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Set theory, and set operations

Sayan Mukherjee

Motivation

It goes without saying that a Bayesian statistician should know probability theory in depth to model.

Measure theory is not needed unless we discuss the probability of two types of events: (1) infinitely
repeated operations such as infinite sequences of coin tosses (2) infinitely fine operations such as draw-
ing uniformly from the unit interval. In both these cases we have to worry about infinite events so issues
of countability, limits, and measure occur. Measure theoretic probability is needed to understand when
and how our intuition about discrete events carries over to both these cases. It also gives us a common
framework for both of the above events.

Why need for care ?

One example is order of integration which for Bayesian statistics is very important since we condition
and marginalize extensively

R = {0 ≤ x ≤ 2, 0 ≤ y ≤ 1}

f(x, y) =
xy(x2 − y2)
(x2 + y2)3

, for(x, y) 6= (0, 0)

? =
∫ ∫

R

f(x, y)dxdy

If we first integrate y and then x: 1
5 .

If we first integrate x and then y: − 1
20 .

Another example is the Dirichlet process. The following is a simple way of constructing a Dirichlet
process:

1. Draw X1, ..., XN
iid∼ Poi(λ)

2. Normalize Zi = XiP
i Xi

.

What is the distribution underlying this random process or algorithm ? Is there a sense of convergence
of the outputs of this algorithm ?

Important ideas

Law of large numbers: Given X1, ..., Xn of iid random variables we state that

1
n

n∑
i=1

Xi → µ,

what does convergence (→) mean ?

Central limit theorem:

Zn =
1
n

∑n
i=1 Xi − µ

σ
→ No(0, 1),

what does convergence (→) mean ? What is convergence in distribution ?

Law of the iterated logarithm:

lim sup
n

(
∑n

i=1 Xi − nµ)√
2nσ2 log log n

= 1,

what is lim sup ?

Notation

Ω: set of possible outcomes of some experiment.
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ω ∈ Ω: one of the outcomes of the experiment.

A ⊆ Ω A is a subset of Ω; A is true if ω ∈ A.

2Ω: All subsets of Ω called th power set P(Ω)

Operations

Complement; Ac = not A = {w : w /∈ A}
Union over arbitrary index set⋃

α

Aα = {w : w ∈ Aα for at least one α},

A ∪B = A or B (or perhaps both).

Intersection over arbitrary index set⋂
α

Aα = {w : w ∈ Aα for all α},

A ∩B = AB = both A and B.

Set difference; symmetric difference

A \B = A ∩Bc

A4B = (A ∩Bc) ∪ (Ac ∩B).

Relations

Containment: A ⊂ B : ω ∈ A ⇒ ω ∈ B

Disjoint: A ∩B = ∅
Equality: A = B : ω ∈ A iff ω ∈ B

De Morgan’s Law: (⋃
α

Aα

)c

=
⋂
α

(Ac
α)(⋂

α

Aα

)c

=
⋃
α

(Ac
α)

Montone sequence of sets:
An ↑ A means that A1 ⊂ A2 ⊂ .... and limn→∞An =

⋃∞
n=1 An.

An ↗ A means that A1 ⊆ A2 ⊆ .... and limn→∞An =
⋃∞

n=1 An.
An ↓ A means that A1 ⊃ A2 ⊃ .... and limn→∞An =

⋂∞
n=1 An.

An ↘ A means that A1 ⊇ A2 ⊇ .... and limn→∞An =
⋂∞

n=1 An.

Limits of sets

Infinitely often (io): lim supn→∞An ≡
⋂

m≥1

⋃
n≥m An. Also called infinitely often as An occurs

infinitely often as n →∞. The event lim supAn occurs if and only if infinitely many of the An occur.

Almost all (aa): lim infn→∞An ≡
⋃

m≥1

⋂
n≥m An. Also called almost all since An occurs with at

most finitely many exceptions.

{lim inf An} ⊆ {lim supAn}

An = {n, n + 1, ...} lim supAn = lim inf An = ∅
An = {1, ..., n} lim supAn = lim inf An = N

A2n = {2, 4, 6, ...} lim supAn = N, lim inf An = ∅

Convergence: An → A ⇒ lim inf An = lim supAn = A.

Indicator functions

Indicator functions allow for Boolean algebra to be turned into ordinary algebra.
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IA(x) =
{

1 if x ∈ A
0 otherwise.

The operations of unions and intersections correspond to pointwise maxima (∨) or minima (∧)

I∪Ai(x) =
∨
i

IAi(x) I∩Ai(x) =
∧
i

IAi(x).

IAc(x) = 1− IA(x)
IA\B(x) = max(0, IA(x)− IB(x))

IA4B(x) = |IA(x)− IB(x)|.

(
n⋂

i=1

Ai

)
4

(
n⋂

i=1

Bi

)
⊆

n⋃
i=1

(Ai4Bi) ⇒

∣∣∣∣∣∏
i

IAi −
∏

i

IBi

∣∣∣∣∣ ≤ max
i
|IAi − IBi |.

Revisit lim sup: lim sup of a set is really much like lim sup of a function

Ilim supn An
= lim sup

n
IAn

.

lim sup
n→∞

≡ lim
n→∞

(
sup
m≥n

xm

)
lim inf
n→∞

≡ lim
n→∞

(
inf

m≥n
xm

)
lim inf
n→∞

xn ≤ lim sup
n→∞

xn.

xn → x ⇒ lim infn→∞ xn = lim supn→∞ xn = x.

