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"DAS FEHLERGESETZ UND SEINE VERALLGEMEINER- 
UNGEN DURCH FECHNER UND PEARSON"-." A 
REJOINDER. 

By KARL PEARSON, F.R.S. 

THERE is not much profit as a rule in complaining of the treatment one 
receives at the hands of critics, but still I think the needlessly hostile tone of 
Dr K. E. Ranke and Dr Greiner's review of my memoir on skew variation requires 
some protest on my part. As an illustration of the want of courtesy of which 
I complain I would cite for example the following statement (p. 323): 

Er (Pearson) weist aber einmal darauf hin, dass zwar seine eingeschriebenen Kurven 
teilweise unbegrenzt werden konnen, das Gesetz selbst, die hypergeometrische Reihe aber 
nicht, und vertrostet auf eine spiitere Arbeit, in der an Stelle der eingeschriebenen Kurven die 
Anpassung der Reihen selbst gegeben werden solle. Diese spiatere Arbeit ist nie geschrieben 
worden. 

This is not an isolated instance of the manner in which the authors criticise 
my work. It was quite open to them to have examined the customary sources 
of bibliographical information, or even to have written to me and asked if the 
memoir in question had been published. But here as elsewhere they assumed, 
without making proper investigation, that I could say nothing further and 
therefore had said nothing further. The memoir in question appeared so long 
ago as 1899 in a well known British scientific journalt from which the authors 
actually cite another paper of mine. Although my memoir is nie geschrieben 

* The criticism of my work appeared in the Archiv fur Anthropologie,, Bd. ii. pp. 295-331, 1904. 
The proper place to reply to an attack of the kind would be in the Archiv itself. Professor J. Ranke 
accepted a rejoinder and asked that it should be in German and not exceed 40 pp. I have heartily 
to thank Miss M. Lewenz for the labour of a translation, which I much regret I cannot make use of, 
because the Editors of the Archiv do not now see fit to publish this reply to K. E. Ranke's attack. As 
the reply was an endeavour to give an historico-critical account of the theory of skew variation it may 
interest readers of Biometrika, and will possibly reach in the course of time some readers of the Archiv 
flur Anthropologie. 

t "On certain Properties of the Hypergeometrical Series, and on the fitting of such series to 
Observation Polygons in the Theory of Chance," Phil. hlag. 1899. 
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170 Skew Variation, a Rejoinder 

worden according to my critics, it was actually written in 1895 and its substance 
given in academic lectures of the same or the following year; it was not published 
till soine years afterwards owing to that want of leisure for preparing matter for 
press which every teacher who has to lecture four hours a day will appreciate. 
Dr Ranke say7s that had the paper been written, it would niot have influienced his 
judgment. That is quite possible, and I only cite the nmatter here to indicate 
the tone adopted by my critics. 

A very similar instance occurs in Dr K. E. Ranke's treatInent of my fitting 
of Professor J. Ranike's data for 900 Altbaierisch crania. I used this example 
puirposely because it had already been used by Stieda. I should not myself have 
mixed, even for the cephalic index, J? and g data as Stieda did, but I wisbed to 
compare the results reached by the generalised curve with those reached by the 
Gaussian curve. I actually spoke of the resulting curves in nly memoir, whether 
the generalised curve or the Gaussian, as being "quite good for this type of' 
statistics*." My object of course was to show that the generalised method did 
not fail where the Gaussian succeeded, but surpassed it. Now how does Dr Ranke 
treat this instance ? He cites an example (actually insertedt by me 1) in a memoir 
by Palin Elderton giving the Ranke'sche Messungen as an illustratiorn of my 
miiethod of testing goodness of fit in the case of the normal cuirve. Undotubtedly 
as I said in 1894 the Gaussian curve is quite good for J. Ranke's data, but it does 
not follow that the Type IV. frequency cuirve does not give a betterfit, anld is not 
significant for constants which the Gaussian process cannot deal with. Now it 
was open to Dr Ranke to test the values given for the distance from mode to 
mnean, the skewness an(d the other conistants in the case of the Altbaierisch crania. 
I have given the probable errors of these constants in my memoir: On the Mathe- 
mnatical Tlieory of Erri-ors of Jtdgment, etc., Philosophical Transactions, Vol. 198 A, 
see p. 278. Had Dr Ranke fairly tested my results he wouild have found that 
the asymmetry was not significant, anid that the mode sensibly coincided with the 
mean, but that the constant 3,B, which should equal 3 for the normal curve, has a 
value 3'65 with ia probable error of olnly about 11. Now this constant and its 
probable error have no r-elation at all to any particular theory of variation. 
They follow quite easily from the general Gaussian theory. It is accordingly 
extremely imiiprobable that Ranke's measurements are triily given by a Gaussian 
distribution in all their features. The fact that 12 is > 3 points to an emphasis 

* p. 389. 
t The same remark applies to the illustrations of goodness of fit given by Fawcett, cited in footnote 

Ranke u. Greiner, p. 326. The reference to Powys is inexact; his paper shows that in at least three 
cases the Gaussian curve is quite impossible. Dr Macdonell's work on the English skull shows that at 
least in 4 out of 13 cases the asymmetry is significalnt. " Die englische Schule," by which Dr Ranke 
refers to workers ini my Biometric Laboratory has not discovered a truth which had escaped me; they 
have shown that the Gaussialn curve is of wide applicability, but not of universal truth in anthropometric 
measuremenits. This result was reached with a view to testing whether the theory of inheritance, so far 
as it is based on the Gaussian theory, might be safely applied to human characters. In testing this 
validity of the Gaussian theory, it was of course needful to have a more general theory from which to 
determine the chief physical constants involved in non-Gaussian distributions. 
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of the modal frequienicy and to a reduiction of the extreme frequencies which are 
inconsistent with the Gaussian curve. This is actually shown in my Plate 11 
and referred to in my text, and corresponds to a sensible deviation fromll the 
Gaussian law. It was open to Dr Ranke to attribute this exaggeration of the 
modal at the expense of the extreme variates to heterogeneity in the material. 
But he had no right when the material fox a judgment was before him in my 
memoirs to conclude that, because the general distribution of frequency was not 
on the average incompatible with the Gaussian law, the deviation of a particular 
constant of the distribution from its Gaussian value might not be most significant. 
This case of the deviation of the Ranke's measurements from the Gauissian form 
is of special interest, for it is not one of asymmetry, but of a non-Gaussian type 
of symmetry. Dr Ranke suggests that because iny test of goodness of fit shows 
that the Gaussian curve is "quite a good fit," mny generalised method of dealing 
with frequency is idle. Assisted by a mathemnatician he ought to have recognised 
that the expression /2- 3 (which measures whether the frequency towards the 
mean is emphasised more or less than that required by the Gaussian law) had a 
sensible value, and that my method not only led to the discovery of this deviation 
but provided a method of allowing for it in the description of the frequency. Had 
Dr Ranke read my memoir on errors of observation (Phil. Trans., Vol. 198 A, 
pp. 274-286), he would have recognised that the two tests (a) whether special 
physical constants of the distribution satisfy the Gaussian law, and (b) whether 
the general distribution of frequency satisfies within reasonable limits the 
Gaussian law, are not necessarily identical. Finally had he concluded that 
(b) for the Altbaierisch crania was satisfied, but not (a), and that there was thus 
no necessary discrepancy between my memoir of 1894 and the statement in 
Palin Elderton's paper of 1900, he might indeed have fallen back on his customary 
assumption that when frequency is not Gaussian it is heterogeneous. But at any 
rate had he adopted this course he would have avoided the appearance of criticising 
his author without endeavouring to understand what the meaning of his investi- 
gations was, or striving to elucidate them by a study of his other memoirs on the 
same subject. 

I do not wish to say anything further on this point. I want merely to 
indicate by these two out of several cases that the reader must not look for a 
really impartial statement of my position from D)rs Ranke and Greiner. I am 
quite unable to account for the peculiar tone they have at times given to their 
criticism. 

(2) With this preamble 1 should like to divide my reply under these headings: 

(A) The need for generalised frequency curves, even in anthropological 
science. 

(B) The nature of the assumptions made in the Gaussian theory and their 
insufficiency. 

22-2 
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(C) The hypotheses made to generalise the Gaussian law. 

(i) Poisson, Laplace and the early writers. 
(ii) Francis Galton and D. McAlister. 
(iii) Fechner. 
(iv) Edgeworth and Kapteyn. 
(v) Genleral Results for Asymmetry*. 

(D) The criticisms of my theory by Dr Ranke and Dr Greiner and the reply 
to be made to them. 

A. The need for Generalised Frequency Curves, even in Anthropological 
Science. 

I have already pointed out that even Prof Ranke's measurements are not 
fully in accordance with the Gaussian theory-for the odds are great against a 
quantity exceeding its probable error more than five times. It is perfectly true 
that the English School have found that many characters, especially craniological 
characters, are for practical purposes sufficiently described by the Gaussian curve. 
But it is equally true that they have found other cases in which the deviation 
from the Gaussian curve is significant, and that they have only been able to 
measure this significance because they had a wider theory to base their researches 
upon. Dr Ranke entirely disregards the statements of Miss Fawcett and 
Dr Macdonell on this point. Both find a definite number of cases, the one 
in Egyptian skulls, the other in English skulls, in which the deviation from the 
Gaussian law is definitely significantt. Both conclude as I have done that in the 
case of many characters for a variety of practical purposes the Gaussian curve is 
sufficient; this is, however, not a theoretical justification of the Gaussian curve, but 
an argument in favour of its empirical use in a certain definite number of cases. 
Dr Ranke may of course say that the exceptions that we have found are due to 
heterogeneity of ouIr material. If so he must face the difficulty that the same set 
of crania can be homogeneous and give the Gaussian curve for their length and be 
heterogeneous for their breadth, deviating therein largely from the Gaussian cuirve. 
If he asserts that this is quite possible then he must meet the further difficulty 
that they can be homogeneous for their cephalic indices, which are based upon the 
ratio of the supposed heterogeneous to the homogeneous material! The fact is 
that no unprejudiced observer can examine the constants by which we have defined 
the deviations from the Gaussian law without seeing that they present every 
variety of value, starting from the values to be expected on the Gaussian theory 
and rising to values which are absolutely incompatible with any Gaussian theory 
at all. In fact he must come to the conclusion that some theory is absolutely 
needful, which will provide a curve or series of curves capable of representing the 

* I have left out of consideration the general method of Thiele, followed in Germany by Lipps, 
because I have dealt with these authors in a recent memoir. 

t Biometrika, Vol. i. p. 443, and Biornetrika, Vol. iII. p. 227. 
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fundamental deviations of any distribtution from the Gaussian curve and deter- 
mining whether these deviations are significant or not. Looked at solely from this 
staudpoint-which I am very far from accepting-my curves provide an enmpirical 
series which accurately measures the deviations from the Gaussian law and enables 
the enquirer to determine how far that law is applicable. Eaclh one of them passes 
into the Gaussian curve if that curve is the better fit to the observations. This is 
not true of many of the other remedies which have been proposed to supplement 
what I venture to call the universally recognised inadequacy of the Gaussian law. 
They cannot as we shall see in the sequel effectively describe the chief deviations 
from the Gaussian distribution. 

The chief physical differences between actual frequency distributions and the 
Gaussian theoretical distribution are: 

(i) The significant separation between the mode or position of maximum 
frequency and the average or mean character. 

(ii) The ratio of this separatiotn between mean and mode to the variability 
of the character-a quantity I have termed the skewness. 

(iii) A degree of flat-toppedness which is greater or less than that of the 
normal curve. Given two frequency distributions which have the same variability 
as measured by the standard deviation, they may be relatively more or less 
flat-topped than the normal curve. If more flat-topped I term them platykurtic, 
if less flat-topped leptokurtic, and if equally flat-topped mesokurtic. A frequency 
distribution may be symmetrical, satisfying both the first two conditions for 
norrnality, but it may fail to be mesokurtic, and thus the Gaussian curve cannot 
describe it. 

The Gaussian curve is usually fitted from the mean square deviation, but it 
may also be fitted from the probable error, or the mean error, or again front the 
mean fourth power of the deviations-,u in my notation. Whichever method is 
adopted we ought to get the same result within the errors of raildom sampling. 
When I first began to describe frequency data by the normal curve, I was startled 
to find the very large number of cases in which these different processes led to 
Gaussian curves, differing widely from one another, i.e. beyond all the limits of 
probable error. I was soon led to see that ill actual statistics two distributions 
might have equal total frequency, be sensibly symmetrical, and have the same 
standard deviation and yet differ largely in their flat-toppedness. The mesokurtosis 
of the Gaussian curve is not a universal characteristic of frequency distributions. 

When we test a theoretical distribution of frequency against observation, we 
may find an excellent fit for the total distribution and yet the distinction between 
mode and mean, the skewness, and the deviation from mesokurtosis may be most 
significant. The reason for this is that the test for goodness leaves a margin of 
variation which may be due to random sampling, or to the non-normal character 
of ail important constant of the distribution. For example, 10 coins are tossed 
a hundred times, and the proportion of cases with five and more heads is somewhat 
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in excess of the theoretical distribuitioil 10()I( -)'?, but within the limits of a 
random sample. lt is quite conceivable that if the retturns for each individual 
coin were analysed it wouild be foun(d that those of one exceeded in proportion of 
heads the limits of random sampling, and that the coin proved to be loaded when 
delicately tested. Thus as I have shown in mny menmoir on errors of observation, 
we have not only to test for general goodness of fit, but also to consider the 
probable errors of the fundamental constants of the distribution. Because the 
general distribution of frequency is given within the limits of random sampling 
by a normal curve it does not follow that the system will be mesokurtic. 

