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Chapter 12

Integral Calculus

Newton Leibniz

12. Problem: Area under a curve

* A very old problem (Archimedes
proposed a solution! Fermat

worked on it, too). Newton and 4
Leibniz solved it in late 17%

century .

e Idea: Introduce rectangles under
the curve, defined by f{x), find the
area of all of those rectangles and
add them all up.

* Rigorous mathematical details
had to wait till the 19 century.
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12. Estimating Area Under Points

* What if instead of a function, we were given points: how could
we use rectangles to estimate area under points?

12. Underestimating Area
® Here we underestimate the area by putting left corners at points:

o —
.—
o——
o
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12. Overestimating Area

® Here we overestimate the area by putting right corners at points:

a b

* Note: As the intervals become smaller and smaller —i.e., the
partitions of [4,6] become finer-, both the left corner and the right

5

corner based areas converge.

12.1 Riemann Sum

¢ In general, integration is motivated as an area under a curve. This
geometric intuition is fine.

* But, we want to think of zuzegration as a form of summation. In
economics and finance, geometric interpretations, in general, have
little use. But, the summation intuition works very well.

* Riemann thought of an integral as the convergence of two sums,
as the partition of the interval of integration becomes smaller.

Bernhard Riemann (1826-1866), Germany
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12.1 Riemann Sum

¢ In order to estimate an area, we need a partition of the interval
[4,0]. We define a partition P of the closed interval [4,4] as a finite set
of points P = { x;, x,, x, ..., x,} such that

a=xy<x,<x,<..<x,,<x,=b.

o If P = { x;, x;, X ..., X, } is a partition of the closed interval [4,4]
and fis a function defined on that interval, then the #-#) Riemann
Sum of [ with respect to the partition P is defined as:

REP)= 20y J8) (% - %)

where 7 is an arbitrary number in the interval [x; ,, x].

* But, we do not know /. In the previous two examples, we used

the left end points of the interval [x; ;, x] (underestimation of area)

and the right points of the interval [x, ;, x] (overestimation of area).
2

12.1 Riemann Sum

¢ There are two useful cases:

1) use ¢, the supremum of f{x) in the interval [x;, x], producing the
upper sunz:

UG P)= 3r0 6525,
2) use d, the infimum of f{x) in the interval [x, ;, x], producing the
lower sunr:

LGy P) = 2y, 4% - %)

Example: U(f, P) is displayed in dark brown and L(#;, P) in orange.

o
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12.1 Riemann Sum

Proposition: Size of Riemann Sums

Let P be a partition of the closed interval [4,4], and f{) be a
bounded function defined on that interval. Then,

- The lower (upper) sum is increasing (decreasing) with respect to
refinements of partitions --i.e. L(f, P)) = L(f, P) or U(f, P') = U(f, P) |
for every refinement P’ of the partition P.

-L{f, P) < R(f, P) < U(f. P) for every partition P

That is, the lower sum is always less than or equal to the upper
sum.

Q: Will Uf, P) and L(f, P) ever be the same?

12.1 Riemann Integral

* Suppose f{.) is a bounded function defined on a closed, bounded
interval [a, b]. Define the #pper and lower Riemann integrals as:

I'(Y) = inf {U(f,P): P a pattition of [a, b] }

L(f) = sup {L(,P): P a partition of [4, /] }

Then if I'(f) = L(f) the function f.) is called Riemann integrable (R-
integrable) and the Riemann integral of f{) over the interval (4, 4] is
denoted by b
j f(x)dx
a
Note: Uff, P) and L}, P) depend on the chosen partition, while the
upper and lower integrals are independent of partitions. But, this
definition is not practical, since we need to find the s#p and #nf over
any partition.
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12.1 Riemann Integral

* Suppose f{.) is a bounded function defined on a closed, bounded
interval [, b]. Define the u#pper and lower Riemann integrals as:

I'() = inf {U(f,P): P a partition of [a, §]}

L) = sup {L(,P): P a partition of [a, 4] }

Then if I'(f) = L(f) the function f{) is called Riemann integrable (R-
integrable) and the Riemann integral of f{) over the interval |4, J] is
denoted by b
[ x)dx
a
Note: U(f, P) and L(f, P) depend on the chosen partition, while the
upper and lower integrals are independent of partitions. But, this
definition is not practical, since we need to find the s#p and 7nf over
any partition.

12.1 Riemann Integral — Example 1

Example: Is f{x)=x? R-integrable on [0,1]?
It is complicated to prove that this function is integrable. We do not

have a simple condition to tell us whether this, or any other
function, is integrable.

But, we should be able to generalize the proof for this particular
example to a wider set of functions.

First, note that in the definition of upper and lower integral it is not
necessary to take the s#p and znf over all partitions: If P is a partition {§
and P'is a refinement of P, then

L, P)=L(,P) and U, P') = U({,P).
Thus, partitions with large intervals (large nors, |P|) do not
contribute to the sup or inf. We look at pattitions with a small norms,
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12.1 Riemann Integral — Example 1

Second, take any > 0 and a partition P with |P|<e/2. Then

(UGEP)-LEP) <3, 16-d] (5-2,)

where ¢ is the sup of fover /x;, x] and d is the inf over that interval

Since f{) is increasing over [0, 1], we know that the s#p is achieved

on the right side of each subinterval, the z#f on the left side. Then
\Ulh P) - L5 P)|= 2y, 16-d)| (x;- )
=2t nn U0 -S| (- %)

To estimate this sum, we use the Mean Value Theorem for f{x) = x?

L) - 1) = |f(¢)] |x-y]| for ¢ between x and y

Since |f(¢)| =2 for ce [0, 1]

=> o) -J0)] =2 |-y

13

12.1 Riemann Integral — Example 1

To estimate this sum, we use the Mean Value Theorem for f{x) = x? \ '
L) - 1) = |f(¢)] |x-y]| for ¢ between x and .

Since |f'(¢)| <2 forcin [0, 1] => |fix)- )] =2 |x-y|

But P was chosen with |P|<¢/2
= ff) - )| S2 |-, 1S 26 /2=

Then, |U(;P)-L(;P)|< 3,

ton (X/) f( 7)' (X/'—X/'J)

582‘;71‘0;1(‘%/ X/'J) 8(1_0):8'

Since P was arbitrary but with small norm --sufficient for the upper

and lower integrals--, the upper and lower integral must exist and be
equal to one common limit L.

