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5.3 Asymptotic Distribution of the Sample Variance

We seek a WLLN and a CLT for S2, the sample variance.

THEOREM 5.3.1 Assume Xy,..., X,... 2 (1,02, 3, 44). Then s? £, 02, Sn il o, and
- P
An/Sn — ufo.

ProoF S: = [n/(n - 1) (T—Ti> llave X, 2. u which implies

(Corollary 5.1.3b with g(s) = %) X, 5 42 Also, WLLN on X2,...,X2,...

give zoyi B Corollary 5.1.3.c with g(u,v) = u — v gives E%-i -x: L
My = 4* = o and since n/(n - 1) — 1, §2 = [n/(n - l)](:—:: —T:) L oo
S gt implies $, -~ o by Corollary 5.1.3.b with g(z) = =1/2, Finally, X, =
p and §n 2o o implies X,/S, £, p/o again via Corollary 5.1.3.c with 9(u,v)
= ufv. 1117

EXAMPLE 17 Assume Xp,...,X,,... "9 (1,0?). Define T, = V(X a — 1)/ Sn, which is a t-type
statistic. By the CLT, /a(X, - u)/o R No,1. By Theorem 5.3.1, S, Lo which implies
0/Sn Rl by Corollary 5.1.3.b. Hence, by Slutzky’s Theorem,

(0/82) Va(Xn = p)/o = T, = 1. Noy = No,

This result will be used in Chapter VIII to construct large sample confidence interval es-

timator for y of the form X, + = Sn/v/n, where 2 is a quantile of the standard normal
determined by the desired confidence level. /11/

THEOREM 5.3.2  Assume B TR W i (18,0, 13, 114). Let S? be the sample variance
of Xiy..ouXa. Then /n(S? - 0?)/0?/r =1 - Noy, where k = pyf/at. Or, §2 “XP
N(o? a%(x = 1)/n). 5.3.1

Proor WWrite

53 = Ly -X,)

n ne1"

3 |-

T(X; - Fu) 4 182

= RSN =) = (Ko - p)? + 152

= & {S(-\'.‘ =1)? = 2(X0 = )X = ) + (X, - /1)2} +1i52
= 2SN =) = (N = )2+ 152 which implies

V(52 - o)

FENi = ) = VR = VR(X, = )t 4 I 82

= i [BEEE o2 - (T - (T - ) + 4= 5 532
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Lets consider the three summands on the RHS of Eq. 5.3.2in reverse order. (1/y/n)S? £
since (1/v/n) — 0 and S3 Lo AaXa - n) 2. Ngo: by CLT and Xy — Lovby
WLLN, so by Slutzky’'s Theorem (Xn - p)Va(Xn - 1) “0. Noez = 0. That is, both
the middle summand and the last summand converge in probability to zero, hence (Slutzky
again) the limiting distribution of V(82 - 0?) is the same as the limiting distribution
o7y 2 . -
of /1 [ﬂ}—‘n—-—”l- - 02]. But, employing the CLT on (X; - p)?,...,(Xn - 12, ... we get
\/7—1 [ELX-'T—ﬁ - 02] —L -NO.var[(Xl-p)?] noting that L‘:[(J\’] -p)2] = (72. But var[(Xl - #)2] =

(X = p)'] = E((Xy = p)) = py = 0¥ = o (s = 1) Summarizing, we have
V(82 = 0?) =% N geem1)y O

Va(§2 - 6?)/o? V-1 < Noa, or
§2 0P N(o?,0%(x - 1)/n) 1111

Remark The variance of the asymptotic distribution of §2, which is (1/n){uq = 0%}, is
close to the exact variance of §2, which is (1/n){pa—(n— 3)o*/(n-1)], as given in Theorem

3.3. 111/

Remark Theorem 5.3 in conjunction with Slutzky’s Theorem will be used to construct a
large sample confidence interval estimator of o? of the form §2 £ z S2/K, — 1/y/n, where
I, is the sample kurtosis.

ProofF We know §? L. 5% it can be shown that In L (sce the Problems).
o*Va-1 p o?/rx=1 (5} -0% V(82 -0%) 4

Hence, =—== — 1, so that = . = > — Naa
S Vi, -1 S3K,-1 o%/K-1 S3VR, -1

which will be used to construct a large sample confidence interval estimator of o, []]]

COROLLARY 5.3 Under the same conditions as Theorem 5.3, the sample standard deviation,

Sn satisfies

\/H(S" - (7) —i’ ArO,o’(n-l)/dr or

S, UK N(g,0%(r - 1)/4n).

