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Chapter 12
Integral Calculus
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• A very old problem (Archimedes 
proposed a solution! Fermat 
worked on it, too). Newton and 
Leibniz solved it in late 17th

century . 

• Idea: Introduce rectangles under 
the curve, defined by f(x), find the 
area of all of those rectangles and 
add them all up. 

• Rigorous mathematical details 
had to wait till the 19th century.

12. Problem: Area under a curve
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12. Estimating Area Under Points

• What if  instead of  a function, we were given points: how could 
we use rectangles to estimate area under points?

a b

4

12. Underestimating Area

• Here we underestimate the area by putting left corners at points:

a b



Ch 12 - Integral Calculus 8/13/2015

3

5

• Here we overestimate the area by putting right corners at points:

a b

12. Overestimating Area

• Note: As the intervals become smaller and smaller –i.e., the 
partitions of  [a,b] become finer-, both the left corner and the right 
corner based areas converge.

6

• In general, integration is motivated as an area under a curve. This 
geometric intuition is fine. 

• But, we want to think of integration as a form of summation. In 
economics and finance, geometric interpretations, in general, have 
little use. But, the summation intuition works very well.

• Riemann thought of an integral as the convergence of two sums, 
as the partition of the interval of integration becomes smaller.

12.1 Riemann Sum

Bernhard Riemann (1826-1866), Germany
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• In order to estimate an area, we need a partition of the interval 
[a,b]. We define a partition P of the closed interval [a,b] as a finite set 
of points P = { x0, x1, x2, ..., xn} such that 

a = x0 < x1 < x2 < ... < xn-1 < xn = b.

• If P = { x0, x1, x2, ..., xn} is a partition of the closed interval [a,b] 
and f is a function defined on that interval, then the n-th Riemann 
Sum of f  with respect to the partition P is defined as: 

R(f, P) =  Σj=1 to n f(tj) (xj - xj-1)

where tj is an arbitrary number in the interval [xj-1, xj].

• But, we do not know tj . In the previous two examples, we used 
the left end points of the interval [xj-1, xj] (underestimation of area) 
and the right points of the interval [xj-1, xj] (overestimation of area).

12.1 Riemann Sum
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• There are two useful cases:

1) use cj, the supremum of f(x) in the interval [xj-1, xj], producing the 
upper sum: 

U(f, P) =  Σj=1 to n cj (xj - xj-1)

2) use dj, the infimum of f(x) in the interval [xj-1, xj], producing the 
lower sum: 

L(f, P) =  Σj=1 to n dj (xj - xj-1)

Example: U(f, P) is displayed in dark brown and L(f, P) in orange. 

12.1 Riemann Sum
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Proposition: Size of Riemann Sums

Let P be a partition of the closed interval [a,b], and f(.) be a 
bounded function defined on that interval. Then,  

- The lower (upper) sum is increasing (decreasing) with respect to 
refinements of partitions --i.e. L(f, P') ≥ L(f, P) or U(f, P') ≤ U(f, P)
for every refinement P' of the partition P.

- L(f, P) ≤ R(f, P) ≤ U(f, P) for every partition P

That is, the lower sum is always less than or equal to the upper 
sum. 

Q: Will U(f, P) and L(f, P) ever be the same?

12.1 Riemann Sum
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• Suppose f(.) is a bounded function defined on a closed, bounded 
interval [a, b]. Define the upper and lower Riemann integrals as:

I*(f) = inf {U(f,P): P a partition of [a, b]}
I*(f) = sup {L(f,P): P a partition of [a, b]}

Then if I*(f) = I*(f) the function f(.) is called Riemann integrable (R-
integrable) and the Riemann integral of f(.) over the interval [a, b] is 
denoted by


b

a

f(x)dx

Note: U(f, P) and L(f, P) depend on the chosen partition, while the 
upper and lower integrals are independent of  partitions. But, this 
definition is not practical, since we need to find the sup and inf over 
any partition. 

12.1 Riemann Integral
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• Suppose f(.) is a bounded function defined on a closed, bounded 
interval [a, b]. Define the upper and lower Riemann integrals as:

I*(f) = inf {U(f,P): P a partition of [a, b]}
I*(f) = sup {L(f,P): P a partition of [a, b]}

Then if I*(f) = I*(f) the function f(.) is called Riemann integrable (R-
integrable) and the Riemann integral of f(.) over the interval [a, b] is 
denoted by


b

a

f(x)dx

Note: U(f, P) and L(f, P) depend on the chosen partition, while the 
upper and lower integrals are independent of  partitions. But, this 
definition is not practical, since we need to find the sup and inf over 
any partition. 

12.1 Riemann Integral
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Example: Is f(x)=x2 R-integrable on [0,1]? 

It is complicated to prove that this function is integrable.  We do not 
have a simple condition to tell us whether this, or any other 
function, is integrable. 

But, we should be able to generalize the proof for this particular 
example to a wider set of functions. 

First, note that in the definition of upper and lower integral it is not 
necessary to take the sup and inf over all partitions: If P is a partition 
and P' is a refinement of P, then 

L(f, P') ≥L(f, P)    and    U(f, P') ≤ U(f, P). 

Thus, partitions with large intervals (large norms, |P| ) do not 
contribute to the sup or inf. We look at partitions with a small norms.

12.1 Riemann Integral – Example 1
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Second, take any ε> 0 and a partition P with |P|< ε/2. Then, 

|U(f, P) - L(f, P)| ≤ Σj=1 to n |cj - dj| (xj - xj-1), 

where cj is the sup of f over [xj-1, xj] and dj is the inf over that interval.

Since f(.) is increasing over [0, 1], we know that the sup is achieved 
on the right side of each subinterval, the inf on the left side. Then, 

|U(f, P) - L(f, P)|≤ Σj=1 to n |cj - dj| (xj - xj-1) 

= Σj=1 to n |f(xj) - f(xj-1)| (xj - xj-1)

To estimate this sum, we use the Mean Value Theorem for f(x) = x2: 
|f(x) - f(y)| ≤ |f'(c)| |x - y| for c between x and y. 