Consider for examnple the two curves: 

( 2 mllN r (ml+ L) = Y, {1 
- 

2f-(mij)} , wiiere: y N F(1 + 2) 20' J2') ~ ~ ~ V27O'n.o.(ml +DF (MI)' 
and 

X2 -(M2+1) N r (m2 + 1) 
Y = Y2 1 + 2aD2 (rnD} , whiere: Y.= N F( r(m+i) 

They are both symmetrical, they both for any value of n., o0- m)2 which is moderately 
large are indistinguishable in appearance from the Gaussian curve. If they 
represented actuial observations, we should try to fit them (i) by finlding the area, 
(ii) by finding the standard deviation. The former for both culrves is N and the 
latter for both curves is v-. Hence we should fit themi with 

N -X2 

y=-----V e 22 .......... (i). 

But this in both cases would be inicorrect. Both cases would only pass into the 
Gaussian curve when nt, and m., are theoretically infinite, practically large. No 
Gaussian fitting could distinguish one of these curves from the othier. Why?- 
Because it does not proceed further than the standard deviation. To measure the 
difference between eithier of the above distributions and the Gaussian culrve we 
must proceed to higher moments. Let Nw,4,. be the nth moment about the mearn, 
i.e. if .i be the mean value of x, 

NH,ul =fy (x -.7 )11dx, 

where the limits of the integral are those of the range. Then if f2 = /u1', we 
easily find: 

3n =(82 -1) 3 (823-1) 2(13-3) nd Mn1= .-13 

(r (38 _ 3 - 82 or 13I2- 3-~-3 - 313=23 

Thus we reach one of the conditions for the Gauissian curve, i.e. 132= 3, in either 
case when m, and mn2 are considerable, but if 132 be > 3, ml will be positive an(1 if 

2 < 3, m,, willbepositive.Nowsince ml- w . rnhan1? + I 132 < 3, n2 will be positive. Now since1 is always less than it is easy rn+1+ rn- 
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to show that in the neighbouirhood of the origin y/y, is always greater than y/y2 
for the same value of x. In other words, the first curve is flatter topped than the 
second, and both lie on different sides of the corresponding Gaussian curve. The 
first curve type is platykurtic and the second leptokurtic. 

Now there is nothing to prevent us fitting curves of the above types to any 
series of frequency observations. Supposing those observations are truly normal, 
then m1 or m2 will be so large that /.2 = 3 within the error of random sampling. 
Now the probable error of /2 for a Gaussian distribution of total frequency N*: 

/ 
=-67449 V ' 

and if 12 differs fromn 3 by several times this probable error, it is absolutely 
impossible to treat the system as mesokurtic. In any such case one or other of 
the above curves must give a truer representation than the Gaussian curve. It is 
easy to show that for leptokurtic distributions the maximum frequency is greater 
than that given by the normal curve and for platykurtic distributions it is less. 
The Gaussian curve compels us to assert that the product of the maximum 
frequency into the standard deviation is a constant (i.e. yoO = N/V/27r). This 
condition of mesokurtosis is unfulfilled-within the limits of random sampling 
for a great variety of frequency distributions. 

Further it is absolutely certain that divergencies from the Gaussian or normal 
curve are not exclusively in the direction of either platykurtic or leptokurtic 
distributions. Thus the symmetr?ical binomial is essentially leptokurtic, i.e. 182 < 3, 
and therefore cannot be used for a great variety of distributions. In general all 
skew binomials with p > -2113 and < 7887 are leptokurtic; outside these limits 
they are platykurtic. 

The test whether a curve satisfies the mesokurtic condition has nothing to do 
with my particular views on frequency, it is merely deduced from the general 
principles of probability and is a test of normal distribution. Of course there are 
many other conditions to be satisfied, e.g. p should equal (2n - 1) 2 .But as 
I have shown elsewhere the probable errors of the high moments increase so 
rapidly, that it becomes easier and easier to satisfy such conditions within the 
errors of random sampling, anid without very large nuinbers they are of little 
practical value. 

The following are significantly platykurtic distributions: 

The Maximum Breadth in English g skulls, 
The Nasal Breadth in English J skulls, 
The Cephalic Index of Altbaierisch skulls, 
The Auricular Height in ? Naqada skulls. 

* Pearson: Phil. Trams. Vol. 198 A, p. 278. 
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As a rule the data available in craniological investigations are too sparse to 
give any real test of inesokurtosis, and this is the true reason why we must content 
ourselves with the Gaussian curve. 

Again Mr Powys found out of twelve frequency distributions for the stature of 
men and women that 11 were leptokurtic and the twelfth essentially inesokurtic. 
This tendency to leptokurtic distributions-which can hardly be due to chance- 
is actually given by Ranke and Greiner as a case in favour of the Gaussian curve! 
(Annmerkung S. 326). They fuirther cite Fawcett and Lee in the following 
mannier: 

Ill der ati letztel Stelle zitielrten Arbeit i,t der Nachweis einer bestimmt gerichteten 
Aspinmetrie fuir die Mehrzahl der AMasse uild zwar in der nach Fechiner zu erwartenden Richtung 
besonders beachtenswerth. 

They do not say that of -the 24 curves given by Fawcett and Lee 14 are 
leptokurtic and that Fechner's curve can only represent platykurtic distributiolls. 
They do not draw attention to the fact that the Fechner curve would be impossible 
for the whole of Powys' stature data, anid for 12 out of Macdonell's 26 curves for 
the English skull! In other words, if the Abweichungen of Fawcett and Macdonell 
and Powys' data are to be used as aln argument at all, 38 out of these 62 
distributions diverge from the normal curve in a manner which cannot possibly 
be represernted by Fechner's theory' 

If we turn from the condition for mesokurtosis to those for differentiation of 
mode and mean and for skewness we meet other considerations. So far we are 
not dependent for anything we have said on any theory of frequency other than 
the Gaussian. On that theory 2= :3 and if the difference 82-3 be significant 
the distribtution cannot be Gaussian. If we want to distinguish between the mode 
and the meanl, we cannot start fromii the Gaussian theory, because that theory 
supposes the two values absolutely the same. On the other hand if we consider 
asymmetry, we ought to have, within the limits of random samnpling, all the odd 
moments zero, i.e. 

3 =5=/7= 2n = -i= 0. 

Now it is of very little practical value testing the high moments because their 
probable errors are excessive. The probable error of p, for the normal curve 

=o67449 6a3 and of I = -67449 9N o5, or in terms of u- as our unit is 

thirteeni times as large. These are the gross errors; the percentage probable 
errors are of course infinite. As a rule it is hardly worth testing these conditions 
beyond 3. We determine whether the third moment is zero within the limits of 
random sampling. If we wish a relative magnitude we can take 8,=, 2/,p23, a 
quantity which occurs over and over again in frequency discussions. The probable 
errol of 81 is obviously zero for the normal curve, because 8, is of the square 

of the order of small quantities. The probable error of V13, = 67449 IV-, and 
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V/,8, for all truly normal distribtutions ought lnot, to differ by more thani two or 
three tinmes the above expression from zero. 

We can form other expressions involving 3, and /2 and ask what their value is 
for the Gaussian curve. We can calculate their probable errors, and determine 
whether the given distribution satisfies the Gaussian value within the limits of 
random sampling. 

Thus I take the expression: 

1 1(182 + 3) 1 /V, (6 + 82 - 3) 
X 2 5,a- ,6 -39 2 6?5(132-3)-6f .(.i). 

Clearly this expression vanishes for the normal curve, and =1s,8, nearly when 

V1,8, and /82 -3 are not very large, i.e. when we have not a very wide deviation 
from normality. The probable error of this expression, if the distribution be really 

nornmal, is -67449 i 

Again, coinsider the expression: 

i5,B- 6A ,1 - 9 ...................... (iii). 

This is a length which vanishes, if the distribution be truly normlal. Its probable 

error is 67449 a- a in the case of the Gaussian curve, and accordingly d 

should not differ from cr by more than two or three times the above probable 
error. 

Now let us write n = ,% - 3. Then it is absolutely impossible for any 
distributioni to be looked upon as Gaussian unless X, d and q are zero within the 
limits of ranidom sampling. These limits being deduced from their known probable 
errors. 

Now it will be asked why choose suich an expression as X instea(d of the simpler 
,VI3S ? The answer is quite simple. We want, to determine whether the mode 
coincides with the mean or not, and we cannot (i0 this on the basis of the 
Gaussian curve where no distinction is made betweein the two. We muist take 
some curve which is not Gaussian to determine this important quantity from. Now 
the equation to the Gaussian curve is 

(X-m)2 

y = yo e 2cr"U 

where m is the mean value of x and c the standard deviation, and we have for its 
differential equation: 

I dy x-m 
ydx aT 

13iometrika jv 23 
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Now if we assume that the actually observed character is not x but X, and that 
X is some functioni of w, ve shall not in plottitg the frequencies to X obtain a 
normal curve, but we ouiglht if Y be the ordinate of this curve to have 

YdX=ydax or Y=y dx 

Takinig logarithmnic differentials 

idY ldydx d2x /dx 
Y dX y dx dX + dX 

1 dm d2) + dx 
srO ( ) X2 dX2 gdX' 

Assuime x - i =f (X) and we find: 

I d}' X 
irydX2?oQF(X).* * X X @ @ * s s s * - - s s * * (iv), 

where F (X) = Xf ' (X)/{ f (X) (f ' (X))2 -_o 2f" (X)}. 

The form has beeni so chosen that the origin is the mode, i.e. dY/dX vanishes 
with X. The proposal to thluls generally transform the Gatussian curve is due in 
a qLite different form to EdgeAvorth*. Kapteyn following Edgeworth and without 
any acknowledgmenit takes: 

f (X) = ,8 (X + K)q 
where /3, K and q are constants to be determined. 

He therefore puts: 

F (X) = __ __ X (X + K) F ) 
o2 (q-1)- _)qf (X + C)q - q/2 (X + K)2q 

Tlis is a somewhlat comnplex expression. The resulting frequency curve is 

Yr= Y0 (X + K)q-1 e-2ao . ....................... (v), 

and has been suggested by Kapteyn as a general form of the skew frequency curve. 
We shall consider it later. 

Galton and McAlister as early as 1879 took 

f(X) =b log - - m, a 
where b anid a are constants. Ranke anid Greiner, without apparently knowing 
the history of research in this field, take the same valhie and attribute to Fechner 
the well-knowvn Galton-McAlister curve of the geometric mean which results. 
We find 

F (X)= X2 X XX 
TO2 + b2 log - 

* He lias developed it in a long, series of papers published in the R. Stqtistical Society's Journal, 
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l dY I b2 Xx whence d =- + + 2 Ioga)' 

and y yl_b2, (og? X)2 
.... 

...(vi). 

Edgeworth himself has mnade other suggestions as to suitable values for f(X) 
and accordingly of F(X). Now it is quite clear that assuming the character to 
be a definite function of another character which really obeys the normal law, 
there is no more reason for assuming one form of f (X) than another, because 
we are in absolute ignorance of the nature of this functiotn. Kapteyn's, or 
Edgeworth's, or Galton's are equally valid, and the only test of their relative 
suitability lies in the extenit to which the resulting curves fit actual data. 
Clearly to assume x=f(X) is to assume the actual frequency distribution to 
follow any law whatever. It is only screening the generality of the assumption 

y = 4 (x), 
where 0 is unknown, by an appeal to the supposed universality of the Gauissian 
curve and by a perfectly arbitrary selection of the subsidiary fiunctionf. 

But there is another manner of looking at this proposal. Returning to the 
equation 

1 dY X 
YdX oo2F (X)' 

and writing, o2 = 0- F(X), we see that it becomes identical in formii with the normal 
equation, i.e. 

1ldY X 
Y dX = . 2. 

In other words the distribution of any frequency may be looked upon as given ir 
the neighbourhood of any point by a normal curve of standard deviation o-0VF (x). 
Hence the cornception arises that if the cauises which produced variation in the 
immediate neighbourhood of any value xo of the character, were constanits for the 
whole range of variationi, we should have a normal curve of starndard deviation 
o0VF(x0)*. In reality there is a continuous and gradual change of the tendency 
to variability as we pass from one value of the character to a secondt. Analytically 

* This method of looking at the matter throws light on another point. If a curve be of limited 
range, it signifies that a=0 at certain points, or the-curve stops because we have reached the limits of 
local variation. In a curve of unlimited range it is not the capacity for local variation but the absence 
of individuals to vary, which is the special feature. 

t The matter is of such importance relative to some of Ranke's criticisms that I give another proof 
of equation (iv) here, based on the conception of an infinite number of infinitely small cause groups 
which Ranke considers can onily lead to the normal curve. Let Y,?4 be the (r + 1)th term of a binomial, 
skew or symmetrical, say for simplicity the latter, i.e. (I + IL),,. Then 

Yr-i-i Yr n+1-2r 

(Yr+1 + Yr) - (n + 1) 

Now let Cr be the distance between y,. and Yr?+ used in plotting these ordinates to obtain a curve, and let 
it be related to some small value co by the relation c,.=co x function of 7='co x 0 (r). Let X,. be measured 

23-2 
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we may look at it in this way: If 8cro be the variation in the neighbourhood of xi, 
then 8xo is not independent of x0, but correlated with it. We may have a perfectly 
conitinuous population from dwarfs to giants, but it does not follow that the actual 
tendency to vary of dwarfs and of giants is identical. All proofs that I have seen 
of the normal curve fail in this respect. They assume that the character x is due 
to a number of increments, which are due to an indefinitely large number of 
independent cause groups. They assume that 8c0 is not correlated with the already 
accrued value x0. All processes like those of Edgeworth, Galton, Kapteyn and 
Fechner are really devices for getting over this gradual change in the tendency 
to vary from point to point of the range. It appears to me best to directly 
acknowledge and face this difficulty by selecting a fitting function for F(X). 

