (MVN).  Also, let  be a parameter called the risk-free rate, a 

realization in time of the US Treasury-bill interest rate process.  , where 

F denotes Fixed Income.  

fr

( ) F
fr t M∈Ω ⊂ F

 

We now create some subset portfolios.  Let 0 MΩ ⊆ Ω  and  be subsets of 

the market portfolio such that the correlation 

0 0( ,P = Ω 0 )w

0( )( ) ( )( )MX t X tρ ρ ε= − , with ε  small, 

say 0.01.  This will be the market portfolio proxy since the market portfolio is 

unobservable in practice.  Examples of 0Ω , in order of increasing ε , would be the 

Wilshire 5000 Index (denoted 5000Ω ), the Standard & Poor’s (S&P) 500 ( ), the S&P-

100 ( ), the Dow 30 ( ), etc.  Define  as an alternative portfolio 

composed of the same stocks as 

500Ω

100Ω 30Ω ( , )A AP = Ω Aw

0Ω  but with different weights.  By market capitalization 

weighting, for example, 0 MP P∼ . 

 

Finally, let there be some aggregate measure of comparative performance over time, 

0( ) ( )A
T

r P r P− , where T denotes a time interval.  Candidates for this norm are 

discussed at some greater length in section 1.6 below. 

 

Given the preceding assumptions, we are proposing an alternative  based 

on a standard market index universe, which is intended to outperform the benchmark 

index returns.  We are now in the position to state our main hypothesis.   

0( , )A AP = Ω w
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Hypothesis 1 

0
0

0
1

: ( ) ( )

: ( ) ( )

A
T

A
T

H r P r P

H r P r P

0

0

− =

− >
 

Simply put, there should exist a set of weights on the elements of a benchmark universe 

that creates a portfolio which outperforms the benchmark index. 

 

The null hypothesis has been well established for almost half a century by what is 

collectively known as the efficient market hypothesis (EMH), discussed below.  Under 

whatever strength version one wishes to use, under the null hypothesis,  

and . 

0A M
X XF F F= � X

0A M
r r rF F F= �

 

The problem is described as follows.  Let ( )R ⋅  be a return function, and , for 0Ω = Ω

, , 1,i iX w i k= , and let a set of environmental parameters, linear and non-linear constraints 

be denoted ' ( , )Pψ ψ ψ= , where Pψ  are parametric, or variables exogenous to the 

optimization but required in the overall stochastic simulation, and ψ  be the set of 

optimization constraints.  The specific objective function, constraints, and other 

parameters are discussed in chapter 2. 

 
 Problem Statement 

 
max ( , , ')
s.t.

R w X ψ
ψ

 

 
This problem seems to closely resemble the standard Markowitz mean-variance “standard 

analysis with upper bounds.”  It is not the Tobin-Sharpe-Lintner (T-S-L) problem 
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described in [38] because there is no borrowing/lending consideration; that investment 

allocation decision is assumed to have been made.  Nor is it the Black problem since we 

are constraining ourselves to no short positions.  In the Markowitz [37] formulation, the 

goal is to select weights for subject to the following constraints 0Ω ψ : 

1

2

3

: 1
: 0
:

i

i

w
w
w U

ψ

ψ
ψ

=

≥
≤

∑
 

where U is an upper bound on maximum percent allocation.  His optimization problem is: 

min TV w w= Σ  

s.t. 

T T

w b
w R r w

φ

µ

=

= =
 

where Σ  is the covariance matrix of returns, φ  is a function of the sum of the weights, 

and R is a target portfolio return.  After this paradigm was formalized, beginning in 1952, 

it quickly allowed a relatively easily calculated covariance matrix to substitute for risk.  

In the process of time, optimality results followed.  In his 1987 review (op cit) of the 

follow-on studies, Markowitz finds “the mean-variance approximations provide almost 

maximum expected utility except for utility functions … which have pathological risk 

aversion.” 

 

With a way to select MP  via the exciting new field of linear programming, soon Sharpe’s 

and Lintner’s capital asset pricing models (CAPM) began to mature, and with them the 

establishment of the EMH.  Even a review of the reviews of the CAPM/EMH would not 

be helpful in testing Hypothesis 1.  Good texts include Campbell, Lo and Mackinlay [14],  
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Lo and MacKinlay [34], Malkiel [36], or Williams and Findlay [65]; an important and 

more poignant treatment is in Thompson, Williams and Findlay (TWF) [61].  The CAPM 

assumes all investors share the same beliefs, have access to the same information, are all 

rational, all seek µ σ−  efficient portfolios, and all share the T-S-L constraint sets, and 

enjoy the encouraging result that MP  is an efficient portfolio.  Abnormal returns above 

i fr iµ β− ∝  are not sustainable, or even real.  EMH puts all admissible portfolios on a 

capital market line (CML), with MP  occupying the limit point position.   