Since |f'(c)| ≤ 2 for c ∈ [0, 1] => |f(x) - f(y)| ≤ 2 |x - y|

12.1 Riemann Integral – Example 1
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To estimate this sum, we use the Mean Value Theorem for f(x) = x2: 
|f(x) - f(y)| ≤ |f'(c)| |x - y| for c between x and y. 

Since |f'(c)| ≤ 2 for c in [0, 1] => |f(x) - f(y)| ≤ 2 |x - y|

But P was chosen with |P|< ε/2 

=> |f(xj) - f(xj-1)|≤ 2 |xj - xj-1|≤ 2 ε / 2 = ε.

Then, |U(f, P) - L(f, P)|≤ Σj=1 to n |f(xj) - f(xj-1)| (xj - xj-1)

≤ ε Σj=1 to n (xj - xj-1) = ε (1 - 0) = ε.

Since P was arbitrary but with small norm --sufficient for the upper 
and lower integrals--, the upper and lower integral must exist and be 
equal to one common limit L.

12.1 Riemann Integral – Example 1
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• Let’s calculate L. It is easy, since now we know that the function is 
integrable. Then, we take a suitable partition to find the value of the 
integral. For example, take the following partition 

xj = j/n for j = 0, 1, 2, ..., n. 

Then, the upper sum: 

U(f, P) = Σj=1 to n cj (xj - xj-1) = Σj=1 to n f(xj) 1/n 
= Σj=1 to n (j/n)2 1/n = 1/n3 Σj=1 to n j 2

= 1/n3 [1/6 n (n+1) (2n+1)] = 1/6 (n+1) (2n+1)/n2

Since we know that the upper integral exists and is equal to L, the 
limit as n goes to infinity of the above expression must also 
converge to L. Then, L = 1/3.

12.1 Riemann Integral – Example 1
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Example: Is the Dirichlet function R-integrable? 

The Dirichlet Function (Q is the set of rational numbers):

Qx

Qx
xf





 if   0

 if   1
   )(

We have that U(f, P) = 1 and L(f, P) = 0, regardless of  P. Then, 
I*(f) = 1 and I*(f) = 0.

Thus, the Dirichlet function is not R-integrable over the interval [a,b].      

Note: Unlike the function in the previous example, we have a 
discontinuous function on the Irrational Numbers. We have infinite 
discontinuities.

12.1 Riemann Integral – Example 2
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• The first example shows that it is difficult to establish the 
integrability of  a given function. The second example illustrates 
that not every function is Riemann integrable. 

• The Rienmann lemma provides an easier condition to check the 
integrability of  a function. 

Suppose f(.) is a bounded function defined on the closed, bounded 
interval [a, b]. Then, f(.) is R-integrable if  and only if  for every ε>0 
there exists at least one partition P such that 

|U(f,P) - L(f,P)| < ε

In example 1, we check the above inequality holds for every
partition P with small enough norm. Using Riemann's Lemma, we 
only need to check the inequality holds for one partition. Easier!

12.1 Riemann Lemma

18

• Roughly speaking, we define the Riemann integral as follows: 
- Subdivide the domain of  the function (usually a closed, bounded 

interval) into finitely many subintervals (the partition) 
- Construct a simple function that has a constant value on each of  

the subintervals of  the partition (the Upper and Lower sums) 
- Take the limit of  these simple functions as you add more and 

more points to the partition. 

• If  the limit exists, it is called the Riemann integral and the 
function is called R-integrable. 

• A function is R-integrable on [a,b] if:
- It is continuous on [a,b]
- It is monotone on [a,b]
- It is bounded, with a finite number of  discontinuities on [a,b]. 

12.1 Riemann Integral - Remarks
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• For a function to be R-integrable it must be bounded. If  the 
function is unbounded even at a single point in an interval [a, b] it 
is not Riemann integrable (because the sup or inf over the 
subinterval that includes the unbounded value is infinite). For 
example, f(x)= 1/x over [0,1], unbounded at x=0.

• The Riemann integral is based on the concept of  an "interval", or 
rather on the length of  subintervals [xj-1, xj].  The concept of   
partition applies to an interval. We can take Riemann integrals 
over unions of  intervals, but nothing more complicated (say, 
Cantor sets).

• Partitions depend on the structure of  the real line. Thus, we 
cannot define a R-integrable for functions defined on more 
abstract spaces --say, sequences, functions from N to R. 

12.1 Riemann Integral - Remarks
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• The Riemann–Stieltjes integral of  a real-valued function f of  a real 
variable with respect to a real function g is denoted by:

defined to be the limit, as the mesh of  the partition 
P ={a = x0 < x1 < x2 < ... < xn-1 < xn = b},

of  the interval [a, b] approaches zero, of  the approximating sum 

S(f,g,P) =  Σi=1 to n f(ci) (g(xj) – g(xj-1)),
where ci is in the i-th subinterval [xi-1, xi]. The two functions f and g
are respectively called the integrand and the integrator. 

• If  g is everywhere differentiable, then the Riemann–Stieltjes 
integral may be different from the Riemann integral of  f(x) g’(x). 
For example, if  the derivative is unbounded. But if  the derivative is 
continuous, they will be the same. 

12.1 Riemann-Stieljes Integral


b

a
xdgxf )()(
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• The Riemann integral is based on partitioning the domain [a,b] in 
subintervals [xj-1, xj], picking a point xj* in the subinterval and 
calculating the area under the curve by computing the Riemann 
sums. Then, take the limit as we add more and more points to the 
partition. 

• Roughly speaking, Lebesgue's theory, instead of  partitioning the 
domain, partitions the range into subintervals.

• Based on these subintervals, calculate areas and sum over these 
areas. The approximation improves with finer and finer partitions 
of  the range.

• The Lebesgue integral will be the limit of  these sums. 