Proor We have /n(S? - 0?) - Nogt(e—1)- Take g(z) = Vz, 50 g'(z) = 1/2V/%,
then Theorem 5.1.4 gives /1(Sn — o) -~ (I/QJ;)NO,,%K_” = Noot(a=1)/4- /11l

5.4 Higher Dimensions

lerctofore we have considered convergence of sequences of random variables; in this section we

generalize some of our results from random variables to random vectors. Our goal is to gain some
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acquaintence with asymptotic joint distributions. For example, can ore find an asymptotic joint
distribution of, say, the sample coefficient of variation and the sample skewness?

5.4.1 Convergences in Distribution and Probability

This section generalizes most of the results in Section 5.1. There we addressed sequences of ran-
dom variables, here we consider sequences of random vectors. Let {X.}2_; be a sequence of
k-dimensional random vectors and let X be a k-dimensional random vector,

Definition 16 X, - X if and onl

yif Fx (z) — Fx(z) as n — oo for every z a
continuity point of Fy(-).

k

X, 5 Xifand only if P [JZ(Xj,n—Xj)z >£J — 0asn — o for
i=1

every € > 0, where

Xin Xi
X, = and X = . 5.4.1
Xk,'n. Xk

X is called the Ulmitin

g random vector and Fx(-) is called the limiting joint
distribution.

/111

Convergence in probability of random vectors is closely related to convergence in probability
of random variables. In fact, the following Remark follows from the respective definitions.

Remark X, -5 X if and only if X;,, - Xj for j = 1,...,k, where X, and X are

as in Eq. 5.4.1. That is, vector convergence in probability is equivalent to component
convergence in probability for each component. /1]

We now state the vector versions of Theorems 5.1.2, 5.1.3, and 5.1.4, without proofs.

THEOREM 5.4.1 (Continuity Theorem

for moment generating functions in higher dimensions. )
Under ezistence of all pertinent moment g

enerating functions in a neighborhood of Q,
Xo 5 X if my () — my()

@sn — oo for all t in some neighborhood of 0.

/111

THEOREM 5.4.2 (Higher dimensional Slutzky’s Theorem, ) For sequence {X,.} of ky-dimensional
vectors and sequence {Y.,} of k-

dimensional vectors and Junction ¢(-,-) defined as:
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k,-space Xxkq-space 9tv) T-space,
if g(-,a) is continuous and if X, LN X and if Y, £, a then g( X Ya) LR (X, ). /1]

Comment Theorem 5.4.21s relatively easy to state, but to make it useful one has to recognize the

need to derive the r-variate joint distribution of g(X,a).

COROLLARY 5.4.2.1 Take X and X, k-dimensional and g(-) continuous and k-space LIDA
cpace. 1 X, — X then g(X..) = 9(X): | /111

COROLLARY 5.4.2.2 Again take X, and a k-dimensional g(-) continuous at @ and k-space
21 gpace. 1f X, 2= a then g(X,) - (a). /111

COROLLARY 5.4.2.3 X, — Xand X, -V P, 0 implies ¥, = X. Or, X, <, X and
Y., L. a implies X, + Y. LR X +a. (We are assuming that the dimensions are matched as

needed for meaning.) /11

THEOREM 5.4.3 (Taylor’s Theorem Implication) Let {X,) be a sequence of k-dimensional
random vectors. Let {bn} be a sequence of positive constants salisfying bn — o0 as n — 0.
Finally, let g(-) be such that k-space 4, r-space. Assume lhat g(+) is differential at a, meaning
that all first order partial-derivatives of g(+) ezist at a. Let Jg(a) denote the r x k matriz of
partial derivatives of () evaluated at g. Then ba(X, — a) 4. X implies ba(g(Xa) — 9(a)) =,

Jo(a)X. 1111

Note that if g(-) is written as

g,(z;,...,zk)

a\T yeoor Tk
9(z) = SRR then

g,.(:c‘,...,:z:k)

o1 2 a
I x3 oxx
) 9 a
P ottt 3m
Jo(z) = . ) . , 5.4.2

ar ar a'

which is sometimes called the Jacobian or Jacobian malriz, of the transformation a().

COROLLARY 5.4.3 If {X.,.} is a sequence of k-dimensional random vectors and g has Jacobian
matrix Jg() and if ya(X, - a) L, Nog, then v (g(X.) - 9(a)) 2 Jy(a)Nog = NoJy(aizsyie)

—_— - wwwme TN
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where Np « is a k-variate normal random vector with mean vector 0 and variance-covariance matrix

A
-

Proor The first part is just a special case of Theorem 5.4.3. The last equality
follows from (e) of Theorem 4.1. /11]

We remarked earlier than convergence in probability of random vectors is tantamount to
convergence in probability of random variables. This result makes it easy to state a WLLN for

higher dimensions.