14
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12.1 Riemann Integral — Example 1

* Let’s calculate L. It is easy, since now we know that the function is g
integrable. Then, we take a suitable partition to find the value of the
integral. For example, take the following partition

x; =j/n forj=0,1,2 .., n

Then, the upper sum:
U0§ P) = Z}:i ton 6} (X/ _‘X}'-i) = 2;':710;1]((%]) 1/n
=1ton 0/”)2 7/” = 7/”3 2;':7 z‘0nj2
U [1/6 1 (n+1) @u+1)| = 1/6 (n+1) (2n+1)) 2

Since we know that the upper integral exists and is equal to L, the
limit as 7 goes to infinity of the above expression must also
converge to L. Then, . = 7/3.

15

12.1 Riemann Integral — Example 2

Example: Is the Dirichlet function R-integrable?
The Dirichlet Function (Q is the set of rational numbers):

1 if xe @

f(x)=
(X) 0 if x¢g Q
We have that U(f, P) = 7 and L(f, P) = 0, regardless of P. Then,
I'() = 1 and L(f) = 0.

Thus, the Dirichlet function is #ot R-integrable over the interval [a,4].

Note: Unlike the function in the previous example, we have a
discontinuous function on the Irrational Numbers. We have infinite
discontinuities.

16
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12.1 Riemann Lemma

* The first example shows that it is difficult to establish the
integrability of a given function. The second example illustrates
that not every function is Riemann integrable.

* The Rienmann lemma provides an easier condition to check the
integrability of a function.

Suppose f{.) is a bounded function defined on the closed, bounded
interval [a, b]. Then, f.) is R-integrable if and only if for every >0
there exists at least one partition P such that

|URE) - LEP)| <e

In example 1, we check the above inequality holds for every
partition P with small enough norm. Using Riemann's Lemma, we
only need to check the inequality holds for one partition. Easier! 17

12.1 Riemann Integral - Remarks

* Roughly speaking, we define the Riemann integral as follows:

- Subdivide the domain of the function (usually a closed, bounded
interval) into finitely many subintervals (the partition)

- Construct a simple function that has a constant value on each of
the subintervals of the partition (the Upper and Lower sums)

- Take the limit of these simple functions as you add more and
more points to the partition.

e If the limit exists, it is called the Riemann integral and the
function is called R-integrable.

* A function is R-integrable on [4,/] if:
- It is continuous on [4,4]
- It is monotone on [a,4]

- It is bounded, with a finite number of discontinuities on [4,4].
18
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12.1 Riemann Integral - Remarks

* For a function to be R-integrable it must be bounded. If the
function is unbounded even at a single point in an interval [z, 4] it §
is not Riemann integrable (because the sup or inf over the
subinterval that includes the unbounded value is infinite). For
example, f{x)= 1/x over [0,1], unbounded at x=0.

* The Riemann integral is based on the concept of an "interval", or
rather on the length of subintervals [x; |, x]. The concept of
partition applies to an interval. We can take Riemann integrals
over unions of intervals, but nothing more complicated (say,

Cantor sets).

* Partitions depend on the structure of the real line. Thus, we
cannot define a R-integrable for functions defined on more
abstract spaces --say, sequences, functions from N to R.

19

12.1 Riemann-Stieljes Integral

* The Riemann—Stieltjes integral of a real-valued function fof a real g
variable with respect to a real function gis denoted by:

b
[RICEEE

defined to be the limit, as the mesh of the partition
P={a=x,<x<x<..<x,,<x,= b},

of the interval [a, /] approaches zero, of the approximating sum
S8 P) = Zizy 1, /10) (%) = &(%,4)s

where ¢ is in the /~th subinterval [x; ,, x]. The two functions fand g

are respectively called the integrand and the integrator.

e If gis everywhere differentiable, then the Riemann—Stieltjes
integral may be different from the Riemann integral of f{x) g’(x).

For example, if the derivative is unbounded. But if the derivative is
20

continuous, they will be the same.

10



Ch 12 - Integral Calculus 8/13/2015

12.1 Lebesgue’s Theory - Introduction

* The Riemann integral is based on partitioning the domain [4,4] in
subintervals [x; , x], picking a point x* in the subinterval and
calculating the area under the curve by computing the Riemann
sums. Then, take the limit as we add more and more points to the
partition.

* Roughly speaking, Lebesgue's theory, instead of partitioning the
domain, partitions the range into subintervals.

* Based on these subintervals, calculate areas and sum over these
areas. The approximation improves with finer and finer partitions

of the range.

* The Lebesgue integral will be the limit of these sums.

21

12.1 Lebesgue’s Theory - Introduction

* Suppose the function takes values between [4d].

2) Define E; as the set of all points in [,6] whose value under / lies
between y;and yy: B =f ()= {x €lab]| gy = f2) <}

3) Assign a “size” to E, -a measure u(E£). Then, the portion of the
graph of y=£x) between the horizontal lines y=y; & y=y,,, will be
A, where, Ji ME) = A; = gy ((E).

4) Approximate the area by picking a number y* € [y,;,,], and
compute: Y, )7* #(E)

5) The approximation improves with finer and finer partitions of
[¢d]. The Lebesgue integral will be the limit (if it exists) of these
sums. The function is called Lebesgue integrable. 22

11
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12.1 Lebesgue’s Theory - Introduction

* Riemann & Lebesgue integrals: Vertical sums vs Horizontal sums.

23

12.1 Lebesgue’s Theory - Introduction

* Riemann & Lebesgue integrals: Analogy:

You have a pile of coins and you want to know how much money
you have. For this purpose, you can pick the coins randomly, one by
one, and add them. This is the Riemann integral. |
You can also sort the coins by denomination first, and get the total
by multiplying each denomination by how many you have of that
denomination and add them up. This is the Lebesgue integral.

* The methods are different, but you obtain the same result by
either method. Similarly, when both the Riemann integral and the
Lebesgue integral are defined, they give the same value.

* But, there are functions for which the Lebesgue integral is defined
but the Riemann integral is not. In this sense, the Lebesgue integral

is more general than the Riemann.
24

12
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12.1 Lebesgue’s Theory - Measure

* Step 3 assigns a size to the set £, With Riemann integrals, we use
as size the length of subintervals [x. ;, x]. This is fine, but we need
to generalize the concept to more complicated sets. The
generalization, called measure, is a function assigning to each set A in
R” a non-negative number, #(A).