12.1 Lebesgue’s Theory - Introduction
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• Suppose the function takes values between [c,d]. 
1) Divide range [c,d] into subintervals: [c=y0,y1], [y1,y2], ... ,[yN−1,yN=d]

2) Define Ei as the set of  all points in [a,b] whose value under f lies 
between yi and yi+1: Ei =f-1([yi,yi+1])={x ∈[a,b]| yi ≤ f(x) ≤ yi+1}.

3) Assign a “size” to Ei -a measure μ(Ei). Then, the portion of  the 
graph of  y=f(x) between the horizontal lines y=yi & y= yi+1 will be 
Ai, where, yi μ(Ei) ≤ Ai ≤ yi+1 μ(Ei). 

4) Approximate the area by picking a number yi∗ ∈ [yi,yi+1], and 
compute:  ∑i=0n−1 yi∗ μ(Ei) 

5) The approximation improves with finer and finer partitions of  
[c,d]. The Lebesgue integral will be the limit (if  it exists) of  these 
sums. The function is called Lebesgue integrable. 

12.1 Lebesgue’s Theory - Introduction
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• Riemann & Lebesgue integrals: Vertical sums vs Horizontal sums.

12.1 Lebesgue’s Theory - Introduction

24

• Riemann & Lebesgue integrals: Analogy:
You have a pile of  coins and you want to know how much money 
you have. For this purpose, you can pick the coins randomly, one by 
one, and add them. This is the Riemann integral. 
You can also sort the coins by denomination first, and get the total 
by multiplying each denomination by how many you have of  that 
denomination and add them up. This is the Lebesgue integral.

• The methods are different, but you obtain the same result by 
either method. Similarly, when both the Riemann integral and the 
Lebesgue integral are defined, they give the same value. 

• But, there are functions for which the Lebesgue integral is defined 
but the Riemann integral is not. In this sense, the Lebesgue integral 
is more general than the Riemann.

12.1 Lebesgue’s Theory - Introduction
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• Step 3 assigns a size to the set Ei. With Riemann integrals, we use 
as size the length of  subintervals [xj-1, xj]. This is fine, but we need 
to generalize the concept to more complicated sets. The 
generalization, called measure, is a function assigning to each set A in 
Rm a non-negative number, μ(A). 

• This measure should satisfy two conditions:
1) It should be applicable to intervals, unions of  intervals, and to 
more general sets (say, a Cantor set). Ideally, defined for all sets.
2) It should share many of  the properties of  “length of  an 
interval”:
- μ(A) ൒	0	(Non-negative); 
- μ(A =[a,b]) = b - a; 
- Invariant under translation: if  F=E+c={e+c|e ∈E}=>μ(F)=μ(E);
- Countably additive, i.e., μ(A= UAn) = Σn (An), where An are 
pairwise disjoint sets.  

12.1 Lebesgue’s Theory - Measure

26

• Lebesgue defined a measure, the Lebesgue measure, that satisfies 
both conditions: 
- First, define an outer measure (based on the infimum of  a set), 
which satisfies (1): 

If  A is any subset of  R, define the (Lebesgue) outer measure of  A as: 
λ*(A) = inf  {Σ l(An)} 

where the infimum is taken over all countable collections of  open 
intervals An such that A⊂ UAn and l(An) is the standard length of  
the interval An. 

Note: λ* is defined for all sets, but, λ* is not additive, it is subadditive 
–i.e., λ*(F U E) ≤ λ*(F) + λ*(E); => not quite length. 

• The outer measure is a real-valued, non-negative, monotone and 
countably subadditive set function. 

12.1 Lebesgue’s Theory – Lebesgue Measure
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- Second, define measure by restricting the outer measure to 
measurable sets: 
A set E is (Lebesgue) measurable if  for every set A we have that 

λ*(A) = λ*(A ∩ E) + λ*(A ∩ EC) 
If  E is measurable, the non-negative number μ(E) = λ*(E) is the 
(Lebesgue) measure of  the set E. 

Example 1: The set R of  all real numbers is measurable: 
λ*(A ∩ R) + λ*(A ∩ RC) = λ*(A) + λ*(A ∩ Ø) = λ*(A) 

=> R is measurable.

Example 2: The complement of  a measurable set is measurable.
Suppose E is measurable =>   λ*(A) = λ*(A ∩ E) + λ*(A ∩ EC) 
For EC we have:
λ*(A ∩ EC) + λ*(A ∩ (EC)C) = λ*(A ∩ EC) + λ*(A ∩ E) = λ*(A) 

=> E is measurable.

12.1 Lebesgue’s Theory – Measurable Sets

28

• This restriction makes the measure additive, satisfying (2), mainly 
the additive requirement. But, now the measure is not defined for 
all sets, since not all sets are measurable (the axiom of  choice in set 
theory plays a role here).

• Lebesgue’s definition of  measurable sets is not very intuitive. But, 
it is elegant, general, brief  and it works. 

Remark: Not every set is measurable, but it is fair to say that most sets 
are. 

• Usually, the family of  all measurable sets is denoted by `  (script 
M). ` is a sigma-algebra and translation invariant set containing all 
intervals.

12.1 Lebesgue’s Theory – Measurable Sets
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• Properties of  Lebesgue measure:
1. All intervals are measurable. The measure of  an interval: its 
length.
2. All open and closed sets are measurable. 
3. The union and intersection of  a finite or countable number of  
measurable sets is again measurable. 
4. If  A is measurable and A is the union of  a countable number of  
measurable sets An, then μ(A) ≤ Σ μ(An).
5. If  A is measurable and A is the union of  a countable number of  
disjoint measurable sets An, then μ(A) = Σ μ(An).

• According to these properties, most common sets are measurable: 
intervals; closed & open sets; unions & intersections of  measurable 
sets. But, the property that measure is (countably) additive implies 
that not every set is measurable. 

12.1 Lebesgue’s Theory –Properties of  Measure 

30

• In Lebesgue's theory, integrals are defined for a class of  functions 
called measurable functions, which are the ones for which the sets we 
get are measurable sets. 