If we drop now the distinction between X and z: as unniecessary we reach as our 
frequency equation: 

I dy_- _ 
y da a-52F(r)' 

or if we use Maclaurin's theorem for F(c): 

1 dy=------- -cr _ 

y dx cr01a+2 ( i + a 3,x + ax2 + a,1 .....(vii). 

Now I have shown* how to determine the successive constants o% ao2aL, 

2aa, etc. Further all these constants but a02 are zero, when the distribution is 
normal, and the series will be found to converge rapidly, when the distribution is 

from the largest term of the biniolmiial, then 4r = co l (n + 1) x function of r = co %/Qt + 1) f (r), say, and 
coniversely r=a function of X,/{co ,/(n+ 1)}. Divide both sides of the above equation by c,, which may 
be written on the left AX, anid we obtain: 

A y -X,. 
XAA' k -(" + 1)r 02f (r.) a (r,)/ {f(nj + 1)- A1 

Put roo=i sW+1 co and F (r) for the expression f(r) qp (r)/{r/(n+ 1) -} which does not become 
infinite with 2r= n +1, because X, and therefore f (r) vanishes for this value of r, and accordingly f (r) 
contains 2r - (in+ 1) as a factor. We then have: 

AY =__ Xr 
yAX TO2 F(Xr/cr5) 

Now make N infinite and co vanishingly small, then we have if 0- = i J(n + 1) co be still finite 
(LY X 
Yd.X - a,i (X/2 ) 

a result in agreement with the above investigationi. In other words this, and not the Gaussian curve, 
is the generalised frequenicy curve we reach if we directly abrogate tbe third Gaussian principle, that 
contributory increments of the variate are independenit. Of course the first two Gaussian principles 
simultaneously disappear. This view of the matter occurred to me many years ago, when considering 
Hagen and Crofton's proofs of the Gaussian law. It was expressed in my memoir of 1894 by the 
statement that we require curves produced by conditions in which the contributory cause groups are not 
independent, i.e. in which an increment 8x to the variate x depends upon the value of x, or is cor- 
related with it. My method of reaching such curves, however, was a direct appeal to discrete series in 
which such a condition was fulfilled. 

* "Mathematical Contributions to the Theory of Evolution, XIV." p. 6. Dulau and Co., London. 
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in the least approximately normal. Accordingly if we wish to get a good 
interpolation curve to determine the distance between the mode and the mean, 
we may assume 

y dy _o(l +a+ax.2). .. (vii) bis. 

In this case we discover with the previous notation, that 

_1 Vf/f1l2?3) 
2 5- - 61 - 9 

is the distance between mean and mode, and that x = 6Va31(i32?3) is the ratio 
15I82 - 6A81 - 9 

of this distance to the variability, or what I term the skewness, or the asymmnetry 
relative to the variability. 

If we leave out a2 we fitnd the skewness given by X- and the distance 
between mean and mode d-= LVI,31-. In practice these give fairly closely the 
same values as the fuller expressions above, and the fuller expressions are not 
numerically much modified if we include a3. Shortly we have got a very fair 
mathematical process of determining, the position of the mode and the degree of 
asymmetry. 

Now the constants of such a curve as (vii) bis are absolutely determined by a 
knowledge of a, 8 and 82; or looked at inversely they suffice to fix a-, 8 and /2. 

In other words the degree of kurtosis (/2 - 3), the skewness X and the distance 
between mean and mode-all most definite physical constanits-are at once fixed 
by a knowledge of the conistants of the curve, or oni the other hand, being known, 
they fix those constants. It is of course allowable to replace any one of the three 
by the variability of the system. The actual position of the inode and the total 
miagnitude of frequency suffice to fix the position and size of the curve. I have 
already called ,2 - 3= q the degree of kurtosis; I call d the modal divergence. 
Then unless 

ij, the degree of kurtosis be zero, subject to probable error, -67449 V24/N, 

X, the skewness be zero, subject to probable error, *67449 V1 .5/N, 
d, the modal divergence be zero, subject to probable error, *67449u V/1s5/N, 

no distribution can be legitimately described as normal or Gaussian. 

It would be of interest to know how far Ranke and Greiner have applied such 
tests to any series conitaining a large number N of individuals. I think if they 
had done so, they must have come to the same conclusion as the majority of 
statisticians that the normal curve has only a limited range of application. 

Of course if N be small, as in most craniological series, we find our probable 
errors so large, that it is not possible to say more than that for short series the 
Gaussian curve may roughly describe the result. But for long series in economics, 
sociology, zoology, botany and anthropornetry the Gaussian curve over and over 
again fails. If in all these cases Ranke and Greiner assert that the material is 
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heterogeneouts they are merely arguing in a circle. The distributions are as 
continuous and smooth as those which occur in the case of the Gaussian curve, and 
they occur for characters in the sane group of individuals which present for other 
characters the normal distribution. 

Thus the length of meropodite of right claw in Gelasimus pugilator* is quite 
sensibly normal, butt the length of the carpodite of the right claw is almost as 
certainly platykurtic and skew. If two characters are normal, a third character 
which is their difference, whether they be correlated or not, should1 have a normal 
distribution, yet in the case of Gelasirnus pugilator for the whole series of 
measurements the difference distributions are essentially platykurtict. 

The size of the disc in Ophicoma nigrac has a modal difference in tlhe distribution 
of 1000 cases of *271 mm. and the probable error on the basis of a normal curve 
is *056. The deviation is thus five titnes its probable error and the asymmetry 
undoubtedly significant. 

The outer diameter of Ar-cella vulgaris ? in 504 cases gives a modal difference 
of 3-226 mikrons, and the probable error of this difference is only *211. The 
asymmetry is therefore undoubtedly significant. 

The distance between the mean and mode in the case of the length of shell of 
Nassa obsoletall from Lloyd Point, Long Island, U.S. was *68 mm. for 368 individuals, 
the probable error of this inodal difference was *08. The asymmetry is therefore 
significan t. Other characters of N. obsoleta were as definiitely asymmetrical, while 
some froin exactly the same individuals were sensibly normal. 

The transverse arc in J Naqada skulls has for 115 individuals a modal 
difference of 2:34 mm. and the probable error of this difference is *78 mm., or it is 
probably significant. Yet the breadth of the male Naqada skulls is significantly 
symmetrical. 

The height/length index of 117 English $ skulls has a modal difference of *85 
and a probable error of only -22, the skewness is therefore sigrificant. 

The same is true of the distribution of many internal organs in man. For 
example, if we exclude recognised diseased hearts, we obtain a markedly skew 
distribution such as is giveni in the broken line of Fig. 1. This is for 1382 heart- 
weights. If this be supposed to be due to the great variety of ages, we have only 
to look at the continuous curve for hearts of 358 young adults, 25 to 35, to see the 
same asymmetry. This is drawn for four times the scale. 

* G. Duncker: Biomitetrika, Vol. iI. p. 313. 
? There is another point to which I will only refer. briefly here. If characters were always 

distributed according to the Gaussian law the regression curves must be straight lines. The generalised 

Mendelian theory of determinants I have developed makes them, however, hyperbolas, and I have given 

instances in a recent memoir of a va;riety of curved regression lines 
+ McIntosh: Biometrika, Vol. ii. p. 470. 
? R. Pearl and F. J. Dunbar: Biornetrika, Vol. iI. p. 327. 

11 A. C. Dimon: Biomlletrika, Vol. iI. p. 29. 
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Lastly if we consider that the question of health determines the skewness, we 
have in the dotted curve the weight-distribution of 699 hearts stated to be 
"healthy." We see that there is still the same essential skewness; the pathologist 
has merely cut off a small portion of the tail on the left and f4r too much of the tail 
on the right, i.e. unusually big hearts were discarded as necessarily " unhealthy." 
The form of the curve undoubtedly indicates that many of these large hearts are 
abnormal, but any continuous curve fitted to the reinainider, the " healthy hearts," 
would not only be significantly skew, but wotuld project a long way into the 
portion of the tail discarded as " unhealthy." The list of asymmetrical distributions 
might be indefinitely extended, but these must suffice to indicate that asymmetry 
cannot be lightly put on one side in the manner adopted by Ranke and Greiner. 
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FiG. 1. Frequency Polygons of Weight of Heart in Males (Greenwood*). 

I. *--* 25 to 55 years. Without specific disease of heart. Number of cases 1382. 
II. o-o 25 to 35 years. Without specific disease of heart. Number of cases 358. 
III. * -X... 25 to 55 years. Definitely sound hearts. Number of cases 669. 

The scale is four times as great for II. and twice as great for I1I. as for I. 

If we pass to discrete variates, we find as large a inumber, if not a larger 
number of distributions in which skewness is well marked, for example, fertility 
in the Aphis Hyalopterus Trirhodust, fertility in man+, fecundity in race-horses?, 
and fertility and fecunidity in mammnals generally. I illustrate this with an 
example of fertility in English mothers in Fig. 2. It will be seen at once that 
nio normal curve could be used to describe this distribution. It is equally 

* Biomnetrika, Vol. II. p. 45 et seq. 
t Warren: Biometrika, Vol. i. p. 127. 
+ Pearson: Phil. Trans. Vol. 192 A, p. 257, and The Chances of Death, Vol. I. p. 63, 
? Pearson: Bionietrika, Vol. I. p. 292. 
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impossible also for a curve of the McAlister-Galton type, for the simple reason 
that that curve has high contact at both ends of the range. Now I contenld that 
the anthropologist who either neglects such matters as human fertility, or confesses 
that he has no means of succinctly describing their distributions-and as long as 
he sticks to the Gaussian curve he certainly will not have-is simply putting on 
one side a fundamental factor in the science of man. Ranke lays great stress on 
homogeneity. He does not, however, clearly define what he ineans by the term. 
Apparently any series which follows a Gaussian curve is to him homogeneous, any 
other series is not. I should be glad if he would then consider any craniological 
series, say, of adult crania. This will involve crania of adults from perhaps 25 or 30 
years of age to 50, and these are rather narrow limits considering our paucity of 
material. Now our data show that the correlation between head measurements and 
age maybe of the order of about -1 to -2. After about 25 to 28 years of age 
in man, there is a continual shrinkage not only of stature but of skull capacity, 
brain-weight, circumferences and diameters of the skull. Uinder the circumstances, 
what right have we because the Gaussian curve is obtained to call this material 
"homogeneous"? I will go ftirther; suppose we could, and we can, obtain the 
measurements on one or two thousand individuals of the same age; are these to 
be considered as a homogeneous distribution? My reply will be, in man the 
order of birth is an essential feature in determining the dimensions of the physical 
characters. My investigations show that physique and health are sensibly 
correlated with the position of a member in his own family. In mammals others 
have shown that the physique of an individual is sensibly correlated with the 
number of members born in that individual's litter. Now with these facts before 
us what stress can be laid on Ranke's conceptions of homogeneity? The practical 
anthropologist requires curves which will successfully graduate his data. Only on 
the basis of such graduations can he allow for the influence of disturbing factors 
like age, order of birth, season or special position of production in the organism. 
I take this very case: How is it possible to allow for the influence of order of 
birth, unless you know the size of families or the distribution of births within the 
community? It can only be achieved provided the distribution can be represented 
by a few simple constants which allow of definite mathematical handling. 

Ranke and Greiner say with considerable asperity that my method of 
determining the range from given data can be of no service. Yet take this very 
case of size of families. In the English middle classes for 4390 instances, I find 
that the observed limit is 17, but fitting a skew curve the range is determined as 
22 children running practically from just before 0 to over 21 births (Fig. 2). For 
Denmark by the same process in 34,000 cases the theoretical range is 26 and the 
observed range 22*. I then proceeded to take statistics for the Argentine 
Republic, and found for the town of Buenos Ayres, 27,510 births, that the range 
of the curve was from *25 to 36 61 births, or 37 possible births. The maximum 
observed in these 27,510 births was 23. But among the South- and Mid-American 

* The Chances of Death, Vol. x. Reproduction Selection. 

Biometrika iv 24 
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populations cases of 24 (Trinidad), 26 (Cuba), 27 (Nicaraguia) and 34 (Colombia), 
the women beginning to bear at 13 and continuing to .50, have been recorded! 
It will, I think, be realised by the imnpartial reader that Ranke's statenments: 

Fiir deii Ainthropologen ist also nur das Gaussehe Gesetz voii Wichtigkeit. Fur seilie 
Probleme beansprucht es aber auch o6llige Giiltigkeit (S. 327) 
and 

So haben anderseits auich die Werte von VariationsurmfUngen die bislang auifgeflindell sind, 
keinerlei weitere Erkenntniss gebracht (S. 324) 
fall wide of the mark. Ranke has either very imuch circunmscribed the field of the 
anthropologist, or he has not in this, as in other cases noted in his paper, studied 
the literature of the subject, or finally he has disregarded the results reached. 