 

The EMH is a watchdog theory, which enforces the position of MP  on the CML.  In 

George Lucas’ film Star Wars [27] , there was an unspeakably powerful and unassailable 

offensive platform called the “Death Star,” much like the EMH.  Results that begin in the 

anomalies literature, such as Fama and French’s Arbitrage Pricing Theory2, eventually 

become “reconciled” - the EMH just gets “bigger.”  

 

Many, though, have employed Lucas’ “below-the-radar” penetration strategy in 

attempting to earn a living either from within or without the “Death Star.”  These are 

called arbitrageurs.  Even in the Black-Scholes-Merton [6, 7, 8, 9, 39] and Cox-Ingersoll-

Ross (CIR) [16, 42] models, in which it is assumed that opportunities for arbitrage do not 

exist, within the same papers they elsewhere argue that any mispriced security, futures  or 

option prices are expected to return to “equilibrium” via arbitrage activity, as it is in put-

call parity, and with any other arbitrage argument.  This means there is an astute industry 

of arbitrage agents which perform their function admirably, so well in fact that they must 
                                                 
2   Fama E.F., French K.R., “The Cross-section of Expected Stock Returns”, Journal of Finance, Vol. 47, 
No. 2, 1992.  This study originally threatened the CAPM, but was subsumed into EMH. 
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constantly revise their strategy after they have cleared away the instant opportunity, or 

else go out of business.   

 

1.2  A Note on Returns.   

When studying changes in economic or financial time series, terminology has developed 

over the years, some of which might be confusing or counter-intuitive.  The purpose of 

this section is to summarize some of this standard terminology regarding “returns”, and 

show alternative representations.  We will introduce investor, mathematical, and 

geometric definitions of return. 

 

"Return" as used in this thesis and in financial mathematics denotes the change in a 

deterministic or stochastic variable over its prior value.  This change is usually defined to 

be relative to the prior value.  In contrast, the businessperson thinks in terms of an 

investment returning a periodic stream of cash payments over time, which calculates to a 

"return on investment."  And, in an election context, the political scientist's returns 

represent an important sample of voter preference and a in most cases the outcome of a 

candidate's bid for office.  Neither of these routinely considers returns as representing the 

changes in stochastic variables at an arbitrary temporal granularity.   

 

The political scientist we shall not address now, but consider the businessman A who 

invests C in a capital project, selected by another optimization skill-set outside the scope 

of this dissertation.  In simplest terms, A expects a future value (FV) of accumulated 

earnings such that he realizes a rate of return (ROR) of say 18% over a time horizon H.  
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Since he is rational, he is indifferent to the FV so long as his ROR is realized.  Let him 

invest for time .  His return is still a return, even if 1H n T= ∆ = 1T∆ = .  This can be 1 

year, as Keynes mused, or it could be one day.  A is actually indifferent to the horizon, for 

if the project cash flow annualizes to his ROR by time 3T instead of time 10T, his 

expectation is met.  He may choose to stick with the investment; or, remorse over 

opportunity cost may have set in and he is off to hunt again.   

 

Horizon-shortening occurs, as in this windfall scenario:  suppose at 9:35 a.m. ET on 

9/11/01, investor A received execution on his annual trade long the SP500.  His hurdle 

rate is 10%.  Investor B received the same, but bought one stock, Northrop Grumman 

(NOC).  Investor B could have purchased a defense-sector mutual fund or ADR, but was 

simply adding to a single-stock portfolio.  While we held our breath when the markets 

reopened on the next trading day,3 NOC opened up +13 points (a 6σ event in the right 

direction, a mere 4 1/2 years after a previous 10.7σ  return).  Rational investor B sells all, 

pockets the 15%, and sails to Haifa.  His one day return is a real return.  Investor A broke 

even 2 years later, on 9/30/03.  

 

The best-know early 20th century author connecting the price behavior of financial and 

economic time series and their changes with Gaussian random variables was Louis 

Bachelier (1900) [2].  But is was H. Working [70, 71] at Stanford’s Food Research 

Institute, who first firmly introduced the apparent universality of the notion as a subject 

for study into the economic and finance literature beginning in 1934.  The concept slowly 

spread in popularity until Samuelson took up the idea of Brownian motion in the stock 
                                                 
3   See the Findlay et al (2003) paper by this title [25]. 
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markets in 1955, followed by the rich history as outlined in various sources such as 

Cootner [15] and the host of others.  For log price series, the difference is indeed the 

mathematical return r.  The principle is in fact an application of Pearson’s and Fisher’s 

idea of “transformation to normality.” 

