
Chapter 2

Asymptotic notations

2.1 The “oh” notations

Terminology Notation Definition

Big oh notation f(s) = O(g(s)) (s ∈ S) There exists a constant
c such that |f(s)| ≤
c|g(s)| for all s ∈ S

Vinogradov nota-
tion

f(s) � g(s) (s ∈ S) Equivalent to “f(s) =
O(g(s)) (s ∈ S)”

Order of magnitude
estimate

f(s) � g(s) (s ∈ S) Equivalent to “f(s) �
g(s) and g(s) � f(s)
(s ∈ S)”.

Small oh notation f(s) = o(g(s)) (s→ s0) lims→s0 f(s)/g(s) = 0

Asymptotic equiva-
lence

f(s) ∼ g(s) (s→ s0) lims→s0 f(s)/g(s) = 1

Omega estimate f(s) = Ω(g(s)) (s→ s0) lim sups→s0
|f(s)/g(s)| >

0.

Table 2.1: Overview of asymptotic terminology and notation. In these defi-
nitions S denotes a set of real or complex numbers contained in the domain
of the functions f and g, and s0 denotes a (finite) real or complex number
or ±∞.

A very convenient set of notations in asymptotic analysis are the so-
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10 CHAPTER 2. ASYMPTOTIC NOTATIONS

called “big oh” (O) and “small-oh” (o) notations, and their variants. These
notations are in widespread use and are often used without further explana-
tion. However, in order to properly apply these notations and avoid mistakes
resulting from careless use, it is important to be aware of their precise defi-
nitions.

In this section we give formal definitions of the “oh” notations and their
variants, show how to work with these notations, and illustrate their use
with a number of examples. Tables 2.1 and 2.2 give an overview of these
notations.

Short-hand form Full form

f(s) = O(g(s)) (s→ s0) There exists a constant δ > 0 such that
f(s) = O((g(s)) (|s− s0| ≤ δ).

f(x) = O(g(x)) There exists a constant x0 such that
f(x) = O((g(x)) (x ≥ x0).

f(x) = o(g(x)) f(x) = o(g(x)) (x→∞).

Table 2.2: Notational conventions and shortcuts for commonly occurring
asymptotic expressions.

2.1.1 Definition of “big oh”, special case

We consider first the simplest and most common case encountered in asymp-
totics, namely the behavior of functions of a real variable x as x→∞. Given
two such functions f(x) and g(x), defined for all sufficiently large real num-
bers x, we write

f(x) = O(g(x))

as short-hand for the following statement: There exist constants x0 and c
such that

|f(x)| ≤ c|g(x)| (x ≥ x0).

If this holds, we say that f(x) is of order O(g(x)), and we call the above
estimate a O-estimate (“big oh estimate”) for f(x). The constant c called
the O-constant, and the range x ≥ x0 the range of validity of the O-
estimate.

In exactly the same way we define the relation “f(n) = O(g(n))” if f
and g are functions of an integer variable n.
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2.1. THE “OH” NOTATIONS 11

Note that the O-constant c is not unique; if the above inequality holds
with a particular value c, then obviously it also holds with any constant
c′ satisfying c′ > c. Similarly, the constant x0 implicit in the range of an
O-estimate may be replaced by any constant x′0 satisfying x′0 ≥ x0.

The value of the O-constant c is usually not important; all that matters
is that such a constant exists. In fact, in many situations it would be quite
tedious (though, in principle, possible) to work out an explicit value for c,
even if we are not interested in getting the best-possible value. The beauty
of the O-notation is that it allows us to express, in a succinct and
suggestive manner, the existence of such a constant without having
to write down the constant.

Example 2.1. We have
x = O(ex).

Proof. By the definition of an O-estimate, we need to show that there exist
constants c and x0 such that x ≤ cex for all x ≥ x0. This is equivalent to
showing that the quotient function q(x) = x/ex is bounded on the interval
[x0,∞), with a suitable x0. To see this, observe that the function q(x) is
nonnegative and continuous on the interval [0,∞), equal to 0 at x = 0 and
tends to 0 as x → ∞ (as follows, e.g., from l’Hopital’s Rule). Thus this
function is bounded on [0,∞), and so the O-estimate holds with x0 = 0 and
any value of c that is an upper bound for q(x) on [0,∞).

In this simple example it is easy to determine an explicit, and best-
possible, value for the O-constant c. Indeed, the above argument shows
that the best-possible constant is c = max0≤x<∞ q(x), with q(x) = xe−x,
and the maximum of q(x) is easily determined by methods of calculus: The
derivative of q(x) equals q′(x) = e−x(1−x), which has a unique zero at x = 1.
Thus that q(x) attains its maximal value at x = 1, and so c = q(1) = e−1 is
the best-possible constant for the range x ≥ 0.

Example 2.2. The argument used in the previous example works in much
more general situations. For example, consider the functions f(x) = (x+1)A

and g(x) = exp((log x)1+ε), where A and ε are arbitrary positive constants.
Since the quotient q(x) = f(x)/g(x) of these two functions is nonnegative
and continuous on the interval [1,∞) and tends to 0 as x→∞, it is bounded
on this interval. Thus, we have the O-estimate

(x+ 1)A = O
(
exp

(
(log x)1+ε

))
in the range x ≥ 1. However, in contrast to the previous example, working
out an explicit value for the O-constant c would be rather tedious. The
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12 CHAPTER 2. ASYMPTOTIC NOTATIONS

O-notation allows us to ignore these complications: all we need to know is
the existence of a constant, and this, as we have seen, is easy to establish
with general continuity or compactness arguments.