* This measure should satisfy two conditions:

1) It should be applicable to intervals, unions of intervals, and to
more general sets (say, a Cantor set). Ideally, defined for all sets.

2) It should share many of the properties of “length of an
interval”:

- #(A) =0 (Non-negative);

(A =ab) = b-

- Invariant under translation: if F=E+c={et¢|e eE}=>u(F)=u(E);
- Countably additive, i.e., (A=UA ) = X (A ), where A are
pairwise disjoint sets. 25

12.1 Lebesgue’s Theory — Lebesgue Measure

* Lebesgue defined a measure, the Lebesgue measure, that satisties
both conditions:

- First, define an outer measure (based on the infimum of a set),
which satisfies (1):

If Ais any subset of R, define the (Lebesgue) outer measure of A as:
F(A) = inf {Z1A)}

where the infimum is taken over all countable collections of open

intervals A_such that Ac UA and /(A))is the standard length of

the interval A .

Note: A" is defined for all sets, but, A" is not additive, it is subadditive
—i.e, A'(F U E) < A'(F) + A(E); => not quite length.

* The outer measure is a real-valued, non-negative, monotone and

countably subadditive set function. 26

13
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12.1 Lebesgue’s Theory — Measurable Sets

- Second, define measure by restricting the outer measure to

measurable sets:

A set E'is (Lebesgue) measurable if for every set A we have that
MNA) =N(ANE)+A(AN EY)

If Eis measurable, the non-negative number #(E) = A"(E) is the

(Lebesgue) measure of the set E.

Example 1: The set R of all real numbers is measurable:
MANR) +A¥AN RE) = A¥A) + A¥(AN Q) = A¥A)
=> R is measurable.

Example 2: The complement of a measurable set is measurable.
Suppose Eis measurable => 1"(A) = 1'(AN E) + 1"(AN E°)
For E® we have:

MANEY) + (AN (EY))=1(AN E°) + (AN E) = 1"(A)

=> F'is measurable.

12.1 Lebesgue’s Theory — Measurable Sets

* This restriction makes the measure additive, satisfying (2), mainly
the additive requirement. But, now the measure is not defined for
all sets, since not all sets are measurable (the axion of choice in set
theory plays a role here).

* Lebesgue’s definition of measurable sets is not very intuitive. But, |8
it is elegant, general, brief and it works.

Remark: Not every set is measurable, but it is fair to say that wosz sets
are.

* Usually, the family of all measurable sets is denoted by .*#(script
M). ..7is a sigma-algebra and translation invariant set containing all
intervals.

28

14



Ch 12 - Integral Calculus 8/13/2015

12.1 Lebesgue’s Theory —Properties of Measurgs

* Properties of Lebesgue measure:

1. All intervals are measurable. The measure of an interval: its
length.

2. All open and closed sets are measurable.

3. The union and intersection of a finite or countable number of
measurable sets is again measurable.

4. If Ais measurable and A is the union of a countable number of
measurable sets 4 , then #(A) = 2 u(A ).

5. If Ais measurable and A is the union of a countable number of
disjoint measurable sets 4 , then x#(A) = 2 u(A ).

* According to these properties, most common sets are measurable:
intervals; closed & open sets; unions & intersections of measurable
sets. But, the property that measure is (countably) additive implies

that not every set is measurable.
29

12.1 Lebesgue Integral — Measurable functions N

* In Lebesgue's theory, integrals are defined for a class of functions
called measurable functions, which are the ones for which the sets we
get are measurable sets.

* A function f: A —[-90,90] is measurable (or measurable on A) if A

€..7and the pre-image of every interval of the form (7 ) is in ../
{x|fix)>t} e forall te R

This is somewhat comparable to one of the definitions of
continuous functions: A function fis continuous if the inverse
image of every open interval is open. However, not every
measurable function is continuous, while every continuous function
is clearly measurable.

Note: Simple functions, step functions, continuous functions, and
monotonic functions are measurable. 30

15
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12.1 Lebesgue Integral

* Proposition. Let / & g be measurable extended real-valued
functions on A €..7. Then, the following functions are all
measurable on A:

frecf; [+ fg where ce R.

Note: Usual convention to avoid nonsense results, when / (and/or |88
g9=®/-0: 0x00=0.

* Now, we have the tools to define, and possibly compute, the
integral for those functions:

L) Md)
that represents, loosely, a limit of integral sums

2, fx) MAD,
where A is a measutre on some space A, and {4} is a partition of
A, and x; is a pointin A, .

31

12.1 Lebesgue Integral

¢ To define the Lebesgue integral, we usually follow these steps:

- Define the Lebesgue integral for "simple functions."

- Define the Lebesgue integral for bounded functions over sets of
finite measure.

- Extend the Lebesgue integral to positive functions (not necessarily
bounded). (The concept of measurable function plays a role.)

- Define the general Lebesgue integral.

* Definition: Simple function
o) = Ziyy, a1 (@),
where A, ..., are measurable sets on €2, I . is an indicator

function and «,, ..., 4, are real numbers. Let A4, ...,A4, be a partition
of Q --i.e, As are disjoint and 4, U ... U4, = Q.

Then, ¢(.) with distinct @s exactly characterizes this partition.
32

16
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12.1 Lebesgue Integral — Simple functions

* Simple functions can be thought of as dividing the range of £,
where the resulting sets A may or may not be intervals.

Example: A step functio.n., p(w) = a; forx <x<x .
and the {x} form a partition of /4, 4]. Upper, Lower, and Riemann
sums are examples of step functions.

* Definition: Lebesgue Integral for Simple Functions
Let p(x) =%, a, 1, (x)be a simple function and (A4, ) be finite for
all #, then the Lebesgue integral of ¢ is defined as:

Vo) dx = a, p(A) + a,u(4) .+ a,u(4,) = %, a,4(4,)
If Eis a2 measurable set, we define

[ o) dv = [ T (x) p(ox) dc

Recall: #(A =[a,b]) = b— a. Thus, u(x; x, +dx)= dx

33

12.1 Lebesgue Integral — Simple functions

Example 1: Lebesgue integral of a step function f{x), defined as:
fix) = 1if -1 <x<2

2if 2<x<4

Jif 4<x<8

0 otherwise

Vi) de=a, w(A) + a, p(A) .+ a, n(A,)
=1p(1.2) + 2 p(24]) + 3 u([4.8)
= 1x3+2x2+3x4 =19

17
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12.1 Lebesgue Integral — Simple functions

Example 2: Lebesgue integral of f{x) = ¢
f{x) = ¢ can be written as a simple function f{x) = ¢ Ip(x)
Then, the Lebesgue integral of fover [4,4] is by definition:
i) i =1, 09 ) e =
=lel, ) de=cufla b)) = c(b-a)

Note: The same answer as for the Riemann integral.