It is quite true that the range cannot always be determined and being 
determined does not always give a very good result. The reasons for this are not 
far to seek. For example, If a discrete quantity has for its minimum 0 units the 
start of the curve must naturally fall on the negative side of the origin-since its 
area measuires frequency between - *5 and + .5. Ranke would probably find 
something mysterious in this "reichen oft ins Negative." Actually it is to be 
expected, especially if due allowance be given for the probable error of the range. 
In most biomyetric statistics, we cannot as in the case of births deal with 20,000 
to 30,000 cases and get small errors for ouir constants. We have only perthaps 500 
to 2000 cases and even less than this in craniology. This may denote an error of 
14 to 17 p.c. in the calculated range, and it is quite possible that the range may 
"reichen ins Negative." Take the case worked out by me* of the number of 
Mullerian glands in the forelegs of g swine. The range theoretically calculated 
is 18 glands with a probable error of + 2-54; the start of this range ought not to 
have exceeded - a. It is actually - -82 with a probable error of *16. The actual 
skewness of this distribuition is *31 with a probable error of *02. The distribution 
is accordingly significatntly asymmetrical. 

I have cited these cases as sufficient for our present ptirpose, buit there are 
many other cases in which the discovery of the range has been of biological or 
special anthropological interest, e.g. the earliest appearance of certain diseases ir 
childhood, the range of cancer attacks, the first occurrence of signs of puberty, etc. 
It has been applied also effectively to a number of zoological and botanical data. 
A more striking case, perhaps, of usefulness is the limit to high barometric pressure 
obtained by dealing with the frequency statistics of barometric height at series of 
stationst. Throughout the whole of the stations of the British Isles dealt in, 
there is sensible skewness of distribution, and with one Irish exception, which is 
sensibly mesokurtic, the whole series of culrves are platykurtic, and this deviation 
from nornmality cannot be chance, but is a significant character of the frequency 
distributions. In these cases the limit to high pressure has been folund, and appears 
to be a constant of considerable physical importance for the local climate. 

* Pearson and Filon: Phil. Tl'rants. Vol. 191 A, p. 289. 
t Pearson and Lee: Phil. Trans. Vol. 190 A, p. 423 et seq. 
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I again am forced to consider that Ranke has not been aware of what has been 
published, still less what has been done in this matter. He appears to base his 
conclusioins chiefly on my first paper on skew-variation, and he has not noticed the 
fact that being the first paper much has to be corrected in the light of inore receilt 
work in the past ten years. Ranke speaks of the writer's: 

Andwendung von allerlei grbsseren uind kleineren Anderungen in seiner Methode ad hoc in 
eine fur den vorliegenden Zweck niclht zu unwahrscheinliche Form bringen (S. 324). 

Now I contend that this gives a grossly unjust description of the paper in 
question. Had Ranke read recent literature, he would have been aware that the 
great difficulty with frequency distributions is to obtain the true values of the 
" moments" from records which mnerely give data for arbitrary " Spielraume," often 
far too large and usually selected by the observer without any regard to the needs 
of the computator. My method is one based on the method of mnoments, but to 
deduce the moments from given data is the real difficulty which Ranke never for an 
instant seems to grasp or at anly rate refer to. The standard deviation (which he 
appears to consider sufficient for anthropologists) will vary, and often very sensibly, 
with the nature of the grouping of the data. This difficulty was very present in 
my mind in 1894, and is constantly referred to in mny memoir, the "allerlei groissere 
und kleinere Anderungen in seiner Methode" are no changes in method at all 
but attempts to obtain some approximation to the true moments of the data. It 
was not till 1898 that Sheppard showed the correct manner of calculating the 
moments from the raw data in his importart memoir oni frequency constants*, for 
one type and one type only of frequency distribution. The curves calculated by 
Sheppard's method, now in general use, would give better results undoubtedly 
than are to be found in my memoir of 1894. Further, however, Sheppard's 
method applies only to curves with high contact with the horizontal axis 
at both ends. It leaves us still in doubt as to how to find the moments of 
curves, which cut the axis at the end of the range or are asymptotic at one or 
both ends to the vertical axis. At such ends of the range, the real solution lies 
in recording the frequency for very small elements, but this was not provided in 
any of the statistics which were then before me. It is just these cases of limited 
range at one or both ends which present difficulty in the determination of the 
moments. The difficulty will be familiar to all statisticians, if it has escaped 
Ranke. To some extent it is met in nmy memoir on the systematic fitting of curves 
issued in April, 1902t. Yet granting all these difficulties what do we find in my 
memoir of 1894? An anialysis of the cases in which range is dealt with seems 
justified by the charges made: 

Example I. Range determined of Cambridge Barometric Heights. There is 
nothinig physically improbable in the result. 

Example VI. Range found for enteric fever runs from - 135 years to about 
385 years. The probable error of the range is not given, but the whole difficulty 

* Proc. Lontdont Math. Society, Vol. xxix. p. 353 et seq. t Biometrika, Vol. i. p. 265. 
24-2 
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turns uipon the great changes introduced into the range by different methods of 
calculating the lmoments. More recent investigations, in which the sexes are 
separated, the moments more accurately determined, and larger numbers dealt with, 
give far better results for zymotic diseases. I presuime that one character being 
age, however, Ranke and Greiner would dismiss these data from consideration 
under any circumstances. 

Example VII. Guesses at 9 tints. Possible range 1 to 9, i.e. curve to run 
from *5 to 9.5. Observed guesses run from 1 to 8. Theoretical range of 11 instead 
of 9. The paucity of the observations gives a probable error of at least 20 to 30 
per cent. in the determination of the range, and the result is rather better than 
might have been anticipated. 

Example VIII. Ratio of forehead to bo(dy length in Carcinus moenats, observed 
range 30, calcuilated range 51. This range is probably not very close but it is 
not in any way that I can see impossible. The material is probably dimorphic. 

Example XI. H. de Vries's data for RIanunculus btlbosuts. Actually observed 
range 5 to 10 petals. Calculated range 5 to 11 petals. 

Examcple XII. H. de Vries's data for a race of Trifolium repens. Actually 
observed range 0 to 10 high blossoms. Theoretical range in complete agreement. 

Example XIV. Pauperism percentages for 632 cases. Observed range 18 for 
the year 1891 dealt with. Calculated range 31. This range gives 2 units of 
negative pauiperism. Its probable error is, perhaps, 14 per cent. 

It will be seen that ouit of the seven examples in which range is calcuilated only 
three reich en ins Negative, and that this reicihen is well within the limits of the 
errors arising on the one hand fromn random sampling and on the other from the 
defective methods of determnining the moments, which were alone available in 1894. 
While quite appreciating the honouir done me when other workers use my methods, 
I must decline to be responsible in any way for their application of my formulae. 
I have so often found that their failure to fit my curves is due to a misapprehension 
of miy methods or to actual errors in arithmetic, that I have long given up any 
attempt to set such matters right. The frequent assumption made that statistical 
methods can be applied without adequate mathematical training is the source of 
most of the slips in this matter*. 

So far then I think we may conclude that Ranke is completely unjustified both 
in his statement that the Gaussian curve fully describes all the frequenlcy that is 
of importance to the biologist, and in his attempt to discredit any result of 
scientific value which flows from endeavouring to measuire such differernces from 
the Gaussian law as we find in the distance between mode and mean, the skewness, 
the kurtosis and range of many actuial frequiency distributions. 

* A good illustration, by no means unique, of this is F. Reinbhl: Die Variation im Andrkceum)t cler 
Stellaria MlIedia, 1903. He finds it impossible to fit certain distributions with my curves, owing to 
ignorance of the full literature and to faulty determination of the moments. He then argues from this 
want of fit to biological conclusions. 
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All the leading statisticians, from Poisson to Quetelet, Galton, Edgeworth, and 
Fechner, with botanists like de Vries, zoologists like Weldon have realised that 
asymmetry must be in some way described before we cani advance in our theory of 
variation. In innumerable cases the important quantities measured by , X and d 
actually exist; these have each their physical significance and they must be 
found. It is perfectly open to Ranke and Greiner to criticise my method of 
deternmininig these quantities, but that they should shut their eyes to their existence 
appears to ine only compatible with a very small acquaintance with the data of 
variation. 

Let us see now how various authorities have met this difficulty of skewness. 

B. The Gaussian Curve*. 
Gauss proceeds from the axiom that: The arithmetical mean of a series of 

observations gives their most probable value, i.e. the mean is the value of maximum 
frequency. This result is not axiomatic. It can only be a result of experience, 
and if it were true it would make the normal curve as much a result of experiment, 
i.e. an empirical result, as any other proposed curve of frequency. Gauss's proof 
demands, however, something more than this first statement. It involves (i) the 
equal probability of errors in excess of the mean and of errors in defect, (ii) the 
continuity of magnitude in the errors, and (iii) the independence of all the small 
contributions to the total error. 

Experience shows that Gauss's fundamental axiom as to the mode and mean 
coinciding is not universally true. It is not true of errors of observations, it is not 
true of variations in living forms. Gauss reaches a differential equation which 
leads to the normal curve. His proof seems to me, as it has done to many others, 
quite invalid, because the equal probability of errors in defect and excess of the 
mean is not demonstrated, the possible dependence of contributory elements is not 
discussed, and the question of continuity of errors is not considered. 

C. (i) Laplace and Poisson. 
Laplace and after him Poisson took, I venture to think, much firmer ground. 

They did not assume (i) and (ii), but they did not realise the importance of (iii). 
They proceeded by evaluating the terms of the binomial: 

(p + q)0- 
* In writing for Germans I naturally spoke of the Gaussian curve. But I am not clear that 

precedence is to be given to Gauss. Gauss first gave a proof of the well-known equation y=y0e-ix1la6 
in his Theoria Ml1otu-s Corporunz Coelestiunt of 1809. This was three years before the publication of 
Laplace's Theorie Analytique des Probabilit6s of 1812. But to give absolute priority to Gauss is to 
disregard Laplace's earlier memoirs, particularly those of 1782, " Sur les approximations des Formules 
qui sont fonctions des trbs-grands nombres," and its Suite du i1Iemoire of 1783. On p. 433 of the latter 

memoir Laplace actually suggests the importance of forming a table of the probability integral fe - t2dt. 

The Thgorie des Probabilites reproduces the substance of this memoir, and on this account some writers 
have post-dated Laplace's work. Gauss stated that he had used the method of least squares in 1795, 
but this does not necessarily involve a knowledge of the probability integral, and if it did, it is ten 
years after Laplace. On the whole my custom of terming the curve the Gauss-Laplacian or normal 
curve saves us from proportioning the merit of discovery between the two great astronomer 
mathematicians. 
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Using Stirling's theorem they showed that if the nmth be the largest term in the 
binomial, then the suim p,. of all the terms from m - r to in + i is very nearly 
given by: 

2 r1X 2 ^ 1 2 
pR 

= -2--J e~~~~~2a2dZ+s--~f ..................... vi) -27-ra- 127wa- 
where a- = vNpq. 

Here we have the first appearance of the probability integral as represetnting 
a series of discontinuous binomial terms. In fact when N is fairly large Laplace 
and Poisson show that suims of terms of the binomial are closely given by the areas 
of the probability curve. It is an approximate result based upon Stirling's theorem, 
and it does not for a moment involve making IV infinitely large, or the spacinlg 
apart of the binoinial terms very sinall. This representation of a number of fillite 
terms by the probability integral seems to be unfamiliar to Ranke and Greiner, 
but no practical statistician would calculate the stum of -r terms in the binomial 
(p + q)N for even moderate values of N. He would siinply calculate the standard 
deviation a- = VATpq of the binotnial and turn up tables of the probability integral. 
This fundainental property of the normal curve, i.e. that it closely represents a 
discontinuous series, is passed over in silence by my critics. It is the very purpose 
for whicl the probability integral was originally introduced by Laplace. In other 
words it arises without any consideration of (i) contiluity of variation, or (ii) equal 
probability of negative and positive deviations. 

It will be observed that the above approximation to the binomial, i.e. to 
(p + q)N iS symmetrical, buit we can easily allow for some degree of asymmetry. 
Still writing a == VNpq, and for the binoinial 

1= (1 - 4pq)/(Npq), n = -3 = (1 - 6pq)/(Npq). 

I have shown*, yb being the maximum term in the binomial, that the rth term 
from the maxinmum is given by: 

yr( 
+ 

-+o1 += 2) 
-etc.. (ix). 