Example 2.3. If P (x) =
∑n

k=0 akx
k is a polynomial of degree n, then

P (x) = O(xn).

Proof. For x ≥ 1 we have

|P (x)| ≤
n∑

i=0

|ai|xi ≤

(
n∑

i=0

|ai|

)
xn,

so the required inequality holds with x0 = 1 and c =
∑n

i=0 |ai|.

Example 2.4. The relation

f(x) = O(1)

simply means that f(x) is bounded as x→∞.

2.1.2 Dependence on parameters

In many cases, the functions involved in an O-estimate depend on one or
more parameters. It may then be important to know whether the O-constant
depends on these parameters or can be chosen independently of the param-
eters. If the constant (possibly) depends on one or more parameters, it is
customary to indicate this dependence by placing the parameters as sub-
scripts to the O-symbol and writing, for example, Oλ, Ok, or Ok,ε. The
same convention applies, if the constant depends on a parameter arising in
the range of an estimate (rather than the functions to be estimated).

To avoid mistakes, it is a good practice to explicitly indicate the depen-
dence of O-estimates on any parameters by using the subscript notation,
and we will generally adhere to this practice.

If it is possible to choose the constant in an O-estimate independent of
some parameter occurring in the definition of the function or the range of the
estimate, we say that the estimate is uniform (or holds uniformly) with
respect to the given parameter. Uniform estimates are more informative and
more useful than nonuniform estimates, and obtaining uniform estimates or
making non-uniform estimates uniform (e.g., by making the dependence on
parameters explicit) is a desirable goal.
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2.1. THE “OH” NOTATIONS 13

Example 2.5. In Example 2.2 we showed, by a simple continuity argument,
that, for any positive constantsA and ε, we have (x+1)A = O(exp((log x)1+ε))
in the range x ≥ 1. While, in this case, the range x ≥ 1 could be chosen
independently of the constants A and ε, this is not true for the O-constant
c. Thus, to indicate the (possible) dependence of the O-constant on A and
ε, we should write this O-estimate more precisely as

(x+ 1)A = OA,ε

(
exp

(
(log x)1+ε

))
(x ≥ 1).

In general, the subscript notation simply says that the constant may
depend on the indicated parameters, not that it is not possible (for example,
through a more clever argument) to find a constant independent of the
parameters. However, in this particular example, it is easy to see that the
constant necessarily has to depend on both parameters A and ε.

2.1.3 Definition of “big oh”, general case

If f(s) and g(s) are functions of a real or complex variable s and S is an
arbitrary set of (real or complex) numbers s (belonging to the domains of f
and g), we write

f(s) = O(g(s)) (s ∈ S),

if there exists a constant c such that

|f(s)| ≤ c|g(s)| (s ∈ S).

To be consistent with our earlier definition of “big oh” we make the following
convention: If a range is not explicitly given, then the estimate is
assumed to hold for all sufficiently large values of the variable
involved, i.e., in a range of the form x ≥ x0, for a suitable constant
x0.

Example 2.6. Given any positive constant r < 1, we have

log(1 + z) = Or(|z|) (|z| < r).

Proof. Note that the function log(1 + z) is analytic in the open unit disk
|z| < 1 and has power series expansion

log(1 + z) =
∞∑

n=1

(−1)n+1

n
zn (|z| < 1).
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14 CHAPTER 2. ASYMPTOTIC NOTATIONS

Hence, in |z| < 1 we have

| log(1 + z)| ≤
∞∑

n=1

1
n
|zn| ≤

∞∑
n=1

|z|n =
1

1− |z|
|z|.

If now z is restricted to the disk |z| < r (with r < 1), then the above
bound becomes ≤ (1−r)−1|z|, so the required inequality holds with constant
c = c(r) = (1− r)−1. (This is an example where the O-constant depends on
a parameter occurring the definition of the range.)

Further generalizations to functions of more than one variable can be
made in an obvious manner.

Example 2.7. For any positive real number p we have

(x+ y)p = Op (xp + yp) (x, y ≥ 0).

More generally, we have, for any positive integer n and any positive real
number p,

(a1 + · · ·+ an)p = On,p (ap
1 + · · ·+ ap

n) (a1, . . . , an ≥ 0),

where now the O-constant depends on both n and p.

Proof. The estimate (in the second, more general, form) can be proved via
Hölder’s inequality; alternatively, it follows immediately from the simple
observation(

n∑
i=1

ai

)p

≤
(
nmax

i
ai

)p

= np(max
i
ai)p ≤ np

n∑
i=1

ap
i .

2.1.4 “Oh” terms in arithmetic expressions

By a term O(g(s)) in an arbitrary arithmetic expression we mean a function
f(s) that satisfies the inequality in the definition of the O-estimate. In other
words, an O-term can be thought of as a “black box” hiding some unknown
function, and the only information we have about this function is that it
satisfies the appropriate inequality.

This is a natural and useful convention that greatly simplifies the nota-
tion when working with O-expressions. For example, this convention allows
us to write the relation

log(1 + x)− x = O(x2) (|x| ≤ 1/2)
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2.1. THE “OH” NOTATIONS 15

more naturally as

log(1 + x) = x+O(x2) (|x| ≤ 1/2).