THEOREM 5.4.4 (WLLN) Assume X,,Xa,...,X..... %" (4,5) and define X, = (1/n)Sh, X;
that is, if the X, are as in Eq 5.4.1, then X, = ((1/n)SX1(1/n)TX,;,
oy (1/n)EXE;Y. Then X, £ B

Proor Have the WLLNs componentwise. /1]

Remark As was the case for random variables, this WLLN is valid for models much less
stringent than the iid model hypothesized in Theorem 5.4.4. For our purposes, we can get
by with this version which is the k-variate analogue of Corollary 5.2.1.2. /1]

The following theorem shows that convergence in distribution of random vectors is related to

convergence in distribution of random variables.

X if and only if a’ X, - a'X for every

e
n — —

THEOREM 5.4.5 (Cramer-Wold device) X,
a#0. Here X, X

and a are all k-dimensional.

Proor Note that @’ X, and @'\ are random variables. Assume cxistence of mo-

. . - d .
ment generating functions and use Theorem §.4.1. Assume X, — X. So, max (1) =

vkoY . TR
E[et“laJ‘\J-"] = my (tay,...,tax) — (by assumption) my(tay,...,ta;) = E[e}"ltal‘\l] =

k -
E[etslaf‘\i] = my~ o;x,(t) = mgx(t) for any a # 0.

Now assume a'X, L a'X for any a # Q. Show my (1) — mx(t) for t =////
(t1y.. - tx)'. We have by assumption mgrx () — myx(t) for every a # 0, so pick a so that
art = t,...,art =t and then my (8) = my (ti,... ) = E[e™(20X5n) = glelZa X =
mgrx () — (by assumption) mgex(t) = Ele(®a¥Y = £(e®(@9%]) = my(art, ... axt) =
my ().

Comment This reduction of a k-dimensional convergence problein to a uni-dimensional convergence

problem is called the Cramer. Wold device.

COROLLARY 5.4.5 X, Lo X ~MVN (p,X) il and only il 2’ X, A, a'X ~ N(a'p,a's a) for
alla # 0. /111
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5.4.2 Central Limit Theorem

THEOREM 5.4.6 (Central Limit Theorem) If X;,X,,...,X,,... Y (1, Z) then /n(X, -

.‘i) LN N(g.;:_) where X,, is as in Theorem 5.4.4.

Proor Apply the Cramer-Wold device as in Corollary 5.4.5 in conjunction with the
univariate CLT. The details are omitted. /11/

EXAMPLE 18  Our repertoire of multivariate random variables is rather limited. The point
multinomial was our k-variate extension of the Bernoulli. Let X,,..., X ,... i point multi-
nomial (py,...,px). Thatis, each X, has the k + 1 values (,0,0,...,0), (0,1,0,...,0), ...,
(0,...,0,0,1), (0,0,...,0,0) with respective probabilities P1,D2,- -y Pks P41, Where p; > 0

k
fori=1,...,k+1and ij+pk+1 = 1.

pl(l - pl) -nmnp2 A _p]pk
»
— l_
Note p= : =pand £ = mpz pAl - p2)
Pk

~P1Dk oo Pe(1 = pi)

The WLLN says X, _-i p and the CLT says

-'—\:l,n "
v P ] = e
Tk,n Pk
where X n = (1/n)ZXj,.-, i=1,...,k. Wesay that X, """ MVN (p,(1/n)Z). What can
i=1

be said about the asymptotic distribution of X, (1 - X,)? Define g(-) by

1—251 0 0

0 1- 222
so that  Jy(z) =

e
S
]

9(

0 l—?zk

Now, via Corollary 5.4.3,

-

A———
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X1a(1=X1,0) n(l - p)
. . d
vn : - : — NoJs(a)T3(a)
Xin(l=Xin) Pe(1 = pi)
that is

-'Tl.n(l - -'Tl,n)

asymp
:’\_'k.n(l _:\—’k.n)
pi(1 - p1) (1-2p)*pi(1 = p1) o =1 =2, (1 = 2pi) Py o
MVN : . : : /117
pk(l = px) =(1=2p)(X = 2p )i -+ (1= 2pk)?pi(1 = pi)

EXAMPLE 19 Assume Xy,...,X,,. ..,'1‘! F(-), and let Fo(-) be the sample cumulative distribu-

tion function of Xj,..., X,. Recalling that Fr(z) = (1/n)ET (oo 5)(Xi), the CLT gives