The term in X-/c was, I believe, first added by Poisson, and expresses his attempt 
to allow for asymmetrical valiation. Edgeworth expanding the exponential has 
adopted for his asynmmetrical curve, a form easily deduced from (ix), 

Yi/oe~2{2 - l2 _I r3)}.(x) 

It will thus be seen that the normal function and the probability integral arise 
naturally from the expression for a single term or a series of terms of the binomial 
polygon. This is their historical origin and the historical origin of the conception 
of asymmetrical variation. Instead of the comnplex form given above resulting 
from Stirling's theorem, I approached the subject by looking at the relation of the 

* Phil. Traits. Vol. 186 A, p. 348, footnote. 
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normal curve to a symmetrical binomial in a totally different manner. I succeeded 
in showing that the ordinates and areas of the normal curve gave exceedingly 
closely the terms and sunms of terms of the symmetrical binomial even for 
relatively small values of n. This had already been done by Laplace. The reader 
will realise this if he looks at the closeness of the normal curve with 

a= VYNpq = IVN, 
and the binomial (j + J)01 with N= 10 in the accompanying Figure 3. But miy 
method enabled me to give a simpler expression to the asymmetrical binomial 

220'? 

200-- - 

'~140?-? 

00 - ~ ~ ~ ~ ~ ~ ~ 

1 2 | 3 4 5 6 7 a 9 10 U1 12 

Number of Binomial Terms. 

FIG. 3. Comparison of Point Binomial 1024 (I+ -)1I with the Gaussian Curve. 

S.D. = VNpq = 1X5811. Maximum Ordinate 258-35. 

than had been obtained by Poisson or Edgeworth using Stirling's theorem. 
Figure 4 shows how closely the terms of the asymmetrical binomial 5000 (I + .i5)12 

and the sums of terms are reproduiced by nmy curve of Type III., i.e. 

y= 1536 54 (1 + 7 e-3$ 

I had no higher ambition-nor could I have had one higher-than Laplace had 
when he discovered the normal curve. I wanted to find a close mathematical 
expression for the terms of the asymmetrical binomial for relatively small values 
of N. 

Now Laplace and Poisson had both r etained the last of Gauss's limiting 
conditions, i.e. they had by adopting the binomial supposed each increment of the 
deviation to be independent of previous increments. It seemed needful to me to 
get rid of this condition, and I therefore introduced instead of the binomial the 
hypergeometrical series. Here the successive increments are correlated. In order 
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to place this new representation on the same footing as the symmetrical binomial 
to which Laplace approximated with the niormal curve, I deduced as I had done for 
the symmetrical and the asymmetrical binomials, curves which gave the hyper- 
geometrical series and the sum of its terms as closely as Laplace's normal curve 
gave the symmetrical binomial. This is the complete history of the development 
of my skew curves. Before I proceed to discuss Ranke and Greiner's criticisms, 
I must remark that their attack on this point does not concern me only. Every 
practical statistician iises Laplace's representation of the point binomial by the 
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Ninrnber of D-ice showing 5 and 6 pips. 

FIG. 4. 5000 Throwsj with 12 Dice. 

C! C Points of the Binomial ( + 1)12 x 5000. 

Curve y=153654 (1+,) e-3x. 

Origin at the mean 2. Mode of curve at x = -. 
Frequency of each number of 5 and 6 pips -1 0 1 2 3 4 5 6 7 8 9 
Ordinates of Binomial ... ... 0 561 1346 1480 987 444 142 33 6 1 0 
Areas of Curve ... ... 557 1340 1493 982 443 139 37 8 1 0 
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probability integral, when he is discussing the probable errors of death rates, class 
indices and a multitude of other problems, and this when the binomial is skew and 
N relatively small! It is the whole theory of current statistics which Ranke and 
Greiner are tilting at when they object to the use of what is equivalent to the 
Euler-Maclaurin theorem, i.e. the mathematical representation of a finite sum of 
terms by a definite integral *. 

There is another point also which may be noted here before we leave the 
binomial. The quantity j,3 is a measure of the asymmetry. Now consider the 
ratio i91/1q, or the ratio of this measure of asymmetry to the kurtosis. For the 
asymmetrical binomial we have 81,/q =(1 - 4pq)/(l - 6pq). Since p and q if positive 
must give a product lying between 0 and 4, this ratio cannot take any value 
between 0 and + 1. Hence any curve which gives for 88/!f a value less than unity 
cannot possibly diverge from the normal curve in the direction of a binomial 
series. We shall see the application of this later. 

C. (ii) The Galton-McA lister Curve. 
I have already referred to the attempt of Poisson to give the skew binomial by 

an extra term applied to the Gauss-Laplacian probability integral. Quetelet 
endeavoured to meet the asymmetry of frequency distributions by placing 
graphically skew binomials on top of the frequency polygon-a very rough and 
somewhat deceptive process. The next step in the advance was taken by Francis 
Galton, who in 1879 suggested that the geometrical mean and not the arithmetical 
mean is likely to give the most probable result in many vital phenomenat. Galton 
refers to Gauss's assumption that errors in excess or in defect are equally probable, 
and says "this assumption cannot be justified in vital phenomena." He cites 
especially the cases of errors in human judgment, guessing at temperatures, tints, 
pitch, etc. He appeals to Fechner's law in its simplest form as evidence to the 
contrary, and placing the matter in the hands of D. McAlister+, the law of 
frequency 

h -h2 (log ) 

was deduced, and methods for fittirng this curve were discussed. The curve is 
well-known in England and also on the continent ?. It is therefore curious to find 
Ranike and Greiner attributing this curve to Fechner's work which was not 
published till 18 years later. It was not till I had made a fairly complete set 
of experimental determinations of the kind supposed to give this curve, that 
I finally discarded it. Thus I asked audiences of 100 to 300 persons to match 
tints in several ways, I asked them to guess heights, to determine mnid-lengths, 
to state which figures in randomly distributed series were most closely circles, 

* See Lacroix: Traite du Calcul differentiel et integral, Tom. iII. p. 136. 
t R. S. Proc. Vol. 29, p. 365 et seq. " The Geometric Mean in Vital and Social Statistics." 
4 R. S. Proc. Vol. 29, p. 367 et seq. " The Law of the Geometric Mean." 
? It is cited by Kapteyn, for example. 

Biometrika iv 25 
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squares, equilateral triangles, etc. etc. In all these results I found the distribution 
asymmetrical, but the most probable valtie was niot the geometrical meani, nor the 
distribution the Galton-McAlister curve. One of the striking defects of the curve 
was its high contact at both ends. The distributions clearly often corresponded 
to curves in which the contour cut the axis at a finite angle. Another point was 
that the skewness was in the opposite direction to that presupposed by the 
reasoning from which the curve is deduced. It was precisely this experience 
which showed me that putting x =,8 log (c/a) in the Gaussian curve is not a 
sufficient generalisation. 

Ranke and Greiner, to say nothiing of Fechner himself, are remarkably vague 
as to the accurate determination of the position and constants of the Galton- 
McAlister curve. McAlistcr gives no clear description of how the curve is to be 
placed if neither the nmode nor start of the range is known. I think it desirable 
therefore, having regard to tho ilnferences I wish to draw, to give the fitting by 
my method of miiomelnts. I write the curve: 

=Joe-s2 ( l ..................... .. .... . (xi). 
x .x) 

Diflferentiation showvs us at oice that the distance x,no of the mode from the 
origin is given by: 

x7)zo = aWe ................ (Xii). 

Integratirg the expressioji N,u,,'-= j Yw'dx we finid if N = total frequency: 

yo = N/(N/27c) .............................. (xiii), 
anid generally: 

= eC ........... .. .. (xiv). 

Thus the distance from the origini to the mean, X., is given by 

XOu =COW ..................................... (XV). 

Now write eo2= X and we have if ,,, be a moment coefficient about meani: 

2 = PI' -,2 = 1OX (x _ 1) 

PS = ,U': - 3P1a'F'1' + 2pl/3 = a3X (X4 - 3X2 + 2x) ...(xvi). 

P4 = /-44 i4P3'/us + 6P siAl' -3,ul = a4X2 (X6 - 4X3 + 6X - 3) 

Forming the usual constants of frequency we have: 

, = =2/p;` (X - 1) (X + 2)2 ........................ (xvii), 
fl82-3 ( 1) (Xs+3x2+6X+6) ............... (xviii), 

where 22 = 2 
d = X,ne - xmo = a (x - ........................ (xix), 

1- x-I 
X7 l. 

= 
% . @........ (xx). 
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We see then that the mean and second and third momnents nmust be found to 
determine this curve. From the second and third moments we have ,81, whence by 
equation (xvii) X is determined. The first equation of (xvi) then gives 

a=o-l/x(X- 1). 

Then equation (xv) gives the distance of the start of the curve from the known 
mean. Further since X - el2, we determine c and finally y, is determined by 
equation (xiii). There is no obscurity or difficulty with the fittiDg, if we use 
the method of inoments. The cubic equation (xvii) is solvable at once either by 
Lill's, Mehmke's or Reuschle's mechanisms. 

But what are the objections ? 

(i) The curve touches the axis at the end of the range. Skew curves 
extremely often cut it at a finite angle. 

(ii) The skewness has a definite direction, which to be logically consistent 
we ought not to neglect, i.e. since X is always > 1, d remains always of one sign. 

(iii) Since X> 1, q,, the kurtosis, is always positive and the curve can only 
represent platykurtic distributions. It can never give a curve which deviates from 
the Gaussian curve in the direction of the Laplace-Poisson skew binomial for 
p > *2113 < 7887, because this is essentially leptokurtic. 

(iv) The range of skewness given by X is very limited. Differentiating X we 
find it is a maximum for X= 117200 and this gives X = -207a. The Galton-McAlister 
curve cannot therefore describe any curve whose skewness does not lie between 
0 and 2. A cursory examination of the observational results reached, shows that 
the skewness in all kinds of data over and over again exceeds *2. 

(v) l1 and q, are both functions of X only*. Hence there is a relation between 
them or between q and X. That is to say the kurtosis is determined by the 
skewness. The kurtosis must vanish with the skewness. But experience shows 
that many distributions are sensibly symmetrical and yet have far fronm zero 
kurtosis, e.g. nasal breadth in English womeni, etc. etc. 

Finally consider the ratio ,81/X. If we approach the normal curve as the limit 
to a point binomial (p + q)N we have seen that 

811,q = (1 - 4pq)/(l - 6pq) ................... (xxi), 

and this equals nothing if we take the symmetrical binomial. Otherwise it has 
a finite value depending upon the particular binomial along which we reach the 

Gaussian curve. The Galton-McAlister curve, if we make aIX infinite, but 

aVs/xs/-1 finite, approaches the Gaussian curve. 
* Actually it is 

p14 - 12p33 + 156p,2 + 64p3 - 3 + 12X2 - 36-1 + 18p12 - 6p312 - 117P- = O. 

I have to thank my assistant, Mr J. Blakeman, for much aid in the analysis of this section and 
the following section of this memoir, 

25-2 
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Now for the Galton-MeAlister curve 

= x3 + 3+ 6 + 6' 

and this approaches the linmit 9/16, its maximum value, when X approaches unity. 
If we take (1 - 4pq)/(l - 6pq) = 9/16, we get imaginary values for p and q. Thus 
while the normal curve itself gives an indeterminate value for i,3/i = 0/0, and as 
Laplace has shown describes with fair accuracy any slightly skew binomial with 
large power, the Galton-McAlister curve cannot describe even approximately any 
skew binomial, however near to a normal distribution. 

On all these grounds we see that the "law of the geometric mnean" fails to 
supply the fiundamental need of describing the modal difference, the kurtosis and 
the skewness of actual frequenicy distributions. It cannot describe these physical 
characteristics of the frequency. 

C. (iii) Fechner's Double Gaussian Curve*. 

We have noted that the Gaussian curve was first deduced by Laplace to 
represent a finite number of the terms of a binomial expression, and that Gauss 
deduced it on hypotheses which amount to the following: 

(i) The arithmetic mean is the most probable value. 

(ii) Deviations in excess and defect of the mean are equally probable if of the 
same magnitude. 

(iii) The facility of an increment is the same for all values of the character. 

Now every one of these assumptions is negatived when the double Gaussian 
curve is used, and yet the Gaussian curve which is only deduced by aid of them is 
adopted to describe what conflicts with its fundamental axioms. This proceeding 
is the reverse of logical. However, if the double Gaussian curve be adopted, there 
is absolutely no reason why we should adopt the rough process by which Fechner 
determines the mode and obtains the constants of the distribution. The fitting 
by my method of moments is perfectly straightforward, and as it leads to 
the points we have to consider it will be indicated here. Let the two half 
curves be: 

y 1e ~-x22 

1 x (xxii). 
y _ _ e 2cr, X< 0 

Then, since the modal value is comiimon, 01/n, = u2/n2. Further, the total frequency 
N= 1 (n1 + n2). Now write Ic = V2/27r and t = c- - 2, v = acic2, Then taking 
moments round the mode we easily find: 

* Here again it is historically incorrect to attribute these curves to Fechner. They had been 
proposed by De Vries in 1894, and termed " half-Galton curves," and Galton was certainly using them 
in 1897. See the discussion in Yule's memoir, R. Statist. Soc. Joucr. Vol. LX. p. 45 et seq. 
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/'l. = tFU t2' = U2 + V, ,3 = 2Ku (U2 + 2v), /4=3 tu2 (U2 + 3V) + V2}. 

Transferring to the mean we deduce: 

IL2 = U2 + v - K2u2 ............................ ,.,. (xxiii), 

.PI = /cut (V - u2 + 2 /C2 2) .......................................(XXiV), 

P4 = 3 {U (u2 + 3v) + V2J - /C2U2 {2u2 + lOv + 3 c2U2} (Xxv). 

/2, P3, /4 will be known quantities as soon as the frequency distribution is known. 