The latter can be thought of as a succinct form of the following rather
unwieldy statement. “ log(1+x) is equal to x plus a function that, in absolute
value, is bounded by a constant times x2 in the range |x| ≤ 1/2.”

Example 2.8. Power series expansions naturally lead to O-estimates in the
above more generalized sense. In particular, if f(z) is a function analytic in
some disk |z| < R, then for any r < R and any fixed positive integer n, we
have, by Taylor’s theorem,

f(z) =
n∑

k=0

akz
k +Or,n(|z|n+1) (|z| < r),

where the ak are the Taylor coefficients of f(z).

Example 2.9. A term O(1) simply stands for a bounded function. For
example, the “floor function” [x] satisfies

[x] = x+O(1),

since |[x]− x| ≤ 1.

2.1.5 The Vinogradov “�” notation

This notation was introduced by the Russian number theorist I.M. Vino-
gradov as an alternative to the O-notation. Along with the closely related
notations “�” and “�”, it has all become standard in number theory,
though it is less common in other areas of mathematics. In the case of
functions of a real variable x and (implicit) ranges of the form x ≥ x0, these
three notations are defined as follows:

• “f(x) � g(x)” is equivalent to “f(x) = O(g(x))”.

• “f(x) � g(x)” is equivalent to “g(x) � f(x)”.

• “f(x) � g(x)” means that both “f(x) � g(x)” and “g(x) � f(x)”
hold.

These definitions generalize in an obvious manner to more general func-
tions and ranges.
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16 CHAPTER 2. ASYMPTOTIC NOTATIONS

If f(x) � g(x), we say that f(x) and g(x) have the same order of
magnitude. From the definition it is easy to see that “f(x) � g(x)” holds
if and only if there exist positive constants c1 and c2 and a constant x0 such
that

(2.1) c1|g(x)| ≤ |f(x)| ≤ c2|g(x)| (x ≥ x0).

As with the O-notation, dependence on parameters may be indicated
by putting the parameters as subscripts to the “�” or “�” symbols. For
example, the estimate (x+1)A = OAε(exp((log x)1+ε)), which we considered
in Example 2.2, could have been written in the equivalent form

(x+ 1)A �A,ε exp
(
(log x)1+ε

)
.

The primary advantage of the Vinogradov notation over the O-notation
is a typographical one: If the function g(x) is a complicated expression (for
example, a sum of several integrals), then f(x) � g(x) looks much cleaner
than f(x) = O(g(x)) (which would require an oversized set of parentheses).
In addition, the Vinogradov notation provides an easy way to express lower
bounds by using the symbol “�” instead of “�”, and the “�” symbol allows
one to express two O-estimates in a single statement.

The Vinogradov notation has the drawback that, unlike the O-notation,
it does not extend to terms in arithmetic expressions. Thus, for example,
while one can rewrite the estimate

π(x)− x

log x
= O

(
x

log x)2

)
in an equivalent manner as

π(x) =
x

log x

(
1 +O

(
1

log x

))
,

only the first version can be stated using the Vinogradov “�” notation:

π(x)− x

log x
� x

(log x)2
.

Thus, depending on the situation, one or the other of these two notations
may be more convenient to use, and we will use both notations interchange-
ably throughout this course, rather than settle on one particular type of
notation.
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2.1. THE “OH” NOTATIONS 17

Example 2.10. For any positive integer n and any positive real number p
we have

(a1 + · · ·+ an)p �p,n a
p
1 + · · ·+ ap

n (a1, . . . , an ≥ 0).

Proof. The upper bound of this estimate (i.e., the “�” portion of “�”) was
established (quite easily) in Example 2.7, but the proof of the lower bound
is just as simple: Since

ap
1 + · · ·+ ap

n ≤ n(max(a1, . . . , an))p ≤ n (a1 + · · ·+ an)p ,

we obtain the “�” portion of the estimate with constant 1/n.

This example is a good illustration of the benefits of the “�” nota-
tion. With this notation, the asserted two-sided estimate we claimed takes
a concise, and suggestive, one-line form, whereas the same estimate in the
O-notation would have required two somewhat clumsy looking O-relations.

Example 2.11. We have√
log y �

√
log x (x1/2 ≤ y ≤ x2, x ≥ 1).

Proof. This follows immediately on noting that the function f(y) =
√

log y
is increasing and satisfies

f(x1/2) =
√

log x1/2 = 2−1/2
√

log x = 2−1/2f(x) (x ≥ 1).

and, similarly, f(x2) = 21/2f(x).

Example 2.12. If f(x) and g(x) are positive functions, then

f(x) � g(x)

holds if and only if

log f(x) = log g(x) +O(1).

This follows immediately from the explicit version (2.1) of the relation “�”.
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18 CHAPTER 2. ASYMPTOTIC NOTATIONS

2.1.6 Other variants of the O-notation

Some other notations that are equivalent to or related to the O-notation
and which are occasionally used are the following. All of these notations are
non-standard and do not have a generally accepted meaning, so they should
be avoided, or at least precisely defined before use.

• In some areas of analysis (especially harmonic analysis), the symbol
“.” is used with the same meaning as “�”.