* Example 3: Lebesgue integral of Dirichlet function on [0,1].
Let Q be the set of all rational numbers, then the Dirichlet function
restricted to [0, 1] is the indicator function of A =Q N [0, 1]. The
set A is a subset of Q, hence A is measurable and u(A) = 0.
Thus,

J L) dx=u®) =0

Note: Not the same answer as in Riemann’s case. 35

12.1 Lebesgue Integral — Bounded functions

* We used step functions to define the R-integral of a bounded
function fover an interval [2,4]. Now, we use simple functions to
define the L-integral of fover a set of finite measure.

* Definition: Lebesgue Integral for Bounded Functions
Suppose fis a bounded function defined on a measurable set E with|#
finite measure. Define the #pper and /ower Lebesgue integrals as

I'(f);, = inflp(x) dx: p is simple and ¢ = f } (lower)
L), = sup{p(x) dx: pis simpleand ¢ </ }  (upper)

If I'(f), = L(}), the function fis called Lebesgue integrable (I-integrable)
over E and the Lebesgue integral of fover E'is denoted by

[ ft) de

36

18
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12.1 Lebesgue Integral — Bounded functions

Example: Is f{x)=x L-integrable over [0,1]?
We know that [f{x)| =1 over the interval [0,1]. Define sets:

E, = {x€[0,1]: -1)/n = fix) <j/n} forj=1,2,..,n
Because fis continuous, the sets E/ -are measurable, they are disjoint,
and their union (over the /'s) equals [0,1].

Define two simple functions

S,60 =% j/n 1,09

i) = X (-1)/n 1,69
Fix an integer » and take a number x € [0,1). Then, x must be
contained in exactly one set E;, and on that set we have

5,9 = (-1)/n < fix) <j/n=8,()

Thus, on all of [0,1], we know that s _(x) < f{x) = S_(x)

37

12.1 Lebesgue Integral — Bounded functions

Example (continuation): Thus, on all of [0,1], we know that s _(x) =< )
J) = 8,
But then,
Iy, <18 () de=1/n %) u(E)
Ly, = 15,6 d = 1/n 2 (1) w(E)
Therefore,
F@ -1, = 1/n% G- G-1) E) =1/n % u(E)
=1/np(l0,1])=1/n

Since 7 was arbitrary the upper and lower Lebesgue integrals must
agree, hence the function fis L-integrable.

Note: With a few simple modifications this example can be used to
show that every bounded function f, which has the property that zbe sets

E are measurable, is L-integrable.
38

19
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12.1 Lebesgue Integral — Bounded functions

Example: Value of the Lebesgue integral f{x) = x over [0,1]
Compute x#(E) using the fact that f{x) = x: for a fixed # we have
H(E;) = u({x €[01):(-1)/n < flx) <j/n}) =
= p({x €L (-1)/n < x < j/n}) =
= u(lG-1)/m j/n] ) =1/n

Then,
If(x) dx=1im 1/#n ij/uﬁj)
=lim 1/ﬂ2ij1/ﬂ
=lim 1/ X = lim 1/ [n(n-1)/2] = 1/2

=> same value as for the Riemann integral.

12.1 Lebesgue Integral — General Case

* We have extended the concept of integration to (bounded)
functions defined on general sets (measurable sets with finite
measure) without using partitions (subintervals).

¢ The Lebesgue integral agrees with the Riemann integral, when
both apply. This new concept removes some strange results —for
example, we can integrate over Dirilecht functions over an interval.

* But, we have restricted our attention to bounded functions only. To
generalize the Lebesgue integral to functions that are unbounded,
including functions that may occasionally be equal to infinity, we
need the concept of a measurable function.

* Recall that measurable functions do not have to be continuous.
They may be unbounded and they can be equal to 0. They are

"almost" continuous —i.e., except on a set of measure less than e. *

20
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12.1 Lebesgue Integral — General Case

Definition: Lebesgue Integral of Non-Negative Functions
Let fbe a measurable function defined on E and 4 be a bounded
measurable function such that A({x: A(x) > 0}) is finite, then we
define

1) de = supl,, hio) o, b <F
If I . () dx 1s finite, then fis called L-integrable over E.

Definition: General Lebesgue Integral
Let fbe a measurable function. Define the positive and negative
parts of f, respectively, as:

) = matfi), 0)

69 = max(£x), 0)
so that f =/ " -/ Then, fis Lebesgue integrable if /" and f ~are
L-integrable and

[ofie)de =1 f o) dx -] f ) dx

41

12.1 Lebesgue Integral - Remarks

* The Lebesgue integral is more general than the Riemann integral: g
If f) is R-integrable, it is also L-integrable.

* For most practical applications, we use the result that for
continuous functions or bounded functions with at most countably
many discontinuities over intervals [,/ there is no need to
distinguish between the Lebesgue or Riemann integral.

* Then, all Riemann integration techniques can be used. But, for
more complicated situations, the Lebesgue integral is more useful.

* The Lebesgue integral makes no distinction between bounded
and unbounded sets in integration, and the standard theorems apply
equally to both cases.

42

21
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12.1 Lebesgue Integral - Remarks

* For theoretical purposes the Lebesgue integral provides an
abstraction level that simplifies proofs.

* But, then techniques such as integration by parts or substitution
may no longer apply.

* It plays a pivotal role in the axiomatic theory of probability. A
probability measure behaves analogously to an area measure, and, in
fact, a probability measure is a measure in the Lebesgue sense.

* There are several other generalizations of the
Riemann integral: Perron, Denjoy, Henstock, etc.

H. Lebesgue (1875-1941, France)

12.1 Notation

* f{x): function (it must be continuous in /a,b)).
* x: variable of integration
* fx) dx: integrand

* 4, b: boundaries

[*f (x)ax

44
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12.1 Properties of Integrals

Assuming f{x) and g(x) are Riemann integrable functions on [4,4],
with ¢inside [4,6] and £ and ¢ are constants, the following properties
can be derived (the last three are easy if we think of Riemann
integration as summation):

j f(x)dx =0

[0 f(0dx=— [ £ (x)alx

[0 fo0ax = £ e+ [ f (x)ax

J,f 00+ ag T =k f ()dcsa | g0
[ ooax <[] £(x) oy

45

12.2 Fundamental Theorem of Calculus

¢ The fundamental theorem of calculus states that differentiation
and integration are inverse operations.