 

All the common return measures are transformations of the increase/decrease concept, 

defined as 
1

t
t

t

XR
X −

= .  We refer to this as the raw return R.  Other measures are percent 

(investor) return , natural log (mathematical) return r, and a geometrical degree return 

, where h is a scaling parameter usually related to volatility. 

%r

( )dr D h=

 

Investor, or percentage return, is 1
%

1

t t

t

X Xr
X

−

−

−
= , and % 1r R= − .  Mathematical return is 

.  We note that ; however, for small r, by nature of the log 

expansion.  Handy identities between these returns include 

ln( )r R= %r r≤ %r � r

% 1 1rr R e= − = − , and 

. %ln( 1)r r= +

 

Degree returns are a geometric concept based on the triangle whose origin is at 0 0t = , 

with base of length , and height r.  Let r at nH n t= ∆ t∆  represent an annual 

mathematical return.  Any return between (0, ,2 ,..., )t t t H= ∆ ∆  on the ray of angle θ  

from  to r, is scaled to the same annual return.  The return angle 0t θ is calculated as the 

arctan of the dimensionless 
/

dr
k t H∆

.  What makes this return useful in parametric work 
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is that for Brownian motion processes, a simple scaling of H to h provides a 1-1 map 

between θ  expressed in degrees, and the z-score of a normal random variate.  Degree 

returns D(h) in terms of z-scores are quite useful.  The most common scaling is for 

1 1 σ= ⋅D ; other simple scalings provide for at 45θ = D 1z σ= ⋅ , etc.   

 

In selecting a return measure for use, one must consider tradeoffs between ease of 

calculation and layman understanding, and the importance of its linearity and symmetry 

properties.  Almost any return measure is linear and symmetric for small changes, say 

less than 5%, owing to the expansion properties for the log, sine, and arcsine functions.  

However, even a modest change of ± 20% corresponds to a log return of ( , a 

“20% spread”  At greater changes asymmetries increase, since R and  are constrained 

to ( , respectively, but r

.18, .22)+ −

%r

0, )and ( 1.0, )∞ − ∞ )( ,∈ −∞ ∞ .  D(h) is nicely symmetric between 

.  These are summarized as follows: ( 90 , 90 )− +D D

 
Locally Symmetric                  Globally Symmetric
Raw return, R                      z-scores, z 
Percent return, r%                 Degree return, D(h) 
Log return, r 
z-scores, z 
Degree return, D(h) 

 

In parametric work we always use mathematical returns, especially when evaluating 
Gaussian or more general stochastic processes.  But this work is non-parametric, and its 
theme is that of market outperformance, and since market performance is ubiquitously 
quoted in percentages, we use  throughout.  Additionally, percent returns are 
sometimes better at expressing the “emotional” component.  For instance, suppose one's  

%r
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Pages 11-23 omitted 
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1.5  Market Performance and Outperformance.   

In this section we propose several means to measure market performance, and, by 

comparison, outperformance.  The most commonly quoted measure is that of annualized 

return, which is an internal rate of return achieved by the future terminal value from a 

one-time initial investment due to variable period returns.  It provides a single number, 

expressed in percent, which would, like a bond, give the terminal value realized over the 

time horizon.  It is always less than or equal to the mean period return; that is because it 

is the geomean of the period returns.  We notate it as 
1/

0

1
N

TAr
A

⎛ ⎞
= −⎜ ⎟
⎝ ⎠

.  One can of course 

easily account for periodic investments such as dividends, cash contributions, etc.  

Unfortunately, it is a fictitious number, never actually realized except by calculation, but 

is useful for summary comparisons.  It is also prone to misuse by those attempting to 

annualize short period returns to a greater scale. 

 

A more realistic and fundamental measure is the terminal value (TV) amount, 

, where  are the investor returns realized in each period.  These 

returns can be historic or forecast, and  will always be in numeraire, a sometimes 

objective unit.  The disadvantage with using terminal value is its susceptibility to 

haggling regarding the time value of money, discount rate to be used in the present value 

reduction, inflation effects, and simply the long periods over which most of these 

analyses take place.  Assume by whatever means one is able to achieve an annualized 

internal rate of return of 10% over T=30 years.  If one were able to increase the return 

each year by only 2 basis points (0.2%), it would make a $1M difference at time T, about 

0 (1 )TA A r= +∏ t tr

TA
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5% of the $19.2M the base account would earn.  But an extra million is much more than 

the average Nobel Prize-winning co-author realizes in the twilight of his life.  In the case 

of the Standard & Poor’s (S&P) 500 portfolio optimization, we are dealing with T=26 

years, and an additional 1% improvement in the simugram returns equates to an extra 

$10M in TV, or a 25% TV performance improvement. 