• The symbol “≪” is sometimes used to indicate that one function is
“of smaller order of magnitude” than another function, usually in the
sense that the ratio between the two functions tends to 0 (i.e., the
equivalent of the o-notation defined below). In their book “Concrete
Mathematics”, Graham, Knuth, and Patashnik use the symbol “≺” in
the same sense. However, neither of these notation is very widespread.

• In numerical applications the value of an O-constant is important. One
notation that refines the O-notation by keeping track of constants is
the θ-notation, which means the same as the O-notation with constant
c = 1. For example, since | log(1+ z)| ≤

∑∞
n=1 |z|n/n ≤ |z|/(1− |z|) ≤

2|z| for |z| ≤ 1/2, we have, using the θ-notation, log(1 + z) = θ(2|z|)
for |z| ≤ 1/2.

• The symbol “≈” is sometimes used with the same meaning as �.
However, more commonly, this symbol is used in an informal manner
(e.g., in heuristic arguments) to indicate that one quantity is “approx-
imately” equal to another quantity.

2.1.7 The “small oh” notation and asymptotic equivalence

The notation
f(x) = o(g(x)) (x→∞)

means that g(x) 6= 0 for sufficiently large x and limx→∞ f(x)/g(x) = 0.
If this holds, we say that f(x) is of smaller order than g(x). This
is equivalent to having an O-estimate f(x) = O(g(x)) with a constant c
that can be chosen arbitrarily small (but positive) and a range x ≥ x0(c)
depending on c. Thus, an o-estimate is stronger than the corresponding
O-estimate.

A closely related notation is that of asymptotic equivalence:

f(x) ∼ g(x) (x→∞)
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2.1. THE “OH” NOTATIONS 19

means that g(x) 6= 0 for sufficiently large x and limx→∞ f(x)/g(x) = 1. If
this holds, we say that f(x) is asymptotic (or “asymptotically equiva-
lent”) to g(x) as x→∞. Just as an o-estimate refines the O-estimate, the
asymptotic equivalence relation f(x) ∼ g(x) refines the order of magnitude
estimate f(x) � g(x).

By an asymptotic formula for a function f(x) we mean a relation of
the form f(x) ∼ g(x), where g(x) is a “simple” function.

In much the same way as the O-notation, the o-notation can be general-
ized to functions for complex variables, and to more general limits: If f(s)
and g(s) are functions of a real or complex variable s and s0 is a real or
complex number or infinity, we write

f(s) = o(g(s)) (s→ s0),

if the limit lims→s0 f(s)/g(s) exists and is equal to 0, Asymptotic formulas
with respect to the limit s→ s0 are defined analogously.

It is important to keep in mind that the o-notation is always with respect
to a given limiting process. If a limiting process is not explicitly given (in
a form like “x → x0”), the limit is usually understood to be taken as the
variable tends to infinity.

In the same way as we have done with the O-notation, we allow o-terms
to appear inside arithmetic expressions: a term o(g(x)) stands for a function
f(x) that satisfies limx→∞ f(x)/g(x) = 0 (but on which we have no further
information). With this convention the asymptotic formula f(x) ∼ g(x) is
easily seen to be equivalent to either of the relations

f(x) = g(x) + o(g(x))

or
f(x) = g(x)(1 + o(1)).

Another related notation that is used, for example, in number theory,
is the Ω-notation. This notation simply means the opposite of “small oh”:
Namely, we write

f(x) = Ω(g(x)) (x→∞),

if the relation f(x) = o(g(x)) is false, i.e., if lim supx→∞ |f(x)/g(x)| > 0.
Analogous definitions apply for the case of more general functions or limits.
For example, we have sinx = Ω(1) as x→∞, and sinx = Ω(x) as x→ 0.

Note that the relation f(x) = Ω(g(x)) is not equivalent to f(x) � f(x).
Indeed, the latter means that |f(x)| > c|g(x)| holds, with some positive
constant c, for all sufficiently large x, whereas f(x) = Ω(g(x)) only requires
this inequality to hold for arbitrarily large values of x.
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20 CHAPTER 2. ASYMPTOTIC NOTATIONS

2.1.8 O-estimates versus o-estimates

An o-estimate is a qualitative, rather than quantitative, statement: f(x) =
o(g(x)) simply means that the quotient f(x)/g(x) tends to 0 as x → ∞,
but it says nothing about the rate of convergence. In almost all cases
where o-estimates (or, equivalently, asymptotic formulas) are known, these
estimates arise as corollaries to more precise O-estimates: An O-estimate
of the form f(x) = O(g(x)/ψ(x)) with some explicit function ψ(x) (such
as ψ(x) = log x) that tends to infinity as x → ∞ implies the o-estimate
f(x) = o(g(x)) and provides more information. The chief advantage of o-
estimates and asymptotic formulas is that they are easy to state and make
for clean and easy-to-remember theorems. However, in the course of proving
such estimates, it is almost always advisable to carry the argument through
with O-estimates, and only at the very end, if necessary, make the transition
to an o-estimate. The main reason for this is that working with o-terms is
fraught with pitfalls, whereas O-terms can be manipulated fairly easily and
safely, as we will show below.

2.1.9 An illustration: Estimates for the prime counting func-
tion

To illustrate the various notations introduced here, we present a list of esti-
mates for the prime counting function π(x), the number of primes≤ x, which
have been proved over the past century or so, or put forth as conjectures.
Each of these estimates represented a major milestone in our understanding
of the behavior of π(x).