Now determine , = PI322/22 and write V = u/V2, we easily find: 

(6 _ 2) X'3+ x' -/ 1/31 = O. (xxvi). 

This cubic* gives by its real root the value of u= a--a-2. We then easily 
deduce 

a-1 = iV,/.Yt ({4 + (4KC2 _ 3) X12}1 + XI)] 
0a2 = /pV2 ({4 + (4K2 - 3) X'2}I - x'4 . (xxvii) 

These determine the different variabilities of the two halves. Then 

2Na-1 2N-2 *- 
~~~~~~n2 = - 

2 ................. 
1 ra + (a2 ' l + .x2 

give the frequencies in each Gaussian curve, while 

ILI = K '\/P2 k/ . ............................... (XXiX) 

fixes the position of the origin relative to the known mean value of the system. 
Thus the complete solution depernds on a knowledge of the mean, and the second 
and third moment coefficients. As before the cubic is readily solved by Lill, 
Reuschle or Mehmke's mechanisms. 

The analysis is now a little more complex than in the case of the Galton- 
McAlister curve. Write E = V/U2 = a-1a-2 (a-1 - a-2)2. Then we have: 

1-1 = K2 (E _ 1 + 2KC2)2/(l -K2 +4C)3 
......(xxx). 

132 = {3 (1 + 3e + 62) _ K2 (2 + 3,C2 + 10e)}/(1 _ K2 + 6)3) 

Thus again we see that 1 and 132 are both functions of e only, or the skewness is 
not independent of the kurtosist. Whenever the skewness is zero, the kurtosis 
must also be zero or the curve be normal. 

Now consider the expression 1 - K2 + e which we will write ry, or, 
= -36338 + 0-10-2/(0-1 - a-2)2. 

The last term is positive or ry must be > -36338. 

* This cubic was, I believe, first given by Edgeworth. 
t The actual relation is: 

29521X2 + 62500j2 - 110506g,-q + 13468rq - 11345p, + 15925o = 0, 

which, as in the Galton-McAlister case, has no obvious physical significance. 
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Now: 
'45352 05003 

and this with the above limitation to the valuie of ry can never become negative. 
Hence the double Gaussian curve is, like the Galton-McAlister curve, invariably 
platykurtic. Now consider the valuie of 

'63662 *11477 '00518 
11 = - - 72 + es - 

-y 72 1y3 

Hence the ratio ' tends as y increases to take the value 1'40374. Equating this 
'1 

to (1 - 4pq)/(1 - 61q) we see that the double Gaussian cuirve approaches the normal 
curve along the particiilar platykiuitic biinomial p = '8985, q = '1015, or it cannot 
in the neighbourhood of the normal curve represent any skew binomial but this. 

Lastly it may be shown that .8 has its maxinmum value when y = '36338 or its 
mininmum value. Thu.s we find that the maximium possible value of 9, is about 
'99. Iri the same way the mnaximum skewness is 1 3236. These values are 
stifficiently high to cover the great builk of cases, but I have fouind Pl = 4'071 for 
scarlet fever incidence, = 1 '9396 for age of brides who mnarry men in their 24th year 
and = 4'1683 for the distribution of lips in the me(duisa P. pentata. These 
exceptions suffice to show that the curve is not general enough. 

Summing uip we concluide that the (louible Gaussian curve is not satisfactory 
because theoretically 

(i) It starts by (lenyilig the very axioms from which alone we can reach the 
Gaussian curve; 
and emipirically because 

(ii) It can describe no fre(quency (listribhution which curts the axis at a finite 
angle, and such distributions constantly occur. 

(iii) It is essentially platykurtic. Therefore it is not available for leptokurtic 
curves, nor eveni for any but very special skew binomials, i.e. those in which p does 
not lie between '2113 anid '7887. As we approach close to the normal curve we 
get nearer and nearer to one definite point binomial, i.e. that in which p = '8985. 

(iv) There is always a relation between the skewness and the kurtosis, or 
these important physical constants are not independent. In particular we cannot 
have any form of symmetry but the inesokurtic. 

(v) The range of /, and of the skewness is fairly large, but frequency 
distributions actually occur markedly outside this range. 

(vi) Lastly, and of much import, the kurtosis can never exceed '8692, or the 
maximum value of 82 = 3'8692. This degree of kurtosis is exceeded in a great 
number of distributions. Thus in the lips of P. pentata, in tint guessing, in the 
breadth of male English skuills, in the nasal brea(dth of female English skulls, in 
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no less than eight of Duncker's series in the case of Gelasinmas pugilator and in 
various other distributions. In all these cases the platykurtosis is significant, and 
the double Gaussian curve fails us hopelessly. 

C. (iv) The Edgeworth-Kapteyn Curves. 

Kapteyn*, without recognizing Edgeworth's priority, has proceeded in the 
manner indicated on p. 178 above. He assumes that some quantity x obeys the 
normal distribution 

y = N= e-l2/f 

He then takes x = F(X) - M and reaches the frequency distribution: 

y = -__N_ F' (X) e -{1 {F(X) 
- 

J[1'f2 ........................ (xxxi). 
V/27ro 

Thus far (as we have already shown) nothing has been achieved, because this 
equation may by a proper choice of F (X) represent any curve whatever. As 
Kapteyn himself says, followinig Edgeworth, " as F(xv) may represent any function, 
we see that the equation may be made to represent any curve whatever. Therefore 
it must be the nmost general form of frequency curve possible " (p. 17). There is, 
however, one point to be raised here. What is x of which the observed character 
X is a function? Is it, as in the explanatory illustrations cited by Kapteyn, 
another characteristic of the organism ? If so we ought in some cases to be able 
to determine it. What is the character which obeys the normal law ? For 
example, sagittal arc in English women is almost exactly normal in its distribution, 
and nasal breadth is very asymmetrical. Shall we take x = sagittal arc and 
X =nasal breadth and make 

= F (X)-M? 

Now every biologist knows that such a relation is not in the least true. No 
two characters in an organism are in any way connected by a mathematical 
function, such that when one is given the other is determined. The relation is 
always of the loose kinid that we term association or correlation. X does not 
fix x, and a multitude of x's with varying degree of probability are associated with 
a given x. This correlationi is often of a very low order. Between any two 
characters of a given organism, no such relation of perfect correlation as that 
involved in Edgeworth or Kapteyn's relation has ever been discovered. Very 
imperfect correlation or at any rate all degrees of correlation have been invariably 
demonstrated to exist. The function x has no real existence as a biological entity. 
It is only a mechanism for introducing the normnal curve, and is not a true character 
of the organism at all. Supposing, as in English female crania, nasal breadth is 
asymmetrical, what is the quantity which is symmetrically distributed of which 
nasal breadth is a function? It has no reality in the organism at all, and Kapteyn 
proceeds to make it still more impossible in the following manner. If x has 

* Skew Frequency Curves in Biology and Statistics, Groningen, 1903. 
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existence at all, its limits lie betweei - and + o, i.e. the whole range of the 
normal curve. But in order to get a range limited at one end, not the whole series 
of values of X correspondiing to x are takeni. A value is selected for X, such that 
X becomes impossible after a certain value of x. In other words, x is a character 
which although following the normnal curve is abruptly termninated as far as X is 
concerned at a value with a finite frequency! Kapteyn takes* 

= (X + ) -M, 

where K, q and M are to be determined froin the data. 

For example, in Professor Weldon's data for the ineasurement of foreheads of 
Carcinas moenas, Kapteyn (p. :39) finds that with our lnotation 

a- = 002,204, 

M= *002,561, 
0c=- 5781, 

q= 221. 

Thus when X =-c, we have x =-M = - o- roughly, or the Gaussian frequency 
curve for x is to be abruptly cut off, anid about 1.5 per ceiit. of its tail discarded. 
If it be said that this could be achieved by natural selection of foreheads, the reply 
is the simiple questioln: Please show what physical character in a crab is given by 
an abruptly truncated normal curve! The fact is no such character has ever been 
met with, and it must be recognised that x represents a wholly fictitious variable 
having no physiological relation to the character X at all, but introduced solely to 
reduce the frequency by hook or by crook to that fetish distribution the Gaussian 
curve. 

We can now sum up the objections to Kapteyn's method. 

Theoretical: 

(i) There is no justification whatever for assuming that some character x 
actuially exists which obeys the normal law of distribuition, and that the observed 
character is a function of this. Some characters are found as a rule in any organism 
which obey the normal law, but no two characters in an organism have ever 
been founid to be the one a mathematical function of a second, they are always 
imperfectly correlated. 

(ii) Kapteyn's hypothesis involves if his normal character were a physiological 
entity, that distributions of organic characters should occur which would be 
represented by fragments of Gaussian curves, or such curves abruptly curtailed. 
We have no experielnce of such distributions in actual vital statistics. If they 
did exist they would contradict the first two axiorms on which the Gaussian law 
itself is based, and would thus deprive that law of the sole justification for its 
application. As it cannot be supposed that all skewly distributed characters X in 
an organism are functions of one and tlhe same x, for in this case they would be 

* This becomes the Galton-McAlister curve for the limit q =0. 
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perfectly correlated with each other, which is contrary to experience, it must follow 
that if Kapteyn's hypothesis were correct large quantities of characters distributed 
in truncated Gaussian curves ought to appear when we deal with variation. The 
total absence of such characters is evidence that the x-characters are shadow 
variables and of no biological import. 

(iii) The previous staternents reduce Kapteyn's special choice of 

F (X) = (X + ic)q 
to a mere artifice adopted to get an empirical curve of variation by Edgeworth's 
hypothesis. Many other functions are a priori equally valuable, and might be 
adopted to get curves of limited range, e.g. 

F (X) = (X + Kc)q (X - K')Y. 

The hypothesis gains nothing in logical consistency by its appeal to the Gaussian 
curve; that appeal is one adopted for convenience of fitting, and the sole test of 
Kapteyin's curve is empirical goodness of fit. 

Practical: 

(iv) Everyfrequency curve should be a graduation Jormiula. Kapteyn's nmethod 
of fitting is by equating certain total frequencies in order to determine his foul 
constants. They thus fail to successfully smnooth any special causes tending to 
exaggerate any particular frequency group. Such screening of special causes of 
frequency deviation is far less likely to occur when we use the method of moments, 
which is a true method of graduation*. 

(v) We ought in every law of frequency distribution to be able to judge of the 
effect of the unit of grouping on the values of the constants. This has been 
satisfactorily achieved for, perhaps, the bulk of cases, when the method of 
moments is used by Sheppard's correctionst. In Kapteyn's process we have no 
means of ascertaining the extent to which the size of the unit of grouping 
influences the constants of his distribution. 

In his Example II., for instance, he takes his curve to accurately reproduce the 
total area of the group of houses under ?10 annual value. What difference would 

* Thus Kapteyn deals with some statistics of the values of house property in England fitted by me 

(Phil. Trans. Vol. 186 A, p. 396). I specially state that ?20 was the limit to taxable value, and that 
accordingly the frequency of houses immediately below this value will be exaggerated. Kapteyn's 

method fails to indicate such a source of a priori recognised irregularity. For example, one of his 

conditions is that the houses of value less than ?10, i.e. more than half the total frequency, shall 

be identical in his result with the observed frequency. He thus cuts away at once any possibility 
of smoothing this group or allowing for the large probable error in it due to random sampling even. 

His method leads to a limiting house value of ?2. 2s., while mine leads to ?4. 4s. Mine corresponds to 

a weekly rent of about 2s.; his to a weekly rent of ls. The latter rent hardly occurs in England 

unless the house is given in part payment of wages, or in charity. Kapteyn says that his distribution 

starts with a zero frequency, and mine with an infinite ordinate. " It seems hardly admissible that 

the latter solution can be in accordance with nature (sic) in this particular." Why not? An infinite 

ordinate may and does in my case give a finite frequency. 
t See reference, p. 187. 
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be made if the first group had included only houses under ?5 ? We are unable 
to answer this question. 

(vi) Every freqzency curve should be determined by constants of which the 
probable errors are easily deducible. The method of moments admits of the 
probable errols of the moments being easily determined (see Biometrika, Vol. II. 
pp. 273 et seq.). My system of skew curves gives all the constants in terms of 
moments wlhose probable errors are known. 

The moments in Kapteyn's theory depend on the integration of: 

(x + M)O e i4x2/r2 dx, 

and there is no means of readily evaluating this integral. In fact the arithmetical 
mean *, the standard deviation, the skewness and the kurtosis, and the modal 
divergence are unobtainable fronm the constants of Kapteyn's theory. This seems 
to me sufficient to deprive the method of any practical significance even as an 
empirical representation. 

It has further been shown by Sheppard that the probable errors of constants 
determined by class frequencies (partial areas) are higher than whien these 
constants are determined by the method of moments. We may give the above 
statement a separate paragraph as: 

(vii) The fundamental physical constants of the frequency distribution are 
not determinable from Kapteyn's empirical curve. 

To illustrate the results of this want of a knowledge of the probable errors, 
I turn to the three illustrations given by Kapteyn. 

Example (i). Observations on the Threshold of Sensation. Kapteyn himself 
shows that his solution is hardly less satisfactory if he uses the Galton-McAlister 
ciirve (our' equation (xi) p. 194). He does not therefore know whether q = 00 and 
q = -04 differ within the probable error of q. 

Example (ii). Valutationi of Houise Property. Kapteyn fits this with a 
Galton-McAlister curve for his q comes out 00. Owing to the difficulty in 
calculating moments, we cannot do more than approximate to the value of X the 
skewness in these data. I make it 18. It is certainly well over unity. We 
have already seen that it is impossible for a Galton-McAlister curve to give a 
skewness above 21. The apparent agreement Kapteyn finds for the frequencies 
is not therefore sufficient evidence that the fundamental constants of the 
distribution will be really given by reasonable values. 

Exacnple (iii). Foreheads of Carcinus moenas. Kapteyn fits these first with 