Fn(zl) F(l‘l)
\/7_1 ' : - -—d—‘ IVQ_;
Fn(xk) F(-Tk)
where
var[!(-m.n](‘xl )] """ Cov[’(-oo.x,](’\—l)v 1(—00.21,](-\-1)]
L= ' '
cO¥[[{cco,ma)(X1) J(—co,a) (A1)] +o- - var(l( ooz, (X1)]

and \'ar[l(-m,x,](-\-l)] = F(z;)(1 - F(z;))

and V[l o,z (N1 )y [ cour,)(X'1)] = F(minfzi, z;]) = F(z;) F(z;). /1]
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asymptotic distribution of X./Y. for H2 # 0. By the bivariate CLT we have:

A((F)-(1) = me

|

where T = ( 71 pamz ) Take g(z,y) = z/y in Corollary 5.4.3. Note that k& = 2 and
po1o2 o}

H2
VA(Xa/Y0) = (1 f12)) 25 No,Jy(a)zJ1(a) but

r=1Jg=(1/y,~z/y? )Jand a = ( % ) so Jg(a) = (112, =y /133). Corollary 5.4.3 says

Jo(a)ZJj(a) = (1/;12,-/“/;@)( paa,’; ”j’g‘”)( _j/l’;”)
= (0f/u3) + 200103(1 /ua)(~puy fuud) + o3(~u1/p3)’
= (1/ud)o? - 2Ap1/pa)payo, + (#1/12)’ 03).
So X./Y, ”{"mpfv(l‘l/llh(l/n/‘g)[o?‘Q(I‘I/I‘E)Palo" + (1 /n2) 03))

_ i 1 1g\? 0;" 2p0o104 a;':
=V (B3 e o) 1111
H2 1o\, By i Ha

5.4.3 Joint Asymptotic Distribution of Sample Mean and Variance

Assume X7, ) VIS W iid ~ (u,0 ,;13,/14) We scck the Joint asymptotic distribution of X, n and

SZ. We might anticipate the answer to be a bivariate normal inasmuch as we already know that
the two marginal distributions arc normals and we know the covariance of X, and S2. To confirm,

consider
N —-pu A2—-p Xn -1 wd [0 r
(Xy=p)? ) (Xg=p)? oo (Nn=p)? ) g? ' =

where

It

_ < var[X'} - 4] cov[(Ny = p), (X, - 1)?) )
cov[(Xt = p), (X = pu)?] var((X; - p)?)

51

ENAMPLE 20 Assume [ 2! v K TR S I 6 29192 1) Pind the
}1 }n H2 poO107 0’2

R B IE N F oy o w o oo oo o
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J

The bivariate CLT gives

(1/n)E3 (X = p) 0 d
f(((l/n) \—u)) <02)>_”\g"

We saw in the proof of Theorem §.3.2 that Va[S? - (1/n)SH(X; - p)?) — 0. Hence

A((5)-(5) -

(/) EH (X = 0 0
> - ( ’)>+ﬁ< - (1T} - ) >

f(((l/n)‘““ - n)?

c

0
But v ( S: - (1/n)SP(X; - l‘)2 )

and (1/n)SY(Ni -ll)) ( 0 ))—‘LN i
‘ d‘/—(( (1/m)S3(N; = )? ? s

and hence by Slutzky’s Theorem

) T,, ' Iy
f(( : )'(

)) < Ngyxi thatis

Xn ) oy R N A T
! Az\t‘up BVN ! Do "
S: o 'n\ p3 py-o?
since var[X; — ] = 02, cov[(Ny = ), (A1 = p)*] = E[(Xy = 1)’] = 3 and var((\ — p)*) = ju — o™
Note that the covariance of the asymptotic distribution is pi3/n, which is the exact covariance of

h ‘arl
V. and S2. Note also that X, and S? are asymptotically independent il p3 =0
We can usc the asymptotic distribution of X, and 52 and Corollary 5.4.3 to derive an asymp-

For example, if we sought the asymptotic distribu
9(z) ) _ ( 5 )

92(2) B

totic distribution for functions of X and §

tion of the sample mean and sample standard deviation, we take 9(z) (
10 g e .
. Then Corollary 5.4.3 says

) ) 1 0
implying Jo(z) = (0 1/2\/55) so that Jy(a) = ( 0 1/20
) - 10 o
n (( ) ( )) — Nosy(argsyia) But Jy(a)Zdy(a) = ( 0 1/20) ) < 13 ‘3‘74 )
1af20
2o iof2e G mat)fio? )
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T,‘ a.symp 7 1 02 /,1.3/20
(a) Bw<o (ua/aa (s = 0*)/40? ))

The asymptotic distributions of other functions of sample moments are given in the Problems,
including the asymptotic joint distribution of the sample coefficient of variation and sample skewness

coefficient alluded to in the introduction of this Section 5.4.