Chebysheff’s estimate: This estimate establishes the correct order of
magnitude of π(x):

π(x) � x

log x
(x ≥ 2).

The Prime Number Theorem (PNT): In its simplest and most basic
form, the PNT gives an asymptotic formula for π(x):

π(x) ∼ x

log x
(x→∞).

This result, arguably the most famous result in number theory, had been
conjectured by Gauss, who, however, was unable to prove it. It was eventu-
ally proved in the late 19th century, independently and at about the same
time, by Jacques Hadamard and Charles de la Vallée Poussin.
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2.1. THE “OH” NOTATIONS 21

PNT with modest error term: A more precise version of the above
form of the PNT shows that the relative error in the above asymptotic
formula is of order O(1/ log x):

π(x) =
x

log x

(
1 +O

(
1

log x

))
(x ≥ 2).

This version, while far from the best-known version of the PNT, is sharp
enough for many applications.

PNT with “classical” error term: To be able to state more precise
versions of the PNT, the function x/ log x as approximation to π(x) is too
crude; a better approximation is provided by the “logarithmic integral”,

Li(x) =
∫ x

2

dt

log t
(x ≥ 2).

With Li(x) as main term in the approximation to π(x), the relative error
in the approximation can be shown to be much smaller than any negative
power of log x. Indeed, the analytic method introduced by Hadamard and
de la Vallée Poussin in their proof of the PNT yields the estimate

π(x) = Li(x)
(
1 +O

(
exp(−c

√
log x)

))
(x ≥ 3),

where c is a positive constant. This result, which is now more than 100 years
old, can be considered the “classical” version of the PNT with error term.

PNT with Vinogradov-Korobov error term: The only significant im-
provement in the error term for the PNT obtained during the past 100 years
is due to I.M. Vinogradov and A. Korobov, who improved the above classical
estimate to

π(x) = Li(x)
(
1 +Oε

(
exp(−(log x)3/5−ε

))
(x ≥ 3),

for any given ε > 0. The Vinogradov-Korobov result is some 50 years old,
but it still represents essentially the sharpest known form of the PNT.

PNT with conjectured error term: A widely believed conjecture is
that the “correct” relative error in the PNT should be about 1/

√
x. More

precisely, the conjecture states that

π(x) = Li(x)
(
1 +Oε

(
x−1/2+ε

))
(x ≥ 3)
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22 CHAPTER 2. ASYMPTOTIC NOTATIONS

holds for any given ε > 0. This conjecture is known to be equivalent to the
Riemann Hypothesis. It is interesting to compare the size of the (relative)
error term in this conjectured form of the PNT with that in the sharpest
known form of the PNT, i.e., the Vinogradov-Korobov estimate cited above:
To this end, note that

exp
(
−(log x)3/5−ε

)
≥ exp

(
−(log x)3/5

)
�ε x

−ε (x ≥ 3)

for any ε > 0. Thus, while the conjectured form of the PNT involves a
relative error of size Oα(x−α) for any fixed exponent α < 1/2, our present
knowledge does not even give such an estimate for some positive value of α.

Omega estimate: It is known that the relative error in the PNT cannot
be of order O(x−α) with an exponent α > 1/2. Using the “Omega” notation
introduced above, this can be expressed as follows: For any α > 1/2, we
have

π(x)− Li(x) = Ω
(
Li(x)x−α

)
(x→∞).

2.2 Working with the “oh” notations

Recall that an O-term in an arithmetic expression or an equation represents
a function that satisfies the inequality implicit in the definition of an O-
estimate. With this convention, expressions involving several O-terms have
a well-defined meaning. However, we have to be careful when working with
such terms as these are not ordinary arithmetic expressions and cannot be
manipulated in the same way. Fortunately, most arithmetic operations are
permissible with O-terms.

2.2.1 Rules for “big oh” and “small oh” estimates

We now list some basic rules for manipulating O-terms. For simplicity,
we state these only for functions of a real variable x and do not explicitly
indicate the range (which thus, by our convention, is of the form x ≥ x0).
However, the same rules hold in the more general context of functions of a
complex variable s and O-estimates valid in a general range s ∈ S.

• Constants in O-terms: If C is a positive constant, then the estimate
f(x) = O(Cg(x)) is equivalent to f(x) = O(g(x)). In particular, the
estimate f(x) = O(C) is equivalent to f(x) = O(1).
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• Transitivity: O-estimates are transitive, in the sense that if f(x) =
O(g(x)) and g(x) = O(h(x)), then f(x) = O(h(x)).

• Multiplication of O-terms: If fi(x) = O(gi(x)) for i = 1, 2, then
f1(x)f2(x) = O(g1(x)g2(x)).

• Pulling out factors: If f(x) = O(g(x)h(x)), then f(x) = g(x)O(h(x)).
This property allows us to factor out main terms from O-expressions.
For example, we can write the relation f(x) = x + O(x/ log x) as
f(x) = x(1 + O(1/ log x)). The latter relation is more natural as it
clearly shows the relative error in the approximation of f(x) by x.

• Summation of O-terms: If fi(x) = O(gi(x)) for i = 1, 2, . . . , n,
where the O-constants are independent of i, then

n∑
i=1

fi(x) = O

(
n∑

i=1

|gi(x)|

)
.