• A function f : A →[-∞,∞] is measurable (or measurable on A) if  A 
∈`  and the pre-image of  every interval of  the form (t, ∞) is in ` :

{x|f(x)>t} ∈`    for all t ∈ R 

This is somewhat comparable to one of  the definitions of  
continuous functions: A function f is continuous if  the inverse 
image of  every open interval is open. However, not every 
measurable function is continuous, while every continuous function 
is clearly measurable. 

Note: Simple functions, step functions, continuous functions, and 
monotonic functions are measurable.

12.1 Lebesgue Integral – Measurable functions
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• Proposition. Let f  & g be measurable extended real-valued 
functions on A ∈` A  Then, the following functions are all 
measurable on A:

f  + c; c f  ;  f  + g;  f  g, where c ∈ R .

Note: Usual convention to avoid nonsense results, when f (and/or 
g)= ∞/- ∞ : 0 x ∞ = 0. 

• Now, we have the tools to define, and possibly compute, the 
integral for those functions:

∫A f(x) λ(dx)
that represents, loosely, a limit of  integral sums 

Σi f(xi) λ(Ai),
where λ is a measure on some space A, and {Ai} is a partition of  
A, and xi is a point in Ai .

12.1 Lebesgue Integral

32

• To define the Lebesgue integral, we usually follow these steps: 
- Define the Lebesgue integral for "simple functions." 
- Define the Lebesgue integral for bounded functions over sets of  
finite measure. 
- Extend the Lebesgue integral to positive functions (not necessarily 
bounded). (The concept of  measurable function plays a role.)
- Define the general Lebesgue integral.

• Definition: Simple function

φ(ω) =  Σi=1 to n ai IAi(ω),
where A1, ...,Ak are measurable sets on Ω, IAi is an indicator 
function and a1, ..., ak are real numbers. Let A1, ...,Ak be a partition 
of  Ω --i.e., Ai’s are disjoint and A1U ... U Ak = Ω. 

Then, φ(.) with distinct ai’s exactly characterizes this partition.

12.1 Lebesgue Integral
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• Simple functions can be thought of  as dividing the range of  f, 
where the resulting sets An may or may not be intervals. 

Example: A step function, φ(ω) =  ai for xj-1 < x < xj
and the {xj} form a partition of  [a, b]. Upper, Lower, and Riemann 
sums are examples of  step functions. 

• Definition: Lebesgue Integral for Simple Functions 
Let φ(x) = Σn an IAn(x) be a simple function and μ(An) be finite for 
all n, then the Lebesgue integral of  φ is defined as: 

∫ φ(x) dx = a1 μ(A1) + a2 μ(A2) ...+ an μ(An) = Σn an μ(An) 
If  E is a measurable set, we define 

∫E φ(x) dx = ∫ IE(x) φ(x) dx

Recall: μ(A =[a,b]) = b – a. Thus, μ(xj , xj +dx)= dx

12.1 Lebesgue Integral – Simple functions

34

Example 1: Lebesgue integral of  a step function f(x), defined as: 
f(x)  = 1 if  -1 <x < 2

2 if  2 ൑x < 4
3 if  4 ൑	x ൑ 8
0 otherwise

∫ f(x) dx= a1 μ(A1) + a2 μ(A2) ...+ an μ(An) 
= 1 μ([-1,2]) + 2 μ([2,4]) + 3 μ([4,8])
= 1x3+2x2+3x4 = 19

12.1 Lebesgue Integral – Simple functions
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Example 2: Lebesgue integral of  f(x) = c
f(x) = c can be written as a simple function f(x) = c IR(x) 
Then, the Lebesgue integral of  f over [a,b] is by definition:

∫[a, b] f(x) dx = ∫ I[a, b](x) f(x) dx = 
= ∫ c I[a, b](x) dx = c μ([a, b]) = c (b - a) 

Note: The same answer as for the Riemann integral. 

• Example 3: Lebesgue integral of  Dirichlet function on [0,1].
Let Q be the set of  all rational numbers, then the Dirichlet function 
restricted to [0, 1] is the indicator function of  A = Q ∩ [0, 1]. The 
set A is a subset of  Q, hence A is measurable and μ(A) = 0. 
Thus,   

∫ IA(x) dx = μ(A) = 0 

Note: Not the same answer as in Riemann’s case. 

12.1 Lebesgue Integral – Simple functions

36

• We used step functions to define the R-integral of  a bounded 
function f over an interval [a,b]. Now, we use simple functions to 
define the L-integral of  f over a set of  finite measure. 

• Definition: Lebesgue Integral for Bounded Functions 
Suppose f is a bounded function defined on a measurable set E with 
finite measure. Define the upper and lower Lebesgue integrals as 

I*(f)L = inf{φ(x) dx: φ is simple and φ ≥ f  } (lower)
I*(f)L = sup{φ(x) dx: φ is simple and φ ≤ f  } (upper)

If  I*(f)L = I*(f)L the function f is called Lebesgue integrable (L-integrable) 
over E and the Lebesgue integral of  f over E is denoted by

∫ E f(x) dx

12.1 Lebesgue Integral – Bounded functions
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Example: Is f(x)=x L-integrable over [0,1]? 
We know that |f(x)| ≤ 1 over the interval [0,1]. Define sets: 

Ej = {x ∈[0,1]: (j-1)/n ≤ f(x) < j/n} for j = 1, 2, ..., n. 
Because f is continuous, the sets Ej are measurable, they are disjoint, 
and their union (over the j's) equals [0,1]. 

Define two simple functions 
Sn(x) = Σj j/n IEj(x)
sn(x) = Σj (j-1)/n IEj(x)

Fix an integer n and take a number x ∈ [0,1). Then, x must be 
contained in exactly one set Ej, and on that set we have 

sn(x) = (j-1)/n ≤ f(x) < j/n = Sn(x) 

Thus, on all of  [0,1], we know that sn(x) ≤ f(x) ≤ Sn(x) 

12.1 Lebesgue Integral – Bounded functions

38

Example (continuation): Thus, on all of  [0,1], we know that sn(x) ≤
f(x) ≤ Sn(x). 
But then, 

I*(f)L ≤ ∫ Sn(x) dx = 1/n Σj j μ(Ej)
I*(f)L ≥ ∫ sn(x) dx = 1/n Σj (j-1)  μ(Ej) 

Therefore, 
I*(f)L- I*(f)L ≤ 1/n Σj (j - (j-1)) μ(Ej) = 1/n Σj μ(Ej)

= 1/n μ([0,1]) = 1/n 

Since n was arbitrary the upper and lower Lebesgue integrals must 
agree, hence the function f is L-integrable. 