5.5 Asymptotics of Sample Quantiles

We restrict to the case when Xj,...,Xn,. ..,ﬁd F(-) and the X;’s arc random variables. Recall
that sample quantiles are order statistics, denoted X'j.n, where Njn = jth smallest of X, oo Xa
We consider two types of limiting results of sample quantiles, depending on the behavior of j/n as
n approaches infinity. The first case considers j/n — q, where 0 < ¢ < 1, as n — oc; this says
that j and n approach infinity together in such a way that the ratio j/n approaches ¢. In essence,
the relative position of the sample quantile X remains fixed as the sample size n goes to infinity.
For example, if ¢ = 1/2, then the sample quantile of interest is the sample median as n approaches
infinity.

For the other case, the ratio j/n approaches cither zero or one. In this case, one can think
that the absolute position remains fixed as n — co. For instance, one can think of the smallest
order statistic, in which case j/n = 1/n — 0; or think of the largest order statistic, in which case
j/n = n/n — 1_ One could also think of the kth smallest or kth largest as n — co for fixed k.
These latter type order statistics are eztremes as n — o9 and we delay our introduction to the
theory of extremes until the next section. Here we consider the asymptotic distribution of those

sample quantiles whose relative position is fixed as n — co.

THEOREM 5.5.1. Consider a sequence {g.} where 0 < gn < 1, satisflying gn — gasn — o0
such that ng, is an integer and nlgn — q| is bounded as n — oo. If Xiooo oy Xnyens % with
probability density f(-) and cumulative distribution function F(-), where F(-) is strictly monotone

for 0 < F(z) < 1, then

Naguin R N (&g, a(l - q)/nfz(fq))w 3.5.1
where & is the qth population quantile.
Proor  Omitted /11

Remark  The asvmptotic distribution of Bq. 5.5.1 really comes from the limiting result

that says

- d
ﬁ(-\ nqain = \‘q) i IVO.q(l-q)/]’(Eq)'
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Remark n(Xng.im = &) LY, implies (by Slutzky) Xng.:n £, €, which supports the
use of a sample quantile to estimate a population quantile.

Proor l/\/}_l i’ 0 and \/H(-an,.:n—fq) _d‘ N implies (1/\/@'\/‘!—1(.\'“"“:“—{(’) -i-v
0-N=0. 1111

EXAMPLE 21 Assume Xp,...,AX,,... W N(u,0?). We know the sample mean ~ N(u,0?/n).
Theorem 5.5.1 says the sample median Vi N(u,=c?/2n), since for ¢ = 1/2, §; = p, and

f(p) = 1/V270.

Hence, the sample mean has variance smaller than the asymptotic variance of the sample

median. /11/

EXAMPLE 22 Assume Xy,...,Xg,... i Cauchy (a,f), so that f(z) = 1/87 {1 +[(z - a)/B)*}.
For ¢ = 1/2, &2 = a, so f(a) = 1/f7; hence the sample median #XT% N(a,B%7?/4n).
Recall X, ~ Cauchy (a,B). (See Example 13.) Here the sample median has a much smaller
asymptotic variance than the variance, which is infinite, of the sample mean! /11

There is a higher dimensional version of Theorem 5.5.1; we state it in the bivariate case, with

the belief that the higher dimensional version ought then be evident.

THEOREM 5.5.2 For0 < ¢’ < ¢" < 1 and sequences {q,} and {qa} satisfying q, < q,., both

"

nql, and ngl integers, and g, — ¢' and qi, — ¢" so that n|q;, — q'| and n|q; — q"| are bounded; if
vid

Nivooo, X,y ...~ f(¢) and F(:) with F(:) strictly monotone for 0 < F(z) < 1, then

_\’ oy ™ 1 d .
\/‘E( -nq,,.n Eq —_— 1\/0‘:’ \thrc

R ngiiin = Eq"

q'(1-¢') q'(1-q")
6, TN &

4
1

Q'U-q”) q"(l_qu
TEATED  THEm

Proor Omitted. /11

Remark  The correlation coefficient of the asymptotic (bivariate) distribution of Xy .y

- . - - ! - " . ) . . -
and X, e, written acorr{ XN s iny N pgein ), cquals 1—“—,'1—,; which is distribution free. For
Tns Tn Tn (1=q')q"?

example, ¢/ = 1/4 and ¢ = 3/4 gives an asymptotic correlation of 1/3; that is, acorr(1st
sample quartile, 3rd sample quartile) = 1/3. /11]