In other words, O’s can be pulled out of sums, provided the sum-
mands are replaced by their absolute values and the O-constants do
not depend on the summation index. The same holds for infinite se-
ries

∑∞
i=1 fi(x) in which each term satisfies an O-estimate of the above

type (again with an O-constant that is independent of the summation
index i).

• Integration of O-terms: If f(x) and g(x) are integrable on finite
intervals and satisfy f(x) = O(g(x)) for x ≥ x0, then∫ x

x0

f(y)dy = O

(∫ x

x0

|g(y)|dy
)

(x ≥ x0).

In other words, O’s can be pulled out of or integrals provided the
integrand is replaced by its absolute value.

Proofs. These rules are straightforward consequences of the definition of an
O-estimate. As an example, we give a proof for the last rule. Suppose f(x)
and g(x) are integrable on finite intervals and satisfy f(x) = O(g(x)) for
x ≥ x0. Thus there exists a constant c such that |f(x)| ≤ c|g(x)| holds for
all x ≥ x0. But then we have, for x ≥ x0,∣∣∣∣∫ x

x0

f(y)dy
∣∣∣∣ ≤ ∣∣∣∣∫ x

x0

|f(y)|dy
∣∣∣∣ ≤ c

∣∣∣∣∫ x

x0

|g(y)|dy
∣∣∣∣ .

Asymptotic Analysis 2.9.2009 Math 595, Fall 2009



24 CHAPTER 2. ASYMPTOTIC NOTATIONS

Hence ∫ x

x0

f(y)dy = O

(∫ x

x0

|g(y)|dy
)

(x ≥ x0),

as desired.

Rules for o-estimates. Some, but not all, of the above rules for O-
estimates carry over to o-estimates. For example, the first four rules also
hold for o-estimates. On the other hand, this is not the case for the last two
rules. For instance, if f(x) = e−x and g(x) = 1/x2, then f(x) = o(g(x))
as x → ∞. On the other hand, the integrals F (x) =

∫ x
1 f(x)dy and

G(x) =
∫ x
1 g(y) are equal to e−1− e−x and 1− 1/x, respectively, and satisfy

limx→∞ F (x)/G(x) = e−1, so the relation F (x) = o(G(x)) does not hold.
This example illustrates the difficulties and pitfalls that one may encounter
when trying to manipulate o-terms. To avoid these problems, it is advisable
to work with O-estimates rather than o-estimates, whenever possible.

2.2.2 Equations involving O-terms

In all examples we considered so far, all O-terms occurred on the right-hand
side of the equation. It is useful to further extend the usage of the O-notation
by allowing equations in which O-terms arise on both sides, provided one
takes care in properly interpreting such an equation. In particular, equa-
tions in which there are O-terms on both sides are not symmetric
and should be read left to right. For example, the relation

O(
√
x) = O(x) (x ≥ 1),

is to be understood in the sense that any function f(x) satisfying f(x) =
O(
√
x) for x ≥ 1 also satisfies f(x) = O(x) for x ≥ 1, a statement that is

obviously true. On the other hand, if we interchange the left- and right-hand
sides of the above equation, we get

O(x) = O(
√
x) (x ≥ 1),

which, when interpreted in the same way (i.e., read left to right), is patently
false.

For similarly obvious reasons, O-terms in equations cannot be cancelled;
after all, each O-term stands for a function satisfying the appropriate O-
estimate, and multiple instances of the same O-term (say, multiple terms
O(x)) in general it will represent different functions. For example, from
f(x) = log x+O(1/x) and g(x) = log x+O(1/x) we can only conclude that
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f(x) = g(x) +O(1/x), i.e., that f(x) and g(x) differ (at most) by a term of
order O(1/x), but not that f(x) and g(x) are equal.

2.2.3 Simplifying O-expressions

The following are some transformation rules which often allow one to dra-
matically simplify messy expressions involving O-terms.

1
1 +O(φ(x))

= 1 +O(φ(x)),

(1 +O(φ(x)))p = 1 +Op(φ(x)),
log(1 +O(φ(x))) = O(φ(x)),

exp(O(φ(x))) = 1 +O(φ(x)).

Table 2.3: Some common transformations of O-expressions, valid when
φ(x) → 0. Here p is any real or complex parameter.

These relations are to be interpreted from left to right as described in
the preceding subsection. For example, the first estimate means that any
function f(x) satisfying f(x) = 1/(1 + O(φ(x))) also satisfies f(x) = 1 +
O(φ(x)).

The above relations follow immediately from the following basic O-
estimates, which are easily proved (e.g., via the first-order Taylor formula):

1
1 + z

= 1 +O(|z|),

(1 + z)p = 1 +Op(|z|),
log(1 + z) = O(|z|),

ez = 1 +O(|z|),

Table 2.4: Some basic O-estimates, valid for z → 0, i.e., with a range |z| ≤ δ,
for a suitable constant δ > 0. Here p is any real or complex parameter.

2.2.4 Some asymptotic tricks

Factoring out dominant terms. A simple, but very effective technique
in asymptotic analysis is to identify a dominant term in an estimate and
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then factor out this term. This often facilitates subsequent estimates, and
it leads to a relation that clearly displays the relative error, which is usually
more informative than the absolute error.