q=221. "The agreement seems satisfactory." Then with q=0, or a Galton- 
McAlister cuirve, "The representation is hardly less satisfactory." Then with 

* "The arithmetic mean of all the X's cannot be generally fouLnd in a simple and rigorous way," 
Kapteyn, p. 44. 
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q =o , "The representation, though sensibly less satisfactory than that by the 
[previous] solutions, is still pretty close." 

A method by which a fundamiental constant of the distribution may take any 
value between 0 and oc and still give a "pretty close" representation, mutst I think 
condemn itself. Such a statement demonstrates effectively that the author has 
not yet determined numerically or even approximately in his own mind the 
probable errors of the constants he uses. 

It will be seen that as far as the three illustrations Kapteyn himself gives go 
he has not advanced the matter beyond the Galton-McAlister curve. That curve 
fits reasonably (according to Kapteyn) all his three series. But the skewnesses of 
the three series are respectively 72, 1P8 and 32. I have calculated these roughly, 
but I think there can be no doubt of their approximate correctness. In every one 
of these cases the skewness sensibly exceeds the maximum limit of skewness, 
i.e. *21, possible for the Galton-McAlister curve which Kapteyn applies to 
them *. 

C. (v) The General Results which flow without the Third Gaussian Axiom. 
It seems to me accordingly that very grave objections can be raised not only 

froin the theoretical but from the practical standpoint to the methods I have 
discussed which attempt to allow for asymmetry, i.e. 

(i) The Galton-McAlister Geometrical Mean Law 

(ii) The Galton-Fechner use of Half Gaussian Curves, 

(iii) The Edgeworth-Kapteyn use of transformed Gaussian Curves. 

All these experienced statisticians differ in toto from the opinion of Ranke and 
Greiner-that we need lnot trouble about descriptive curves for asymmetrical 
distributions-but their methods seein to me unsatisfactory theoretically and 
insufficient practically, because they still make a fetish of the Gaussian axioms. 
They do not return to the Laplace-Poisson method of replacing those fundarmental 
axioms by more general conceptions. If a Gaussian curve does lnot fit, they will 
consent to deduce their own curves from a truncated Gaussian curve, which some 
shadow variable of the mathematician is supposed to follow, and of which we have 
no experience in any orgaiiic characters hitherto measured. Indeed if we had 
such experience, it would at once negative the very axioms on which the Gaussian 
curve is based. 

Now it seems to ine that all these attempts, whether emnbodied in the general 
method of Edgeworth or in the special hypotheses of Galton-McAlister or 
Kapteyn, amount to abolishing the third of the Gaussian assumptions, iiamely that 
small increments of the variable or the character are independent of the total 
already reached. That is to say that they amount to saying that increments of the 

* I am unable to say how far the general form of Kapteyn allows for the requisite range of skewness 
and kurtosis, because neither the modal difference, nor the standard deviation, to say nothing of the 
higher moments, can in general be evaluated. 
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variate are correlated with the value of the variate already reached*. Galton and 
Fechner made the increment proportional to the variate. But in our ignorance of 
the actual nature of variation in organisms, we have no reason at all for making 
stich a narrow assumption. We can to please our critics put the matter as I have 
already indicated in the Gaussian form. We simply assume that if the causes of 
variation in the immediate neighbourhood of the character x$ remained the same 
for the wlhole range they would give a normal curve, hence we should have a 
relation of the form: 

ldy x 
y dx cr2 

They do not, however, remain the same; the tendency to vary at x is a functioln 
of x, in other words a- = o- VYF(x), where F (x) is an arbitrary function. We have 
then 

1 dy x 
ydx- 0-.2F (x)' 

This is a result as genleral as Edgeworth's and nmore so than Kapteyn's or 
Fechner's. We now take the simplest possible fuinctional series for F (x), i.e. 

= ao + alx + a.X2 + 

The coefficients a,, al, a, ... a,, can be fotund at once in terms of the momentst, and 
miy special curves result if we stop at a2. Against going to higher powers are the 
objections I have raised in my mnemoir on skew correlation+, namely (i) that the 
higher powers involve moments of the 5th and higher orders and their probable 
errors are very large, (ii) that it has not yet been shown that going to a2 does not 
suffice to describe all the types of frequency whiich occur in comimon practice. 

The above is the simnplest and inost geineral form into which I would put my 
theory of asymmetrical frequency for those who feel compelled to approach all 
frequency from the Gaussian standpoint. 

D. Specific Criticisms of Ranke and G(reiner on nzy Thleory. 

I think these may be summed up as follows: 

(a) That all distributions of variates are continuous, and that accordingly 
no curves, however closely they may approximate to finite discontinuous series 
like the biiionoial and the hypergeometrical series, can be applicable to variation in 
nature. 

* Suppose we draw r cards from a pack, and wish to consider the chance of 8 being of one suit, we 
may do so by drawing one card at a time, observing it and returning it, and then drawing again. 
Here there is not correlation between the successive contributions to r. Or we may draw the r cards, 
without replacing the individual; here the successive contributions are correlated with the previous 
contributi6ns, and the third Gaussian principle is upset. 

t "M Mathematical Contributions to the Theory of Evolution, XIV. On the General Theory of Skew 
Correlation and Non-Linear Regression," Drapers' Comnpany Research Mllemoirs. Biometric Series, ii. 
(Dulau and Co. 1904) p. 6. 

Ibid. p. 7. 
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(b) That what I term the "number of cause-groups" must be infinite in 
number, for without such infinity it is impossible to reach continuity. 

(c) That looked at from the standpoint of binomial or hypergeometrical 
series the constants of some one or more of my curves may become unintelligible. 

Now not one of these objections has any application to the method which has 
been used in this paper to deduce the differential equation to my curves. But 
I still think there are very grave objections to every one of the above statements. 

To begin with (a). We meet in an immense variety of living forms with 
discrete variates. For example, the number of teeth on the rostrum of a prawn, 
the number of lips of a medusa, the number of veins in a leaf, the number of 
glands in a swine's foot, the number of tentaculocysts in Ephyra, the number of 
individuals in a litter, the number of bands on snails' shells, the number of somites 
in the body of an earthwornm, the number of petals or sepals in a flower, etc. etc. 
Are we to put all these distributions of variation on one side because Ranke and 
Greiner hold that all distributions of variates are continuous ? We have in these 
cases probably continuous causes producing discontinuous distributions. Are we 
not to use the areas of a continuous curve to give the frequency of such discrete 
variates ? 

Consider for example the function given by: 

Y =INV S {n-rqr IJn 1 - r)/,, 
O { -r 1r C/27r?r } 

This is compounded of n + 1 normal curves, the area of the (r + 1)th normal 

curve being Npn-rqr E , i.e. the (r + 1)th term of the binoniial N (p + q)fl, and 
-!-r -r 

this (r + 1)th normal curve has ar for its standard deviation. The origin of the 
system is at the mode of the normal curve corresponding to r = 0, and the means 
of these normal cutrves are spaced equal distances c apart. 

When every 0-r = 0 we have discrete variation. When 0-r is small, less say than 
8c, it would probably be difficult to distinguish the result from discrete variation. 
Enlarging a-r we pass on till we get a system which it would be practically 
impossible to distinguish from continuous variation, even if n were only moderate 
in magnitude. I lay no stress whatever on the above expression because I am in 
no sense pledged to any Gaussian curve, but it illustrates well what I want to 
express: namely, in actual nature the frequency might fundamentally fall on 
certain values of the character, but that the effect of nurture, environment, and 
growth may well scatter the values of the variable round the fundamental value, 
so that continuity of variation is all that can be actually observed. The number 
of somites in an annulose animal is discrete and probably inherited, but the length 
of the body may appear as a continuous variate. I do not think for a moment 
that the distinction made by Ranke between discrete and continuous variation, 
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and the further statemnent that variation in man is essentially continuous, is at all 
valid. Our units of grouping for the numbers available are not very fine, we can 
hardly successfully classify a few liundred observations into more than 20 groups, 
and with this unit of grouping it would be practically impossible to distinguish 
between the apparently continuous distribution and a discrete distribution of a 
similar number of classes with the variates modified by growth, nurture or any 
other scattering tendencies. Ranke appears entirely to have overlooked the current 
biological theory of inheritance summed up in the words inheritance by deter- 
minants. Such theories, whether they be those of Weismann or Mendel, lead us 
directly to discrete variation*. The discreteness of the variation will be more or 
less, in many cases probably entirely, obscured by the environmental influence. In 
such cases the number of fundamental cause-groups is not infinitely great, alid 
Ranke is overlooking current biological views when he asserts that we must take 
" die Anzahl der Elementarursachen selbst als uniendlich gross und die Grosse der 
Wirkung der einzelnen Ursache als unendlich klein." If the number of determiinants 
which fix a character is finite, that character would corresponid to a discrete 
variation of limited range. If the number of determinants be very large, the 
distribution would by Laplace's theorem be represented inore and more closely by 
the normal curve. 

I toss ten coins into the air and for every head in the result I pay a gramme of 
gold-dust, the frequency distribution of gold-dust would closely be given by the 
terms of the binomial (j + 1)10 as in the points of our Fig. 1. But suppose instead 
of weighing my gramen of gold-dust accurately, I give a " handful" of sugar. If 
6 heads turn up I give six handfuls of sugar, but each of these will not be exactly 
my standard mean handful. I am unlikely to give either five or seven standard 
handfuls as my six approximnate handfuls, but in some cases even these might be 
possible; wve pass in fact from discrete to continuous variation, and the nmultimodal 
character of the discrete variates will disappear with the rouighness of the handfuls, 
or have the peaky appearance of randomn sampling. The total area up to ainy 
midpoint between two discrete groups s and s + 1 will be given by the continuous 
integral which represents the first s terms of the binomial. If we have two such 
total areas, one up to the midpoint between groups s and s + I and the othier up 
to the midpoint between groups s + 1 and s + 2, then an interpolated area between 
these values as given by the continuous integral will be sensibly the same as 
if, c being the unit of discrete difference, we determined a curve corresponding 
to the mean binomial frequency in the Spietraumn c, i.e. 

c p qnq r 

by simply fractionising r, i.e. we replaced the factorials by Stirling's theorem or 
used r functions, and supposed r to change continuously from s to s + 1. This is 

* Thus I have shown that a generalised Mlendelian theory leads directly to skew binomial 
distributions of characters in the general population. Phil. Trans. Vol. 203 A, pp. 53-86. 
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merely another way of looking at the change from discrete to continuoous variation, 
due to the influence of a multitude of causes on the discreteness of the variates 
which fall into a given Spielraum. I still find nothing absurd in the statement 
that the actual effect of the scatter is sensibly equivalent to a fractionising of the 
indices. It is simply equivalent to the statements, (i) that the ordinates of the 
Gaussian curve closely give, even for smnall values of n, the termiis of the binomial, 
(ii) that the ordinate of the Gaussian curve between two terms of the binomial 
closely gives a fractionised binomial term (owing to Stirling's theorem being true 
for fractionised factorials or 1r functions), (iii) that we have no knowledge of how 
the " scatter " within the Spielraumn may be distributed so as to give a continuous 
effect*. Now these points are not in the least needftul for the deduiction of my 
skew curves, they are merely given here becauise in ouir complete ignorance of the 
nature of the causes, hereditary and environmental, which prodtice continuous 
variation, I think we have no warranty for saying that a limited number of cause- 
groups is iinpossible, or that no suich limited number of fundamental cause-groups 
could give a continuous variation. In the present state of our knowledge we 
canniot agree with Ranke in sweeping away as impossible all the discreteness which 
follows from determinantal theories of inheritance. We cannot afford to be 
dogmatic as to the continuous or discontinuous character of the ultimate souirces 
of variation and any effective theory must like the Laplace probability integral be 
equally applicable to the sum of a discontinuous series as well as to the areas of 
a continuous curve. 

(b) Any finite series of cause-groups, Ranke tells us, must lead to dis- 
continuity. 

I have endeavoured to show above that the discontinuity may be as real and yet 
as undetectable as the distribution of lengths, say, of the vertebral columlns of shalrks 
which yet depends on the number of discrete vertebrae, with a scatter of their 
individual sizes. But Ranke's argument in itself is a false one, many discontinuous 
systems lead at once to continuous distributions. In our ignorance of the exact 
sources of variation, all we can do is to show that a limited number of cauise-groups 
can quite well lead to conti nuous variation. To take a perfectly arbitrary 
illustration, suppose that a character can only take values lying between a, and a2 
and that this character is to be settled by the determinants derived fiom s + 1 
ancestors, i.e. suppose all but s + 1 to be cast out in the successive divisionls of the 
germ-cell. Then it by no means follows that the character will be a blend of these 
s + 1 determinants, one or other of them may be domiq2asat. It does not follow that 
the dominant one represents either the one with the least or the greatest value of 
the character. It might be the one with s - r determinants below and X above it. 

* For example I have a variety of Binomial machines or "Quicunxes" like that figured in my 