Note:  With a few simple modifications this example can be used to 
show that every bounded function f, which has the property that the sets 
Ej are measurable, is L-integrable. 

12.1 Lebesgue Integral – Bounded functions
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Example: Value of  the Lebesgue integral f(x) = x over [0,1]
Compute μ(Ej) using the fact that f(x) = x: for a fixed n we have 

μ( Ej ) = μ({x ∈[0,1]:(j-1)/n <  f(x) < j/n}) = 
= μ({x ∈[0,1]: (j-1)/n < x < j/n}) = 
= μ([(j-1)/n, j/n] ) = 1/n

Then,
∫ f(x) dx = lim 1/n Σj j μ(Ej)

= lim 1/n Σj j 1/n
= lim 1/n2 Σj j = lim 1/n2 [n(n-1)/2] = 1/2  

=> same value as for the Riemann integral. 

12.1 Lebesgue Integral – Bounded functions

40

• We have extended the concept of  integration to (bounded) 
functions defined on general sets (measurable sets with finite 
measure) without using partitions (subintervals). 

• The Lebesgue integral agrees with the Riemann integral, when 
both apply. This new concept removes some strange results –for 
example, we can integrate over Dirilecht functions over an interval.  

• But, we have restricted our attention to bounded functions only. To 
generalize the Lebesgue integral to functions that are unbounded, 
including functions that may occasionally be equal to infinity, we  
need the concept of  a measurable function. 

• Recall that measurable functions do not have to be continuous. 
They may be unbounded and they can be equal to ±∞. They are 
"almost" continuous –i.e., except on a set of  measure less than ε. 

12.1 Lebesgue Integral – General Case
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Definition: Lebesgue Integral of  Non-Negative Functions  
Let f be a measurable function defined on E and h be a bounded 
measurable function such that λ({x: h(x) > 0}) is finite, then we 
define 

∫E f(x) dx = sup{∫E h(x) dx, h ≤f  } 
If  ∫E f(x) dx is finite, then f is called L-integrable over E. 

Definition: General Lebesgue Integral 
Let f be a measurable function. Define the positive and negative 
parts of  f, respectively, as: 

f +(x) = max(f(x), 0)
f -(x) = max(-f(x), 0) 

so that f   = f + - f -. Then, f is Lebesgue integrable if  f + and f - are 
L-integrable and 

∫ E f(x) dx = ∫ E f +(x) dx - ∫ E f -(x) dx 

12.1 Lebesgue Integral – General Case

42

• The Lebesgue integral is more general than the Riemann integral:
If  f(.) is R-integrable, it is also L-integrable. 

• For most practical applications, we use the result that for 
continuous functions or bounded functions with at most countably 
many discontinuities over intervals [a,b] there is no need to 
distinguish between the Lebesgue or Riemann integral.

• Then, all Riemann integration techniques can be used. But, for 
more complicated situations, the Lebesgue integral is more useful.

• The Lebesgue integral makes no distinction between bounded
and unbounded sets in integration, and the standard theorems apply 
equally to both cases.

12.1 Lebesgue Integral - Remarks
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• For theoretical purposes the Lebesgue integral provides an 
abstraction level that simplifies proofs.

• But, then techniques such as integration by parts or substitution 
may no longer apply. 

• It plays a pivotal role in the axiomatic theory of  probability. A 
probability measure behaves analogously to an area measure, and, in 
fact, a probability measure is a measure in the Lebesgue sense.

• There are several other generalizations of  the 
Riemann integral: Perron, Denjoy, Henstock, etc.

12.1 Lebesgue Integral - Remarks

H. Lebesgue (1875-1941, France)

44

• f(x): function (it must be continuous in [a,b]).

• x: variable of integration

• f(x) dx: integrand

• a, b: boundaries


b

a
dxxf )(

12.1 Notation
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12.1 Properties of Integrals
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Assuming f(x) and g(x) are Riemann integrable functions on [a,b], 
with c inside [a,b] and k and q are constants, the following properties 
can be derived (the last three are easy if  we think of  Riemann 
integration as summation):

46

12.2 Fundamental Theorem of Calculus

• The fundamental theorem of calculus states that differentiation 
and integration are inverse operations.

• It relates the values of antiderivatives to definite integrals. Because 
it is usually easier to compute an antiderivative than to apply the 
definition of a definite integral, the Fundamental Theorem of 
Calculus provides a practical way of computing definite integrals. 

• It can also be interpreted as a precise statement of the fact that 
differentiation is the inverse of integration.
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• The Fundamental Theorem of Calculus states: If a function f is 
continuous on the interval [a, b] and if F is a function whose 
derivative is f on the interval (a, b), then

• Furthermore, for every x in the interval (a, b), 

• In other words, if a function has a derivative over a range of 
numbers, the integral over that same range can be calculated by 
evaluating at the end points of the range and subtracting.

)(
)(

 satisfying   ,)()( xf
dx

xdF
dttfxF

x

a

 

12.2 Fundamental Theorem of  Calculus
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• The first part is used to evaluate integrals.
• The second part defines the anti-derivative.  Finding the anti-

derivative is finding the integral. 

• Example: Find the antiderivative of f(x) = 10 x4

F(x) = 2 x5

• In general, small letters will be used for functions, capital letters 
for anti-derivatives.

12.2 Fundamental Theorem of Calculus: Notes
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• Velocity, v(t), is defined as the derivative of position, x(t). 
Acceleration, a(t), is the derivative of v(t), and the second 
derivative of x(t).

• The integral of acceleration is velocity. The integral of velocity is 
position.