Example 2.13. As a simple example illustrating this technique, we try to
determine the behavior of the function

f(x) =
√
x2 + 1.

as x→∞. We begin by noting that the term x2 is the dominant term under
the square root sign, so we expect f(x) to be close to

√
x2 = x. To make

this precise, we factor out the term x2, to get f(x) = x
√

1 + 1/x2. Since for
x ≥ 2 we have 1/x2 ≤ 1/4, we can estimate

√
1 + 1/x2 using the binomial

series expansion of (1+y)α, which is valid, for example, in |y| ≤ 1/2. Taking
only the first term gives

√
1 + 1/x2 = 1 +O(x−2), and hence

f(x) = x

(
1 +O

(
1
x2

))
= x+O

(
1
x

)
.

Taking more terms in the series would lead to correspondingly more precise
estimates for f(x).

Example 2.14. The technique of factoring out dominant can also be useful
when applied only to parts of an arithmetic expression, such as the argument
of a logarithm or the denominator of a fraction. For example, let

f(x) = log(log x+ log log x).

In the argument of the logarithm the term log x is dominant. We factor
out this term, use the functional equation of the logarithm along with the
expansion log(1 + y) = y +O(y2), which is valid in |y| ≤ 1/2. Setting

L = log x, L2 = log log x = logL,

we then get (for sufficiently large x)

f(x) = log(L+ L2) = log(L(1 + L2/L))
= L2 + log(1 + L2/L)

= L2 +
L2

L
+O

(
L2

2

L2

)
.

Asymptotic Analysis 2.9.2009 Math 595, Fall 2009



2.2. WORKING WITH THE “OH” NOTATIONS 27

Taking logarithms. Another sometimes very useful technique in asymp-
totic analysis is to take logarithms in order to transform products to sums
and exponentials to products.

Example 2.15. Consider the function

f(x) = (log x+ log log x)1/
√

log log x.

This is a rather fierce looking function, and its behavior as x → ∞ (for
example, the question whether it is bounded) is anything but obvious.

Taking logarithms, we can answer such questions. We have

log f(x) =
log(log x+ log log x)√

log log x
,

and we recognize the numerator as the expression estimated in the above
example. Using the notation and result of this example, we get

log f(x) =
1√
L2

(
L2 +

L2

L
+O

(
L2

2

L2

))
=
√
L2 +

√
L2

L
+O

(
L

3/2
2

L2

)
.

To get back to f(x), we exponentiate, using the estimate ez = 1 + O(|z|),
valid for |z| ≤ 1, say. Thus,

f(x) = exp
{√

log log x+
√

log log x
log x

}(
1 +O

(
(log log x)3/2

(log x)2

))
.

In particular, we now see that f(x) tends to infinity as x→∞.

Swapping main and error terms in convergent series and integrals.
A common problem in asymptotic analysis is that of estimating partial sums
S(x) =

∑
n≤x an of an infinite series

∑∞
n=1 an. While the sums S(x) can

rarely be evaluated in closed form, it is usually easy to get estimates for the
summands of the form an = O(φ(n)). Applying such an estimate directly to
the summands in S(x) would lead to an error term of size O(

∑
n≤x |φ(n)|),

which is at best O(1) (unless φ(n) = 0 for all n). However, if the series∑∞
n=1 |φ(n)| (and hence also

∑∞
n=1) converges, we can use the following trick

to obtain an estimate for S(x) with error term tending to zero as x → ∞.
Namely, we extend the range of summation in S(x) =

∑
n≤x an to infinity
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and write S(x) = S − R(x), where S =
∑∞

n=1 an and R(x) =
∑

n>x an.
Applying now the estimate an = O(φ(n)) to the tails R(x) of the series then
leads to an estimate with error term O(

∑
n>x |φ(n)|). The convergence of

the series
∑∞

n=1 |φ(n)| implies that this error term tends to zero, and usually
it is easy to obtain more precise estimates for this error term.

Example 2.16. Consider the sum

S(x) =
∑
≤x

(
1
n
− log

(
1 +

1
n

))
=
∑
n≤x

an.

The terms in this series satisfy an = O(1/n2) for all n, since x − x2/2 ≤
log(1 + x) ≤ x for 0 ≤ x ≤ 1 (which can be seen, for example, from the
fact that log(1 + x) = x − x2/2 + x3/3 − . . . is an alternating series with
decreasing terms). Substituting this estimate directly into the terms in S(x)
would only give the estimate

S(x) = O

∑
n≤x

1
n2

 = O(1).

However, the trick of extending the summation to infinity leads to an esti-
mate with error term O(1/x),

S(x) = S +O

(∑
n>x

1
n2

)
= S +O

(
1
x

)
,

where S =
∑∞

n=1(1/n− log(1 + 1/n)) is some (finite) constant.
Note that the method does not give a value for this constant. This is

an intrinsic limitation of the method, but in most cases the series simply do
not have an evaluation in “closed form” and trying to find such a evaluation
would be futile. One can, of course, estimate this constant numerically by
computing the partial sums of the series.