¢ It relates the values of antiderivatives to definite integrals. Because &
it is usually easier to compute an antiderivative than to apply the
definition of a definite integral, the Fundamental Theorem of
Calculus provides a practical way of computing definite integrals.

It can also be interpreted as a precise statement of the fact that
differentiation is the inverse of integration.

46
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12.2 Fundamental Theorem of Calculus

¢ The Fundamental Theorem of Calculus states: If a function fis
continuous on the interval [z, 4] and if Fis a function whose
derivative is fon the interval (, b), then

f:f(x)d:c — F(b) — Fla).

* Furthermore, for every x in the interval (4, b),

dF (x)

F(x)= If(t)dt satisfying = f(x)

* In other words, if a function has a derivative over a range of
numbers, the integral over that same range can be calculated by
evaluating at the end points of the range and subtracting.

12.2 Fundamental Theorem of Calculus: Notes

* 'The first part is used to evaluate integrals.

* The second part defines the anti-derivative. Finding the anti-
derivative is finding the integral.

* Example: Find the antiderivative of fx) = 10 x*
Fx) =2 x°

* In general, small letters will be used for functions, capital letters
for anti-derivatives.

48
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%

12.2 Physics Example: Velocity & Acceleration \'ﬂ

* Velocity, #(t), is defined as the derivative of position, x(t).
Acceleration, a(t), is the derivative of #(t), and the second
derivative of x(t).

* The integral of acceleration is velocity. The integral of velocity is | &
position. l

* The graph of »(t) against time, t, shows that the area between
two times is the distance traveled.

* On the other hand, the area under «(t) against time shows the
velocity.

49

12.3 Rules of Integration

Integration of the power function:

K
For n = -1 jKXndX=—Xn+1+C
n+1
) 1 K
Integration of X I_dx =xIn(x)+C
X eix
The Integral of e~ J. e“ dx = 7 +C

The Constant Multiple Rule ICf (x)dx = CJ f (x)dx

The Sum Rule for Integrals j [£(X)+g(x)Jdx= j f (X)dx+ j g(X)dx

—COoSax

Integration of sin function: jSin oxdx = +C

(04
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12.3 Rules of Integration: Applied Joke

There's a big calculus party, and all the functions are invited.

In(x) 1s talking to some trig functions, when he sees his friend ¢*
sulking in a corner.

In(x): "What's wrong ¢*?"

¢ : "I'm so lonely!"

In(x): "Well, you should go integrate yourself into the crowd!"

¢*looks up and cries, "It won't make a difference!"

12.3 Rules of Integration

Integration of cosine function: Icos axdx = Sih X +C
(04
I i 1
ntegration of - I = arctan x+C
1+x 1+ x?

Note: The rules of differentiation are complete, given a set of
operations for constructing functions. But, the rules of integration
are incomplete. We cannot integrate simple functions like sqrt(1-+x7).

52
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12.3 Rules of Integration: Example

Evaluate the following: .’.2 (x® +2e>* +1)dx

0
Graph o

2 3 2 3x 2
Sum of 3 integrals jo x“dx + ZJO e’ dx + jodx
2 2

Apply integration rules and 1 N ) ﬁ N [X]z
FTC Part 1. 4" |, 3 | 0

1 2
Compute area under the 2 (24 )+ 5(86 —1)+ (2) =274.29
curve. 53

12.4 Integration by Substitution

Some integrals cannot be easily solved by just applying the
previous rules of integration.

Consider I x* cos( x® — 2)dx

Graph: W

We can use a chain rule like argument to simplify the integration.
For example, let #=x3-2, then d#=3x*>dx => x*dx=1/3du

Substituting back into the original integral:

j%cos(u)du =%sin(u)+C =%sin( X*—2)+C =

8/13/2015
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12.4 Integration by Substitution

* Suppose we want to find the integral from -1 to 2.5.

Then,

25 1 25
j x2 cos(x® — 2)dx = {: §sin(x’°’ ~2) +c}
-1

-1
= %[Sin(Z-S3 -2)-sin(-1® - 2)] = 0.3376015

e Graph:

55

12.4 Integration by Substitution: Rule

Theorem: Substitution Rule

Let f{.) be a continuous function defined on [4, /], and s() a
continuously differentiable function from [, 4] into [4, 4]. Then,

[ t(s)sdt= f((:)’ f (x) dx

* If we can identify a composition of functions as well as the
derivative of one of the composed functions, we can find the
antiderivative and evaluate the corresponding integral.

28
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12.4 Integration by Substitution - Example

¢ The key is to find the appropriate # The variable of integration
changes from x to .

Note: It is important not to forget to substitute also dx.

* Another example:

.[(4x+3)4dx
u=4x+3

du =4dx:>d—u:dx

4 5

.[u—du =£u—+C
4 45

12.5 Integration by Parts

Recall the product rule of differentiation:
dnv)=udy+ vdu

Solve for nde: ~ UdV = d (uv) — vdu

Integrating both sides: I udv = j[d (uv) —vdu ]
judv :uv—jvdu

The last formula is used to zutegrate by parts.

Key: Selection of # & » functions. In general, # involves logs,
inverse, power, exponential, and trigonometric functions (in

this order, LIPET).

8/13/2015
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12.5 Integration by Parts: Example I
¢ Example: J. xe *dx

15 /
10
(x from -3 to 3)

5

-3 -z -T +t—1 =z 3

* Select appropriate # & » functions —actually, select .

* Recall LIPET. We have a power function and an exponential
function. Since power functions come before exponential
functions, # equals x.

e From u, get du. => u=x, then du=dx
* From dp, get v. => y=e~, then dy=e*dx
* Then, simply plug this into the integration by parts formula. 5

12.5 Integration by Parts: Example I (cont)

e Replace #, v, du, and dp. JUdV = UV—IVdU

* If the integral on the right looks J.XEXdX = xe* —J.eXdX
easy to compute, then simply < x
integrate it. Otherwise, you can =xe"—e"+C

integrate by parts again, or use =e*(x-1)+C
substitution method.
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12.5 Integration by Parts: Example 11

Example: jezx cos( x)dx

Select appropriate # & v functions.

Exponential functions come before trigonometric functions.
Then, # = e*.