• The graph of v(t) against time, t,  shows that the area between 
two times is the distance traveled. 

• On the other hand, the area under a(t) against time shows the 
velocity.

12.2 Physics Example: Velocity & Acceleration

50

Integration of the power function:

For 

Integration of 

The Integral of ex

The Constant Multiple Rule

The Sum Rule for Integrals

Integration of sin function:

1n  


  Cx
n

dxx nn 1

1



x

1
Cxdx

x
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12.3 Rules of  Integration
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There's a big calculus party, and all the functions are invited. 

ln(x) is talking to some trig functions, when he sees his friend ex

sulking in a corner. 
ln(x): "What's wrong ex?"
ex : "I'm so lonely!" 
ln(x): "Well, you should go integrate yourself into the crowd!" 

ex looks up and cries, "It won't make a difference!"

12.3 Rules of  Integration: Applied Joke

52

Integration of cosine function:

Integration of 

Note: The rules of differentiation are complete, given a set of 
operations for constructing functions. But, the rules of integration 
are incomplete. We cannot integrate simple functions like sqrt(1+x3).

21

1

x

12.3 Rules of  Integration
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• Evaluate the following: 

• Graph

• Sum of 3 integrals

• Apply integration rules and 
FTC Part 1.

• Compute area under the 
curve.
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12.3 Rules of  Integration: Example
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2

0

33 )12( dxex x
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• Some integrals cannot  be easily solved by just applying the 
previous rules of integration. 

• Consider 

• Graph:

• We can use a chain rule like argument to simplify the integration. 
For example, let u=x3-2, then du=3x2 dx =>  x2 dx = 1/3 du

• Substituting back into the original integral:

12.4 Integration by Substitution

dxxx )2cos( 32 

CxCuduu  )2sin(
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• Suppose we want to find the integral from -1 to 2.5.

Then,

• Graph:

0.33760152)]-sin(-1-2)-[sin(2.5
3

1

)2sin(
3

1
)2cos(

33
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3
5.2

1

32
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  Cxdxxx

12.4 Integration by Substitution
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Theorem: Substitution Rule

Let f(.) be a continuous function defined on [a, b], and s(.) a 
continuously differentiable function from [c, d] into [a, b]. Then,

• If we can identify a composition of functions as well as the 
derivative of one of the composed functions, we can find the 
antiderivative and evaluate the corresponding integral. 

12.4 Integration by Substitution: Rule

dxxfdttstsf
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• The key is to find the appropriate u. The variable of integration 
changes from x to u.

Note: It is important not to forget to substitute also dx.

• Another example: 

 

C
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du
u

dx
du

dxdu
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12.4 Integration by Substitution - Example
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• Recall the product rule of differentiation:
d(u v) = u dv + v du

• Solve for u dv:

• Integrating both sides:

• The last formula is used to integrate by parts.

• Key: Selection of u & v functions. In general, u involves logs, 
inverse, power, exponential, and trigonometric functions (in 
this order, LIPET).

vduuvdudv  )(








vduuvudv

vduuvdudv ])([

12.5 Integration by Parts
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• Example:

• Select appropriate u & v functions –actually, select dv.

 dxxe x

• Recall LIPET. We have a power function and an exponential 
function. Since power functions come before exponential 
functions, u equals x.

• From u, get du. => u=x, then du=dx
• From dv, get v. => v=ex, then dv=exdx
• Then, simply plug this into the integration by parts formula.

12.5 Integration by Parts: Example I

60

• Replace u, v, du, and dv.

• If the integral on the right looks 
easy to compute, then simply 
integrate it. Otherwise, you can 
integrate by parts again, or use 
substitution method.

Cxe

Cexe

dxexedxxe

vduuvudv

x
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
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12.5 Integration by Parts: Example I (cont)
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• Example:

• Select appropriate u & v functions.
• Exponential functions come before trigonometric functions. 

Then,  u = e2x .
• From u, get du. =>u = e2x =>then du = 2 e2x dx 
• From dv, get v. => dv =cos(x) dx => v = sin(x).
• Then, simply plug this into the integration by parts formula.
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12.5 Integration by Parts: Example II
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• The expression looks 
more complicated than 
the original. Integrate by 
parts again. 

• The integral of e2x cos(x)
is equal to Κ (the 
original integral).

• Replace the integral of 
e2x cos(x) with Κ and 
solve for Κ.
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12.5 Integration by Parts: Example II (cont)
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• In an integral, do only integration by parts in the parts that are 
not easy to integrate. 

• If the integration by parts is getting out of hand, you may have 
selected the wrong u function. 

• If you see your original integral in the integral part of the 
integration by parts, just combine the two like integrals and solve 
for the integral.

• Integration by parts can be used to derive an effective way to 
compute the value of an integral numerically, the trapezoid rule.  

12.5 Integration by Parts: Tricks

64

• Riemann sums can be used to approximate an integral, but 
convergence is slow. There are many rules designed to speed up the 
calculations. The trapezoid rule is simple, with good convergence. 

• To prove it, we need the Mean Value Theorem for Integration 

Theorem: MVT for Integration 

Let f and g be continuous functions defined on [a,b] so that g(x)  ≥ 0, 
then there exists a number c Є [a,b] with 

Proof: Simple exercise. (Use the supremum and infimum of f(x) on 
[a,b], apply Riemann integral properties and then use the 
Intermediate Value Theorem for continuous functions.)
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12.5 Integration by Parts: Trapezoid Rule
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• Trapezoid Rule 

Let f (.) be a twice continuously differentiable function defined on 
[a,b] and set 

K = sup{|f''(x)|, x Є [a, b]}. 

Define h = (b - a)/n, where n is a positive integer. Then,

Note: The Trapezoid Rule is useful because the error, R(n), 
depends on the square of h. If h is small, h2 is a lot smaller! 

12.5 Integration by Parts: Trapezoid Rule
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• Derivation of Trapezoid Rule 

First, we prove the trapezoid rule on [0,1]. That is,

Trick: Define a function 

v(x) = 1/2 x (1 - x), which has the properties: 

- v(x)  ≥ 0 for all x Є [0,1] & v(1) = v(0) = 0.