Extending the range of an O-estimate. According to our convention,
an asymptotic estimate for a function of x without an explicitly given range
is understood to hold for x ≥ x0 for a suitable x0. This is convenient as
many estimates (e.g., log log x = O(

√
log x)), do not hold, or do not make

sense, for small values of x, and the convention allows one to just ignore
those issues. However, there are applications in which it is desirable to have
an estimate involving a simple explicit range for x, such as x ≥ 1, instead
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of an unspecified range like x ≥ x0 with a “sufficiently large” x0. This can
often be accomplished in two steps as follows: First establish the desired
estimate for x ≥ x0, with a certain x0. Then use direct (and usually trivial)
arguments to show that the estimate also holds for 1 ≤ x ≤ x0.

Example 2.17. One form of the Prime Number Theorem states that

π(x) = Li(x) +O

(
x

(log x)2

)
.

Suppose we have established this estimate for x ≥ x0, with a suitable (and
possibly quite large) constant x0. To show that the same estimate in fact
holds for x ≥ 2, we argue as follows: Assume x0 ≥ 2 (otherwise there is
nothing to prove) and consider the range 2 ≤ x ≤ x0. In this range the
functions π(x) and Li(x) are bounded from above, so we have

|π(x)− Li(x)| ≤ c1 (2 ≤ x ≤ x0)

with some constant c1 depending on x0. (For example, since both π(x) and
Li(x) are nondecreasing functions, we could take c1 = π(x0) + Li(x0).) On
the other hand, in the same range the function in the error term is bounded
from below by a positive constant, i.e., we have

x

(log x)2
≥ c2 (2 ≤ x ≤ x0)

with some positive constant c2 (e.g., c2 = 2(log 2)−2). Hence we have

|π(x)− Li(x)| ≤ c
x

log x)2
(2 ≤ x ≤ x0)

with c = c1c
−1
2 , which proves the desired estimate for the range 2 ≤ x ≤ x0.
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2.3 Asymptotic series

In the next chapter, we will show that the logarithmic integral Li(x) =∫ x
2 (log t)−1dt satisfies

Li(x) =
x

log x

(
n−1∑
k=0

k!
(log x)k

+On

(
1

(log x)n

))
for any fixed positive integer n (and a range of the form x ≥ x0(n)). This
estimate is reminiscent of the approximation of an analytic function by the
partial sums of its power series. Indeed, setting z = (log x)−1 and ak = k!,
the expression in parentheses in the above estimate for Li(x) takes the form

n−1∑
k=0

akz
k +On(|z|n).

The latter expression is of the form of the usual n-term Taylor approximation
to an analytic function with power series

∑∞
k=0 akz

k. However, there is one
significant difference: With the above choice of coefficients ak, the series∑∞

k=0 akz
k diverges at all z 6= 0, and thus does not represent an analytic

function.
This is an example of a very common phenomenon in asymptotic analysis

that gives rise to the concept of an “asymptotic series”. Roughly speaking,
an asymptotic series for a given function is an infinite series that has the
same approximation properties as the Taylor series expansion of an analytic
function, but which does not (necessarily) converge. More formally, we
define an asymptotic series as follows:

Definition. Let f(x) be a function defined for all sufficiently large x and
let φ0(x), φ1(x), . . . be a sequence of functions satisfying

φn+1(x) = o(φn(x)) (x→∞)

for each n. A (formal) series of the form
∞∑

k=0

akφk(x)

is called an asymptotic series for a function f(x), as x→∞, if, for each
n, the truncation of this series at n approximates f(x) to within o(φn(x)),
i.e., if

f(x) =
n∑

k=0

akφk(x) + o(φn(x)) (x→∞).
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If this holds, we write1

f(x) ∼
∞∑

k=0

akφk(x) (x→∞).

Asymptotic series with respect to other limiting processes, such as x→ 0,
are defined analogously. Moreover, these definitions can be generalized to
functions of complex variables in an obvious manner.

The above definition is sufficiently general to apply to nearly all situa-
tions one encounters in practice. For example, the above-mentioned series
occurring in the expansion of Li(x) is an asymptotic series in this sense with
basis functions φk(x) = (log x)−k.

Any power series
∑∞

k=0 akz
k that has positive radius of convergence is

an asymptotic series, as z → 0, for the function it represents within the disk
of convergence, with φk(z) = zk as the basis functions.

While asymptotic series share many properties with ordinary power se-
ries, there are also some notable differences. The most glaring difference is,
of course, the fact that, in general, an asymptotic series does not converge;
it “represents” the function only in an asymptotic sense. However, there are
other differences as well. In particular, a function is not uniquely determined
by its asymptotic series expansion.

Example 2.18. If f(x) has the asymptotic series expansion

f(x) ∼
∞∑

k=0

akx
−k (x→∞),

then any function g(x) satisfying g(x) = f(x) + On(x−n) for every fixed
positive integer n (e.g., g(x) = f(x) + e−x) has the same asymptotic series
expansion. This follows immediately from the definition of an asymptotic
series.

1The notation “∼” here is the same as that used for asymptotic equivalence (as in
“f(x) ∼ g(x)”), though it has a very different meaning. The usage of the symbol “∼” in
two different ways is somewhat unfortunate, but is now rather standard, and alternative
notations (such as using the symbol “≈” instead of “∼” in the context of asymptotic series)
have their own drawbacks. In practice, the intended meaning is usually clear from the
context. Since most of the time we will be dealing with the symbol “∼” in the asymptotic
equivalence sense, we make the convention that, unless otherwise specified, the symbol “∼”
is to be interpreted in the sense of an asymptotic equivalence.
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