From #, get du. =>u = ¢ =>then dn = 2 ¢**dx

From dp, get v. => dv =cos(x) dx => v = sin(x).

Then, simply plug this into the integration by parts formula.

K:Iudv:uv—jvdu
jezxcos( x)dx = K

K = e**sin(x) - ZJe2X sin( x)dx

12.5 Integration by Parts: Example II (cont)

* The expression looks K =e*sin(x)— 2_"e2x sin(x)dx

more complicated than
the original. Integrate by
parts again. v=-cos(x) = dv=sin(x)dx

u=e* = du = 2e*dx

K =e*sin(x) - 2(— e?* cos(x) + 2J.e2x cos(x)dx) E ¢

The integral of e** cos(x)
is equal to K (the
original integral).

Note: K= je“ cos(x)dx

K =e*sin(x) + 2e** cos(x) — 4K

Replace the integral of =~ 5K =e®*sin(x) + 2e** cos(x)
e* cos(x)with K and
solve for K. K=

2X o3 2x
e sm(x)+52e cos(x)+C

62
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12.5 Integration by Parts: Tricks

* Inan integral, do only integration by parts in the parts that are
not easy to integrate.

 If the integration by parts is getting out of hand, you may have
selected the wrong # function.

* If you see your original integral in the integral part of the
integration by parts, just combine the two like integrals and solve [E88
for the integral.

¢ Integration by parts can be used to derive an effective way to
compute the value of an integral numerically, the #rapezoid rule.

63

12.5 Integration by Parts: Trapezoid Rule

* Riemann sums can be used to approximate an integral, but
convergence is slow. There are many rules designed to speed up the
calculations. The trapezoid rule is simple, with good convergence.

* To prove it, we need the Mean Value Theorem for Integration

Theorem: MVT for Integration
Let fand g be continuous functions defined on [4,4] so that g(x) =0,
then there exists a number ¢ € [4,4] with
b b
[ fT00g0am =1 (o) g
a a
Proof: Simple exercise. (Use the supremum and infimum of f{x) on

[4,0], apply Riemann integral properties and then use the
Intermediate Value Theorem for continuous functions.)

64
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12.5 Integration by Parts: Trapezoid Rule

* Trapezoid Rule

Let /() be a twice continuously differentiable function defined on
[2,0] and set

K=sup{|f'(x)], x €a, 4]}

Define » = (b - a)/ n, whete 7 is a positive integer. Then,

jb f (x)dx :Bf(ahf fa+ jh)+%f(b)]h+R(n)

=Mt@+ 23 t@s i+ to)lhs R

K
here R(n) < — (b —a)h?
where ()<12( )

Note: The Trapezoid Rule is useful because the error, R(z),
depends on the square of 4. If / is small, /? is a lot smaller!

12.5 Integration by Parts: Trapezoid Rule

* Derivation of Trapezoid Rule

First, we prove the trapezoid rule on [0,1]. That is,
rf(x)dX= i]‘(O)Jrlf(l)]—if(c), where ¢ €[0,1].
0 2 2 12

Trick: Define a function
v(x) = 1/2 x (1 - x), which has the properties:
-y(x) = 0 for all x €[0,1] & y(1) = v(0) = 0.

-V(x)=1/2-x =>(1)=-1/2 & v(0) = "2
-0"(x) = -1
Then,

1 1
j f(x)dx =— j V' (X) f (X)dx
0 0

33



Ch 12 - Integral Calculus

12.5 Integration by Parts: Trapezoid Rule

1 1

. j f(x)dx:—J- V' (x) f (X)dx
0 0

We integrate by parts with g'(x) = »"(x):

[0"6) fis) de = 0'(1) f11) - 2'(0) f10) -] ') f () dlxc =
=-1/2f11)-1/2f0) -1 /() f (x) dx

Again, we integrate by parts with g'(x) = »'(x):
o) ) e = o(1) £(1) - 0(0) £(0) - T o) f' () <
=-[ o) () dc =-1"(0) Jox) de = - () 1/12

where we used the MVT for Integration with some number ¢ ¢ [0,1]. |

Putting everything together, we have the simple trapezoid rule:

[f)d = 1/241)+ 1/2/0) + ] v'(x) f(x) dx =

=1/21)+1/20)-1/12f"() v

12.5 Integration by Parts: Trapezoid Rule

* General trapezoid rule: Assume that /(.) is defined on [4,4].

Let » = (b - a)/ n, pick an integer j, and define the function
u(x) =a+jh+xh for x €']0,1].

The composite function g(x) = f{u(x)) is twice continuously

differentiable and defined on [0,1]. We can use the simple trapezoid &

rule:

Lg(x) de=1/2g0)+1/2g(1)-1/12 g"(c)

But g0)=flu(0)=fla s g(1)=fiu())=fla + G+1)b), & §'69=12 f"(x). e

Also notice that

1/240) +1/2 4(1)-1/12¢"() = Ig(x) dx:If(ﬂ(x)) dx =

1 a+(j+1)h i
~1/h j fUO)U'(X)dx =1/ h j f (u)du N
0 a+jh

8/13/2015
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12.5 Integration by Parts: Trapezoid Rule

* Then,

J-a+( j+Dh 3

h . ) h® ..
f(x)dx:E[f(a+ jh) + f(a+(J+1)h)]—Ef (©)

a+jh

* Summing this equation from ;=0 to j=#-7 completes the derivation:

b

[f(x)dx =}{%(f(a)+f(a +h)+%[f(a+k)+f(a+2k))+...
...+%[f(a +(n—2)31)+f(a+(n—1)h))+%[f(a+(n—1)h)+_}"(a+nh)))+R(n) =]
=k(%f(a)+f(a+h)+f(a +20)+... +f(a+(n—1)k)+%f(b)J+R(n)

where

n-1 h3
R = T = )
~12

h3?:|—l K 3 K 2
EF|repcErtn =S e-ap? @
1255"1r TR TA

12.6 Improper Riemann Integrals

* Improper Riemann integral: It is the limit of a definite integral as
an endpoint of the interval(s) of integration approaches either a
specified real number that causes a discontinuity or % or —% or, in
some cases, as both endpoints approach limits.

* Roughly, it is an integral that has infinity as its limits or has a
discontinuity within its limits.

Examples:
j - 1 dx Infinity as a boundary (Problem: domain
Lox? of integration unbounded).
J‘5 1 dx Discontinuity at x=4 (Problem: integrand is
0 x—4 unbounded in the domain of integration).