- v'(x) = 1/2 - x => v’(1) =-1/2  & v(0) = ½

- v''(x) = -1

Then,

12.5 Integration by Parts: Trapezoid Rule

 [0,1].   where),(
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•

We integrate by parts with g'(x) = v''(x): 

∫ v''(x) f(x) dx = v'(1) f(1) - v'(0) f(0) - ∫ v'(x) f'(x) dx = 
= -1/2 f(1) - 1/2 f(0) - ∫ v'(x) f'(x) dx 

Again, we integrate by parts with g'(x) = v'(x): 

∫ v'(x) f'(x) dx = v(1) f'(1) - v(0) f'(0) - ∫ v(x) f''(x) dx 

= - ∫ v(x) f''(x) dx =- f''(c) ∫v(x) dx = - f''(c) 1/12 
where we used the MVT for Integration with some number c Є [0,1].

Putting everything together, we have the simple trapezoid rule:

∫ f(x) dx = 1/2 f(1) + 1/2 f(0) + ∫ v'(x) f'(x) dx = 
= 1/2 f(1) + 1/2 f(0) - 1/12 f''(c) 

12.5 Integration by Parts: Trapezoid Rule
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• General trapezoid rule: Assume that f (.) is defined on [a,b]. 

Let h = (b - a)/n, pick an integer j, and define the function 

u(x) = a + jh + xh for x Є [0,1]. 

The composite function g(x) = f(u(x)) is twice continuously 
differentiable and defined on [0,1]. We can use the simple trapezoid 
rule:

∫ g(x) dx = 1/2 g(0) + 1/2 g(1) - 1/12 g''(c)

But g(0)=f(u(0))=f(a +jh);   g(1)=f(u(1))=f(a + (j+1)h), &  g''(x)=h2 f''(x). 

Also notice that 

1/2 g(0) + 1/2 g(1) - 1/12 g''(c) = ∫ g(x) dx = ∫ f(u(x)) dx = 

12.5 Integration by Parts: Trapezoid Rule
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• Then,

• Summing this equation from j=0 to j=n-1 completes the derivation:

where 

12.5 Integration by Parts: Trapezoid Rule
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• Improper Riemann integral: It is the limit of a definite integral as 
an endpoint of the interval(s) of integration approaches either a 
specified real number that causes a discontinuity or ∞ or −∞ or, in 
some cases, as both endpoints approach limits. 

• Roughly, it is an integral that has infinity as its limits or has a 
discontinuity within its limits. 

Examples:

12.6 Improper Riemann Integrals




1 2

1
dx

x

 

5

0 4

1
dx

x

Infinity as a boundary (Problem: domain 
of  integration unbounded).

Discontinuity at x=4 (Problem: integrand is
unbounded in the domain of  integration).
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12.6 Improper Riemann Integrals

• The Riemann integral can often be extended by continuity, by 
defining the improper integral instead as a limit. 

• With limits of  infinity, use a letter to replace the infinity, say τ, 
and treat it as a limit (lim τ → ∞). For example,

• With points of  discontinuity, split integral into parts. But, we 
cannot integrate to the point of  discontinuity, say x0. Then, we 
integrate to x0±δ and take limits as δ→0.

• An improper integral converges if  the limit defining it exists. It is 
also possible for an improper integral to diverge to infinity or to 
no particular value (oscillation). 
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• Value of cash flows of a bond, paying a continuous dividend.
- Maturity: T (say, T=3 years)
- Face value: FV (say, $1,000)
- Continuous discount rate: r (say, 5% annual)
- Continuous dividend rate: δ (say, 7% annual)

12.7 Applications: Value of  a Bond
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• X is a random variable (an outcome of a random event). A 
random variable (RV) is a function.

• X can be discrete (recession, boom) or continuous (price of 
IBM stock tomorrow).

• Given a sample space S (S: set of all possible outcomes)

• To each discrete outcome A we associate a real number P(A)

• P is called a probability function and P(A) is called the 
probability of the event A if
– Axiom 1: For every event A, P(A) ≥ 0

– Axiom 2: For the Sure/Certain event S, P(S) = 1

– Axiom 3: For any number of mutually exclusive events A1, A2, A3

…, we have P(A1 U A2 U A3 U…) = P(A1) + P(A2) + P(A3) +...

12.7 Applications: Elements of  Probability
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• For continuous RV, the probability function is f(x), such that:

• f(x) is called probability density function (pdf), or just density.

• The cumulative distribution function (CDF) of a discrete RV X, 
denoted as F(x), is

F(x) = P(X ≤x) =∑xi≤x P(xi)
The cumulative distribution function (CDF) of a continuous 
RV X, denoted as F(x), is

F(x) = P(X ≤x) =∫xi≤x f(xi)
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12.7 Applications: Elements of  Probability
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Example: Uniform Distribution: f(x)=constant –i.e., the 
probability of any outcome is the same. Suppose x ∈[0,20]. What 
is the probability that x is between 10 and 15?
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Example: Exponential Distribution: f(x)= λ e-λx for 0≤x ≤∞. Let 
Suppose λ =3, what is the probability that x is between 0 and 1?
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12.7 Applications: Elements of  Probability
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• Mean and Variance

Suppose X is a continuous RV with probability density function 
f(x). Then, the mean or expected value of X, denoted μ, is






 dxxxfXE )(][

• The variance of  X, denoted as σ2 or V[X], is






 dxxfxXV )()(][ 22 

• The standard deviation, σ, is the square root of  V[X].

12.7 Applications: Elements of  Probability
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• Example: Uniform Distribution: f(x)= 1/20. Calculate the mean 
and variance of f(x), where x ∈ [0,20]?

12.7 Applications: Elements of  Probability
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• Example: Exponential Distribution: f(x)= λ e-λx for 0≤x ≤∞. 
Calculate the mean (integration by parts needed, u=x, v=-e-λx ).
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• Suppose we are interested in a regression, 

yi = xi’β + i, i ~N(0, σ2)

but we only observe the part of  the sample with y>0. 