memoir, Phil. Trans. Vol. 186 A, Plate i. Fig. 2, p. 414. It is quite possible to arrange a quicunx in 
which there are only a limited number of compartments, but in which the top of the seed in these 
compartments is not horizontal, buit gives a continuous curve, e.g. the greater air draft of the greater 
frequency might be used to pile up the material in any receptacle on the side of the greater frequency. 
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In this case the frequency of individuals with character x would be given by the 
curve 

Y= y (x - a,)sr (a2 - X)r 

This is a perfectly continiuous curve, and one of my series of skew curves. 
Thuis it is quite conceivable that a finite number of fundamental cause-groups 
should lead to an absolutely continuous distribution*. 

Now how does Ranke treat this illuistration ? He first states that all continuity 
must involve an infinite number of cause-gioups, or variation in man being 
continuous, must be associated with an infinite number of cauise-groups. He had 
this very case before him, and yet he writes: 

Die Analyse der Elenlentarursachen ergibt uins also uinweigerlich die bisher immer angenom- 
nmene unendliche Anzahl derselben, die unendliche Kleiiheit der Wirkung jeder einzelnen Ursache 
und die Kontiniiitat der moglichen Wirkungsgrade. 

Sie ergibt also wirklich die Verhiiltnisse, die wir zum Verstindniss der koiltinuerlichen 
Variationskurve gailz unumgoiiglich n6tig haben. Deiin wie soll eilne kontiiiuerliche Kurve sich 
aus der Kombination endlicher Bausteine orgeben (S. 321)? 

Ranke only gets out of the difficulty by asserting, that since the number of 
causes is finite, buit must be infinite for variation, my continuotus curve based on 
a finite number of cause-groups cannot represent variation! A more remarkable 
specimen of circular reasoning can hardly be conceived. The fact is that Ranke 
suffers fronm the old third Gaussian axiom, i.e. the suipposition that the increments 
that go to build up the variate are independent of each other. The fundamental 
cause-groups are by no means Bautsteine in the sense that the total variate is the 
sum of these Bausteine placed on top of each other! The causes determine the 
magnitude of the variate, but not at all necessarily by their sum. 

(c) Ranke asserts that some of my curves have constants which if we 
enideavour to interpret them froin the standpoint of the binomial give impossible 
or improbable values for the constants. 

The answer to this is that the series were only the scaffolding to deduce the 
cturves. The differential equationi to the curves contains the limit to a good many 
other frequency systems which directly diverge from the fundamental axioms of 
Gauss. I used the original series as a means of dispensing with the Gaussian 
axiomns in familiar cases, but the result reached involves a good deal more than can 
be interpreted by the original series. Ranke can only see absurdity in a binomial 
with a negative p or q. But the nature of the sources of variation is so little 
known to us that we canniot possibly assert the absurdity of such values. We may 
not indeed be able to directly interpret them in the case of man, say, but they 
occur and recur in chance investigations. I will illustrate this in one case only, 
but such will demonistrate the reqtired possibility and dispose at once of Ranke's 
argument as to absurdity. 

* Making r and a2 infinite, but s - r finite, we get the curve I have deduced as the limit to a 
binomial of finite power. In other words, that curve is also shownl to correspond to a possible 
continuity. 



K. PEARSON 209 

Suppose an organ to require the conjunction of exactly n determinants of one 
kind to fix it, but that the size of the organ depends on how soon this conjunction 
takes place. Let D be the necessary kind of determinant and 7r the chance that 
it is left in the right position after each operation, say a cell-division or cell-fusion. 
Let D' be any other kind of determinant and K its chance of appearing, so that 
K + v- =1. Then if D appears n times in the first n operations, we have a certain 

size for the organ, if in the first n+ 1 operations another size, and if only in the 
first n + r operations a third size. But the chances of these respective appearances 
are the terms of the series 

7rn + n7rniK + n (n + L ... + (n + 1) + 2) (n + r-1) K,". 

7r n (1-K)- = (1 _ = (p - qfnt say, 

where p - q= 1. Here p and q have lost the condition that they are both to be 
less than unity. I do not for a moment suggest that this is the real interpretation 
of a binomial with a negative q. I only assert that because we are as yet unable 
to certainly interpret such expressions, the absence of interpretation does not 
involve the absurdity which Ranke postulates. 

There are many other matters to which I might justifiably take exception in 
Ranke and Greiner criticism*, but I think I shall have said sufficient to convince 
the impartial reader of the following points: 

(i) The great builk of modern statisticians are agreed that the Gaussian law 
is absolutely insufficient to describe observed facts. They may disagree as to the 
method of supplementing it. I do not think that the opinion of Ranke and 
Greiner can possibly weigh against those of Poisson, Quetelet, Galton, Edgeworth, 
Fechner and Kapteyn-all authorities who have had to deal for years with 
statistical data. 

(ii) The original use of the probability integral (the areas of the Laplace- 
Gaussian curve) as introduced by Laplace was to represent the sum of terms of 
a discontinuous series. To the mathematical mind there is no absurdity in this 
replacement of discontinuity by continuity; it is the basis of the Euler-Maclaurin 
theorem. 

(iii) The dogmatic assertion of Ranke that variation in man is due to an 
infinite number of infinitely small fundamental cause-groups, simply neglects the 

* For example, all the discrete variates mentioned on p. 205 have been dealt with by biometric 

writers, and many others besides, yet Ranke speaks as if such writers had not dealt with discrete 
variation. He speaks of Ludwig's multimodal curves for flowers as if there had been no controversy 
as to the actuality of the " Fibonaccizahlen" modes, when due regard is paid to homogeneity of 

season and environment. He speaks as if Johannsen had demonstrated normal variation in his 
" Erbsenspopulation," when he has really applied no valid criterion whatever to test for asymmetry, etc. 

In short he seems to me to have neglected a great deal of the modern literature of the subject, and, 
if I may venture to say so, to write over-dogmatically on what he has read. 

Biometrika iv 27 
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whole determinantal theory of inheritance. A complete theory of asymmetrical 
frequency must describe in the manner of Laplace's probability integral either 
continuous or discontinuous variation. 

(iv) The apparent or practical continuity of many variation data may be due 
either to real continuity or to discontinuity effectually masked by: (a) the relative 
paucity of material and rouighness of our measurements, which compels us to 
divide it into groups of the same order of lunulber as the number of determinants, 
(b) the influence of age, nurture and environment superposed upon the pure 
hereditary results, or (c) the fact that many of the characters measured by us 
are built up of a larger or smaller, but not necessarily an infinite, number of 
simple organs or characters, which inay possibly individually have discontinuous 
variation *. 

(v) The assertion of Ranke that a finite number of fundamental cause-groups 
must lead to discontintity is disposed of by illustration. It is quite possible to 
invent a great variety of deterimiinantal systems-the number of the determinants 
being finite-which lead to continuous variation. In our present ignorance of the 
sources of variation, especially of the mechanism of inheritance, it would be idle 
to lay weight on any special interpretation of this kind. It is important, however, 
to observe that continuity or disconitinuity of variation are not, as Ranke asserts 
them to be, associated with the finite or infinite number of the cause-groups. 

(vi) The absurdity which Ranke finds in the values taken by some of the 
constants of my curves, exists only when a very narrow view is taken of the sources 
of organic variation. A binomial series with negative power or with negative 
p or q is capable, as is shown in this paper, of perfectly rational interpretation. 
But in the present state of our kniowledge it would be idle to specify any particular 
interpretation as the correct onet. 

(vii) The problem of variation can be looked at in the following manner 
without the least loss of generality. Modify Gauss by replacing his third axiom, 
the independence of contributory increments to the vairiate, by the postulate that 
the inicrements are correlated with previous increments+. Start with any binomial 
and we reach the generalised probability curve for an infinite number of cause- 
groups: 

1 dy -x 
y dx c- o2f(X/crO)' 

where f is an arbitrary function. This theory covers Galton, Edgeworth, Kapteyn 
and Fechner. Expanding f (x/cro) in a series of ascending powers of x/o,f we have 

* Ranke has quite overlooked the work by Galton and myself on the discontinuity of the series 
of individuals even when the population obeys the Gaussian law. See Bionetrika, Vol. i. pp. 289-299. 

t Ranke apparently considers that (p + q)" with p, q and n positive is interpretable. A little 
philosophical consideration will show that it is merely "1 familiar," not really intelligible. There is no 
physiological meaning in p, q, n, and we cannot as yet associate them with any true organic 
mechanism. 

+ This postulate of course abrogates the first two axioms of the Gaussian theory as well. 
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my generalised probability curves*. A very few terms of the expansion, however, 
suffice for describing practical frequency distributions. If we keep only three 
terms, we see that the same system of curves suffices to describe continuous and 
discrete variates-an important point. If I lay stress upon this method here, it 
is because Ranke insists on an infinity of cause-grouips and supposes no continuity 
can arise without them- 

..."a truth 
Looks freshest in the fashioln of the day." 

(viii) The important physical constants of a frequency distribution are those 
which can be determiined with the least probable errors. The probable errors of 
the moment coefficients iticrease rapidly with the mnoments. Hence the important 
physical constants are those which depend on the low moment coefficients, i.e. on 
the early terms of the expansion of f(x/o-). Now these physical constants are 
(a) the mean, (b) the modal difference or distance of mean from mode, (c) the 
skewness, and (d) the kurtosis. We may replace either (b) or (c) by the standard 
deviation. Experience shows that these four physical constants are certainly 
independent. The constants of my skew curves directly give them and we are 
able to determine by their probable errors whether they are significant or not. 

(ix) With regard to the other theories discussed I have shown: 

(a) That the Galton-McAlister curve, ascribed by Ranke to Fechner, is not 
applicable to a great number of cases, for its kurtosis is a function of its skewness 
and its skewness cannot exceed 21. 

(b) That the double Gaussian curves due to Galton and Fechner are illogical, 
because they reach a Gaussian result by rendering invalid every one of the Gaussian 
principles. Further, the skewness is always a function of the kurtosis and the 
kuirtosis cannot exceed *87, a degree which is exceeded in a great variet.y of 
data. 

(c) That the Edgeworth curves as developed by Kapteyn fail from the logical 
standpoint, for they appeal to a truncated Gaussian distribution which has never 
been observed in experience. They are not truie graduation formulae, and are 
obtained in such mianner that it is not possible to determine any one of the chief 
physical constants or evaluate their probable errors. Further in the examples 
given by Kapteyn they all sensibly reduce to the Galton-McAlister curve. But 
this curve has in every one of the cases dealt with by Kapteyn a skewness 
significantly less at a inaximum than is required by every one of the statistical 
series involved. 

Finally it seems to me that all discussion of asymmetrical frequency must turn 
in one form or another on the proper form to be given to F (x) in the equation 

I dy -x 
y dx -o 2F(X) 

See "M Mathematical Contributions to the Theory of Evolution, XIV." Dulau and Co., London. 
27-2 
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If we assume it to be F(x) = E (arzx) as I have done, we fall back on the normal 
curve when a,r for r > 0 is zero within the limits due to its probable error. Ranke, 
if he wishes to demonstrate the Gaussian law as general, must show this to be the 
case. It has been over and over again demonstrated that al, a2, etc. differ 
significantly from zero for a great variety of series. Another advantage of the form 
F (x) = (a,.xr) is that it covers as I have shown discrete as well as continuous 
variation. Considering a-= o-,VF(x) as the standard deviation of the "instantaneous 
Gaussian curve," ve see that the " instantaneous Gauissian curve " varies from one 
position to a second, like the " instantaneous ellipse " of the astrononmers. A 
reasonable first hypothesis to make is that the local mean square deviation a' is 
independent of x, we obtain the Gaussian curve. A next assumption is that it is 
a linear function of x-perhaps it would be better to say that its mean local value 
is a linear function of x, i.e. the mean square of the local variability a-2 is correlated 
lineally with x. This gives my curve of Type III. The next easiest assumnption 
is to suppose the regression line of a-2 on x to be parabolic. In this case we obtain 
the remainder of the curves treated in my II. and XI. memoirs. If we stop at aq 
we have what I have termyed the skew frequency curves of the qth order*, and we 
see that this involves a regression curve between the square of the mean local 
variability and the character of the qth order*. I see, however, at present no 
practical necessity for proceedirg beyond skew curves of the 2nd order, altholugh 
I propose shortly to publish a discussion of skew curves of the 3rd order illustrating 
some theoretical points which arise in their discussion. 

To sum up I think Ranke's criticism fails (a) because he has disregarded the 
universally recognised need of modern statistical science for asymmetrical frequency 
curves, (,8) becauise he has not appreciated the mathematical transformation by 
which a number of finite terms are replaced by an integral expression, (y) because 
he has not realised that modern theories of heredity lead directly to discontinuous 
skew distributions, (8) becatuse continuity does not depend upon infinity of 
fundamental cause-groups, and lastly (e) becauise, and this may be due to my fault 
in the first deduction of my curves, he has quite failed to see either their scope or 
their real generality. 

-* "1 Mathemiiatical Contributionis to the Theory of Evolution, XIV. On the Theory of Skew 
Regression." Dulau and Co. 
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