70
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12.6 Improper Riemann Integrals

* The Riemann integral can often be extended by continuity, by
defining the improper integral instead as a limit.

¢ With limits of infinity, use a letter to replace the infinity, say 1,
and treat it as a limit (lim < — ). For example,

Iwizdx =lim__ rizdx =lim__,, S 1)t
Z2 X 2 X r 2

* With points of discontinuity, split integral into parts. But, we
cannot integrate to the point of discontinuity, say x;,. Then, we
integrate to x;,=6 and take limits as 8—0.

* An improper integral converges if the limit defining it exists. It is
also possible for an improper integral to diverge to infinity or to

no particular value (oscillation). n

12.7 Applications: Value of a Bond

* Value of cash flows of a bond, paying a continuous dividend.

- Maturity: T (say, T=3 years)
- Face value: FV (say, $1,000)
- Continuous discount rate: r (say, 5% annual)
- Continuous dividend rate: & (say, 7% annual)

T T it
CF = [sFV e™dt=6 Fv [e™dt =5 FV(-=) [}

r
0 0

_9 FV(—e" +e7) =? FV(@l-e™)
r

CF(T =3;FV =1,000,r =.05,5 =.07) =%$1000(1—e'05"3) =$195.00

72
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12.7 Applications: Elements of Probability

¢ Xis a random variable (an outcome of a random event). A
random variable (RV) is a function.

¢ X can be discrete (recession, boom) or continuous (price of
IBM stock tomorrow).
¢ Given a sample space S (8: set of all possible outcomes)
* To each discrete outcome A we associate a real number P(A)
¢ DPis called a probability function and P(A) is called the
probability of the event A if
— Axiom 1: For every event A, P(A) 2 0
— Axiom 2: For the Sure/Certain event S, P(S) =1

— Axiom 3: For any number of mutually exclusive events A, A,, A,
..., we have PAQ,UA, UA;U...) =P(A) + P(A) + P(A;) +...

73

12.7 Applications: Elements of Probability

¢ For continuous RV, the probability function is f{x), such that:
_f(x)>0

- ]2 f(x)dx =1

b
~P(a< X sb):j f (x)dx
* ) is called probability density function (pdf), or just density.

* 'The cumulative distribution function (CDF) of a discrete RV X,
denoted as F(x), is
F) =PX =x) =3 i<, P(x)
The cumulative distribution function (CDF) of a continuous
RV X, denoted as F(x), is

F(x) = P(X <) =, f(x)
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12.7 Applications: Elements of Probability

Example: Uniform Distribution: fx)=constant —i.e., the
probability of any outcome is the same. Suppose x & [0,20]. What
is the probability that x is between 10 and 15?

15 15 1 1 15 1 1 1 L
P(LO< X <18) = [ f ()dx= [ -dx=—= [dx=—-(X) [5=—-(15-10) =
: 220 208 20 20 4

Example: Exponential Distribution: f(x)= A e** for 0<x <o0. Let
Suppose A =3, what is the probability that x is between 0 and 17
e—3x

1 1
PO<X <D)=[f(x)dx=3[e *dx=-3 5 =k
0 0

=—(e®-1)=1-e%=0.9502

75

12.7 Applications: Elements of Probability

*  Mean and Variance
Suppose X is a continuous RV with probability density function
f(x). Then, the mean or expected value of X, denoted g, is

u=E[X]= Txf (x)dx

* 'The variance of X, denoted as o? or V[X], is
o =V[X]= J.(X—,u)z f (x)dx

¢ The standard deviation, o, is the square root of V[X].
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12.7 Applications: Elements of Probability

* Example: Uniform Distribution: f{x)= 1/20. Calculate the mean
and variance of f{x), where x € [0,20]?

i f(x)d [ d LT d L —Xz n_ 1 00) =10
X] ;'; ) '([20 204 20(2)|O 40( )
2 Dx-10 1% 1
V X = X— 2f XdX: (X—dX:— uzdu:_ J— 20
[X] _([( 1) 1(x) I[ 20 20_(‘;() 20(3)|0

_ %(x—lO)s o= %(103 110°)=33.33

* Example: Exponential Distribution: f{x)= A e™ for 0<x <00,
Calculate the mean (integration by parts needed, u=x, v=-¢*).

AX

o
A

o 1
o=~

77

E[X]= J'x/le‘“dx =e x|y +_|'e‘“dx =0—(
0 0

12.7 Applications: Truncated Normal

* Suppose we are interested in a regression,

Vi =X Bt e, g ~N(0, o)
but we only observe the part of the sample with y>0.
Model: vi=x) BT, fory,=x’ @ +v,>0

- Let’s look at the density of v, /(.), which must integrate to 1:

[* f,)dn =1
-X'p
- The €/s density, normal by assumption:
- e (s s 1 2Ly
[, fmdn=F=]"f.@dp=]"———e
- Then, f () can be written as:
1 Gy

f,=F 'f,=F'——e?2°
27’
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12.7 Applications: Truncated Normal

* Now, we can calculate the expected value of v;:

o= af,(dn=F"[  af (1)dy

e 1 ~LZy e o 10 Ry
= F ! _ e 2o d = F L e 20 d

i J.—xi'ﬁn 2762 U i .[_xi'ﬂ o \2x d
=F -0 f.(]%, integration by substitution
:O_Fi_lfiio (fi=f.(x'B))

- Integration by substitution: - # =n/c and dn= o dn.
-F(n) = exp(-#/2)

- Then, E[u,|x] = o F ! f =0 A(x/B) # 0 (and it depends on x’B)
=> Ely[y>0.x78] = x7B + o Mx/)

=> OLS in truncated part is biased (omitted variables problem).

12.8 Double Integrals

Now, z=f{x,), we have two variables of integration: x and j.

Simple integrals represent areas, double integrals represent
volume.

We want to know the volume
defined by z=f(x,y) = 0
on the rectangle R=[a,b]X[c,d]

80
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12.8 Double Integrals

¢ Similar to the intuition behind simple integrals, we can think of
the double integral as a sum of small —easy to calculate-
volumes.