Model: yi = xi’ β + i, for yi = xi’ β + i >0

- Let’s look at the density of  i, f  (.), which must integrate to 1:

- The i’s density, normal by assumption:

- Then, f  (.) can be written as:
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12.7 Applications: Truncated Normal
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12.7 Applications: Truncated Normal

• Now, we can calculate the expected value of  i:

- Integration by substitution: - u =η/σ and dη= σ du.

- F(u) = exp(-u2/2)

- Then, E[i|x] = σ Fi
-1 fi = σ λ(xi’β) ≠ 0  (and it depends on xi’β) 

=> E[yi|yi>0,xi’β] = xi’β + σ λ(xi’β) 

=> OLS in truncated part is biased (omitted variables problem).
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integration by substitution
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• Now, z=f(x,y), we have two variables of integration: x and y.
• Simple integrals represent areas, double integrals represent 

volume.

12.8 Double Integrals

We want to know the volume 
defined by z=f(x,y) ≥ 0 
on the rectangle R=[a,b]×[c,d]
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• Similar to the intuition behind simple integrals, we can think of  
the double integral as a sum of  small –easy to calculate-
volumes.

12.8 Double Integrals

82

Volume of  ij’s column: Ayxf ijij ),( **
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**  ),(Total volume of  all columns:

ij’s column:

Area of  Rij is Δ A = Δ x Δ y

f (xij
*, yij
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*, yij
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12.8 Double Integrals
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• Definition of  a Double Integral:
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12.8 Double Integrals
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The double integral                              of  f over the rectangle R is

if  the limit exists.
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• Double Riemann sum:  
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• Note 1: If   f  is continuous then the limit exists and the integral is 
defined.
• Note 2: The definition of  double integral does not depend on the 
choice of  sample points.
• If  the sample points are upper right-hand corners then
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12.8 Double Integrals



Ch 12 - Integral Calculus 8/13/2015

43

85

• Let z=16-x2-2y2, where 0≤x≤2 
and 0≤y≤2.
• Estimate the volume of  the 
solid above the square and below 
the graph
• Let’s partitioned the volume in 
small (mxn) volumes.
• Exact volume: 48.

m=n=4;V≈41.5 m=n=8;V≈44.875 m=n=16;V≈ 46.46875

12.8 Double Integrals: Example

86

Theorem: Fubini’s Theorem

Suppose A and B are complete measure spaces. Suppose f(x,y) is 
A × B measurable. If 

where the integral is taken with respect to a product measure on the 
space over A × B, then 

where the last two integrals are iterated integrals with respect to two 
measures, respectively, and the first being an integral with respect to 
a product of these two measures. 

12.8 Double Integrals: Fubini’s Theorem
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Fubini’s Theorem is very general. For the Riemann’s case, we have:

If f(x,y) is continuous on rectangle R=[a,b]×[c,d] then the double 
integral is equal to the iterated integral.

12.8 Double Integrals: Fubini’s Theorem
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That is, we can compute first

by holding y constant and integrating over x as if  this were an single 
integral. This creates a function with only x, which we can integrate 
as usual. Then, we integrate over y, again, as usual. 


b

a

dxyxf ),(
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• Fubini’s theorem simplifies calculation by allowing iterated 
computations. There are two ways of doing the iteration:

a b
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fixed fixed

12.8 Double Integrals: Computation
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• Example:

12.8 Double Integrals: Computation
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12.8 Double Integrals: Computation (General 
Case)

• Before, we looked at double integrals over a rectangular region, 
R. Not realistic. Most regions are not rectangular. We adapt our 
previous result to the general case. 

• If f(x,y) is continuous on A={(x,y)|x ∈[a,b] & h(x) ≤ y ≤ g(x)},  
then the double integral is equal to the iterated integral:
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12.8 Double Integrals: Computation 
(General Case)

• Similarly, if f (x,y) is continuous on 

A={(x,y)| y∈[c,d] & h(y)≤x ≤ g(y)} then the double integral is equal 
to the iterated integral:
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• If f (x, y) = φ (x) ψ(y) then
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12.8 Double Integrals: Fubini’s Thorem 
Corollary
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• Sometimes, it is easier to move from Cartesian coordinates to 
polar coordinates. For example, we have a region that is a disk or 
a portion of a ring. Cartesian coordinates could be cumbersome.

12.8 Double Integrals: Polar Coordinates

Examples:

We can describe the area D as: -2 ≤x≤ 2   &   -√(4-x2) ≤y≤ √(4-x2) 

Easier to describe a disk of  radius 2 in polar coordinates:

0 ≤ θ ≤ 2π &   0 ≤ r ≤ 2

To integrate, we need a change of  variables: x=r sin(),  y=r cos() 
and dA = r dr dθ. 
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12.8 Double Integrals: Polar Coordinates

• Let’s generalize the example. Now,:

α ≤ θ ≤ β & h1(θ ) ≤ r ≤ h2(θ )

Then,

Note: dA = r dr dθ (not dA = dr dθ, as in the Cartesian world). 

Example: 

We use a change of  variables: x = r sin(),  y = r cos() (recall r2 = 
x2 + y2) and dA = r dr dθ. 
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• Linearity

• Comparison: If  f(x,y)≥g(x,y) for all (x,y) in R, then

12.8 Double Integrals: Properties

• Additivity: If  A1 and A2 are non-overlapping regions then
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12.9 Computational Science vs. Calculus

• Calculus tells you how to compute precise integrals & 
derivatives when you know the equation (analytical form) for a 
problem; for example, for the indefinite integral: 

∫(-t2 + 10t + 24) dt = - t3/3 + 5 t2 + 24t + C

• It turns out that many integral do not have analytical solutions 
or are complicated to compute, especially when we move to 
more than 3 dimensions. For these problems, we rely on 
numerical approximations. 

• Computational science provides methods for estimating integrals 
and derivatives from actual data.