  

Simple differences and cumulative differences also have some value in quantifying the 

relative performance of two series.  These, like index ratios, provide a quick indication of 

the outperformance or rate of outperformance.  Investments which are essentially the 

same give zero or flat presentation.  Unfortunately, these values do not seem to have a 

simple mapping to TV, or to educe an intuitive meaning.  For continual out- or under-

performance, these values can accumulate to rather large positive/negative values. 

 

It is generally believed that stocks outperform the risk-free rate.  Implicit in that belief is 

the long time period required to base it on.  Table 1.4 gives 35 years of data on annual 

returns of the Standard & Poor’s 500 (SP-500) index alongside the corresponding 1-year 

US Treasury bill secondary market rate, taken from US Federal Reserve online resources.  

The fixed-income rates are synchronized to maturity with the last trading day of each 

year.  A trading strategy of buying the SP-500 (with some rebalancing each year) vs. 

buying 1-year T-bills each year is compared. 

 

 

 

 



 26

Table 1.4  Comparison of returns, SP-500 vs. 1 year Treasury Bills, 1965-2000.  Assumes all 
principal reinvested. 

Comparative Market Returns - SP500 vs. 1-Year T-Bills 
            

Year SP500 T-Bills   Year SP500 T-Bills   Year SP500 T-Bills 
12/31/65 0.091 0.041  12/30/77 -0.115 0.057  12/29/89 0.273 0.079
12/30/66 -0.131 0.051  12/29/78 0.011 0.077  12/31/90 -0.066 0.074
12/29/67 0.201 0.047  12/31/79 0.123 0.097  12/31/91 0.263 0.055
12/31/68 0.077 0.055  12/31/80 0.258 0.109  12/31/92 0.045 0.037
12/31/69 -0.114 0.068  12/31/81 -0.097 0.132  12/31/93 0.071 0.033
12/31/70 0.001 0.065  12/31/82 0.148 0.111  12/30/94 -0.015 0.050
12/31/71 0.108 0.047  12/30/83 0.173 0.088  12/29/95 0.341 0.056
12/29/72 0.156 0.048  12/31/84 0.014 0.099  12/31/96 0.203 0.052
12/31/73 -0.174 0.070  12/31/85 0.263 0.078  12/31/97 0.310 0.053
12/31/74 -0.297 0.077  12/31/86 0.146 0.061  12/31/98 0.267 0.048
12/31/75 0.315 0.063  12/31/87 0.020 0.063  12/31/99 0.195 0.048
12/31/76 0.191 0.055  12/30/88 0.124 0.071  12/31/00 -0.101 0.058

Terminal $ Value – SP500: 15.6 Geomean % (annualized) - SP500: 7.9% 
 Terminal $ Value - T-Bill: 9.9  Geomean % (annualized) - T-Bills: 6.6% 

 
The various outperformance measures can be easily listed: 

Difference in Terminal Value ($M)          5.7 
Sum of outperformance (%)                  0.904 
Cumulative sum                             0.904 
Avg of outperformance (standard dev.)      0.025   (0.162) 
TV of outperformance ($M)                  1.525 
geomean of outperformance (%)              0.012 

The traditional overlay graph as well as the cumulative outperformance percent is plotted 

in figure 1.4: 
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SP-500 vs. 1 Year T-Bills, 1965 - 2000
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Figure 1.4  Comparison of returns, SP-500 vs. 1 year Treasury Bills (top panel); the bottom 
panel shows the cumulative percentage outperformance of the SP-500 vs. T-bills for the 
same period.  
 
Over this time period, the outperformance of the SP-500 over that of T-bills is not that 

convincing.  The stock return annualizes out with only a 1.3 percentage point edge; but 

we know that makes almost a $6M difference over 35 years.  And, the 36% stock market 

decline in 2001-2002 will materially change the character of the plot. 

 

When comparing a return stream to multiple indexes, other decisions come into play, 

such as what sort of norming needs to be employed in the comparison, or other distance 

measure candidates.  Figure 1.5 illustrates the issue.   
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SP-100 Simugram Returns vs. SP-500

Years, 1970 - 2002
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Figure 1.5  SP-100 simugram returns vs. SP-500 market returns; 105 simugram trials for 
each of years 1970-2002.    
 

Simugram returns for the SP-100 portfolio from multiple trials are plotted relative to the 

actual market (SP-500) return for the year, with a “leader” drawn into the centroid of 

each year’s trials.  If one were comparing these with several other market indexes, would 

one average the leader lengths, or calculate an appropriate normalized length or area?  

One could average in some way the difference in terminal values.  Without a foray into 

index theory, in evaluating our results we will use either the Wilshire 5000, SP-500, or 

Geomarket Index as the appropriate benchmark, and the terminal value difference 

between the selected reference and our hard-earned portfolio returns. 

 