12.8 Double Integrals
y 1j’s column: S ]
R. G5 vy) f OG0 Vi)
1
Ssample point (x;", y;;") % ~ |
X X N
Ay v
Areaof RjisAA=AxAy
Volume of ij’s column: (X, i) AA
Total volume of all columns: Z Z f (X; ) y:) AA
il 1
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12.8 Double Integrals

* Definition of a Double Integral:

V=lim 3 106, iA A

mn—o j=1 j=1

83

12.8 Double Integrals

The double integral ” f (x,y)dA of fover the rectangle R is
R

ﬁ f(x,y)dA = |im Z Z f(x;,y;)AA, if the limit exists.
R

mnoow i=1 j=1

* Double Riemann sum: Z Z f (Xij Y JAA

i=1 j=1

* Note 1: If f is continuous then the limit exists and the integral is
defined.

* Note 2: The definition of double integral does not depend on the
choice of sample points.

e If the sample points are upper right-hand corners then

[[fouyaa=timg ., ZZ (X, y;)AA

R i=1 j=1 84

42



Ch 12 - Integral Calculus 8/13/2015

12.8 Double Integrals: Example

* Let z=16-2%-2)%, where 0<x<2
and 0=y=2.

* Estimate the volume of the
solid above the square and below
the graph

* Let’s partitioned the volume in
small (#x7) volumes.

* Exact volume: 48.

5

L] .
m=n=4V=41.5 m=n=8;V=44.875 m=n=16;V= 46.46875

12.8 Double Integrals: Fubini’s Theorem

Theorem: Fubini’s Theorem

Suppose A and B are complete measure spaces. Suppose f{x;)) is
A X B measurable. If

JIieen iy <o
AxB

where the integral is taken with respect to a product measure on the
space over A4 X B, then

j f(x,y)dA=I jf(x,y)dx dy=j jf(x,y)dy dx
AxB A\ B B\ A

where the last two integrals are iterated integrals with respect to two
measures, respectively, and the first being an integral with respect to
a product of these two measures.
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12.8 Double Integrals: Fubini’s Theorem

Fubini’s Theorem is very general. For the Riemann’s case, we have:

If fx,y) is continuous on rectangle R=[a,b]X[c,d] then the double
integral is equal to the izerated integral.

j j f(x,y)dA= j j f (X, y)dxdy = j j f (x, y)dydx

That is, we can compute first

b
J' f(x, y)dx
a

by holding y constant and integrating over x as if this were an singlg

integral. This creates a function with only x, which we can integrate
as usual. Then, we integrate over j, again, as usual. 87

12.8 Double Integrals: Computation

* Fubini’s theorem simplifies calculation by allowing iterated
computations. There are two ways of doing the iteration:

jR j f(x, y)dA =i@ f(x, ){)d%dy :i@ f ()I(’ y)dﬂdx

| |

fixed fixed
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12.8 Double Integrals: Computation

e Example:

j [ y)dA:ﬁ(H y)dxdy:j'ﬁ (X+ y)dXde:
i(z jdy_j +y]dy—j dy+jydy

1
(zm_ _1_+11
2), 2

12.8 Double Integrals: Computation (General 8
Case) \‘Q

* Before, we looked at double integrals over a rectangular region, \

|

R. Not realistic. Most regions are not rectangular. We adapt our
previous result to the general case.

* If f{x,)) is continuous on A={(x;)) | x €[a,b] & h(x) < y < g(x)},
then the double integral is equal to the iterated integral:

b 9(x)
y 460 IAIf(X,y)dA=£hz[)f(x,y)dydx
e
A
S~ heo |
a X b 90
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12.8 Double Integrals: Computation
(General Case)
¢ Similarly, if £ (x,) is continuous on
A={(>) | yE[c,d] & h())<x < g(y)} then the double integral is equal
to the iterated integral:
d g(y)
j j f(x,y)dA= j j f (X, y)dxdy
y 1 R ¢ h(y)
d .............
{ A \
! h(y) 2 :g(y)
O3
X 91

12.8 Double Integrals: Fubini’s Thorem
Corollary

* IFF (x3) = 9 () () then

] £ y)dA=] o0 (y)dxdy {f ﬂx)dx}‘b ‘/’(y)dy} 3§

R c

Examples:
[[ysineda  A=[1/21]x[z/2,x]

S

R
e 1
I—e 2 e 2 dxdy, R=[-o0,00]x[—o0,00]
- 27

92
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12.8 Double Integrals: Polar Coordinates

* Sometimes, it is easier to move from Cartesian coordinates to
polar coordinates. For example, we have a region that is a disk or
a portion of a ring. Cartesian coordinates could be cumbersome.

Examples: J' j f(x,y)dA where Disa disk of radius 2.
D

We can describe the area D as: -2 <x<2 & -V(4-x2) <y< V(49
—V4-x?
j f(x, y)dA = J' j £ (x, y)dxdy
D

—V4-x?
Easier to describe a disk of radius 2 in polar coordinates:
0<0<2nr & 0=<r=<2

To integrate, we need a change of variables: x=rsin(6), y=rcos(6), |

and 4A = r dr db.

12.8 Double Integrals: Polar Coordinates

* Let’s generalize the example. Now;:
a<0<8 & h(0) = r<h(0)
Then
g
j f(x, y)dA = I j f (r cos(8), r sin(6))rdrde
D hy (6)
Note: dA = rdrdf (not dA = dr df, as in the Cartesian world).

Example:
”e 2 2 dxd _J je 2 rdrd¢9 J {—e 2)} dG:J:” 1d6=2x
D=R? 0

We use a change of variables: x = rsin(6), y = rcos(6) (recall 7 = |
x? + y?)and dA = rdr db. o
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12.8 Double Integrals: Properties

* Linearity
JITf 00 y)+ g yldA= [[ £ (x y)dA+ [[g(x, y)dA

jjcf (, y)dA:cjjf(x, y)dA

* Comparison: If fx,y)=g(x,y) for all (x,y) in R, then
jjf(x,y)dA;zjjg(x,y)dA
A A

 Additivity: If A, and A, are non-overlapping regions then
[[ fOocy)dA =[] £(x, y)dA + [[ f(x,y)dA o |
Al A2

ALUA,

12.9 Computational Science vs. Calculus

 Calculus tells you how to compute precise integrals &
derivatives when you know the equation (analytical form) for a
problem; for example, for the indefinite integral:

[P +10r+24) dr=-£/3+ 52+ 24+ C

It turns out that many integral do not have analytical solutions
or are complicated to compute, especially when we move to
more than 3 dimensions. For these problems, we rely on
numerical approximations.

¢ Computational science provides methods for estzmating integrals
and derivatives from actual data.
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