Some sets are bigger than others

The cardinality of a set |Ω| is the number of elements in the set.

Theorem 0.0.1 (Cantor) For any set Ω and power set P(Ω), |Ω| < |P(Ω)|.

Example 0.0.1 Ω = N – an infinite but countable set
P(Ω) – uncountable
R – uncountable
Q – the rationals are countable.

Fields and algebras

Definition 0.0.1 (algebra) Let F be a collection of subsets of Ω. F is called a field (algebra) if Ω ∈ F and F is
closed under complementation and finite union:

1. (i) Ω ∈ F

2. (ii) A ∈ F ⇒ Ac ∈ F

3. (iii) A1, ..., An ∈ F ⇒
⋃n

j=1 Aj ∈ F .

We could replace closure under finite unions with closure under finite intersections (due to de Mor-
gan’s law)

A1, ..., An ∈ F ⇒
n⋂

j=1

Aj ∈ F .

Definition 0.0.2 (σ-algebra) Let F be a collection of subsets of Ω. F is called a field (algebra) if Ω ∈ F and F
is closed under complementation and countable unions:
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1. (i) Ω ∈ F

2. (ii) A ∈ F ⇒ Ac ∈ F

3. (iii) A1, ..., An ∈ F ⇒
⋃n

j=1 Aj ∈ F

4. (iv) A1, ..., An, ... ∈ F ⇒
⋃∞

j=1 Aj ∈ F

An algebra is a σ-algebra but not vice versa.

Example 0.0.2
Ω = R, An = (a, b].

F is the collection of all finite disjoint unions of (a, b].
F is an algebra.
F is not a σ-algebra.

∞⋃
n=1

(0, n−1] = (0, 1).

Definition 0.0.3 (Borel set) Let Ω = R and B0 be the field of right-semiclosed intervals. Then σ(B0) is the Borel
σ-algebra of R.

This idea can be extended to metric spaces such as Rd or the space of continuous functions.

Probability spaces

The idea of a probability space is to assign a measure or nonnegative number to subsets of of Ω.

Definition 0.0.4 (Probability space) A probability space is a triple (Ω,F ,P) where P is a function (probability
measure) P : F → [0, 1] such that

1. (i) P(A) ≥ 0, ∀A ∈ F

2. ii P(Ω) = 1

3. iii if Aj ∈ F are disjoint

P

 ∞⋃
j=1

Aj

 =
∞∑

j=1

P(Aj).

Properties of probability spaces

1. (i) monotonicity: if A ⊂ B then P(A) < P(B)

2. (ii) σ-subadditive: for An, n ≥ 1

P

( ∞⋃
n=1

An

)
≤

∞∑
n=1

P(An)

3. (iii) continuity:
if An ↑ A and An ∈ F then P(An) ↑ P(A)
if An ↓ A and An ∈ F then P(An) ↓ P(A)

4. (iv) inclusion-exclusion: for A1, ..., An (related to Euler characteristic in topology)

P

 n⋃
j=1

Aj

 =
n∑

j=1

P(Aj)−
∑

1≤i<j≤n

P(AiAj) +
∑

1≤i<j<k≤n

P(AiAjAk)− · · · (−1)n+1P(A1 · · ·An)

Example 0.0.3 Two events that are disjoint but the sum of the probability of the union is equal to the probability
of the sum. A = (0, .5] and B = [.5, 1) with P(A) = .5 and P(B) = .5. P(A ∪ B) = 1 = P(A) + P(B) and
A ∩B = {.5} 6= ∅.
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Lemma 0.0.1 (Fatou) For An ∈ F for n ≥ 1

1. (i)

P(lim inf An) ≤ lim inf P(An)
≤ lim supP(An) ≤ P(lim sup An)

2. (ii) If An → A then P(An) → P(A).

For a probability measure µ and a sequence of functions fn (think fn = IAn
) (i) is sometimes written

with functional notation ∫
lim inf fndµ ≤ lim inf

∫
fndµ.

A typical use of Fatous lemma is the following. Suppose we have fn → f and supn≥1 |fn| ≤ K < ∞.
Then |fn| → |f |, and by Fatou’s lemma

∫
|f | ≤ K. (What does the above have to do with any problem

of inference ?)

Example 0.0.4 Discrete probability measure on the real numbers whose support is the real line.

The support of a discrete probability mesure is not necessarily just the set of points at which it places mass,
two points really really close may not be individually distinguished. Let r1, r2, .. be an enumeration of the rational
numbers (how would one enumerate them ?) and let P place mass 1/2n at rn. P is discrete but has support on
the line since for any x and any ε > 0

P({x− ε, x + ε}) > 0,

since the interval contains at leasnt one rational number.

Does this example have any uses in non-parametric statistical models ?

Definition 0.0.5 (Distribution function) A function F : R → [0, 1] is a probability distribution function (df)
with

F (x) = P((−∞, x]), x ∈ R,

if F

1. is continuous

2. is monotone and non-decreasing

3. has limits at ±∞

F (∞) := lim
x↑∞

F (x) = 1

F (−∞) := lim
x↓∞

F (x) = 0.

Example 0.0.5 Distributions that are neither discrete nor continuous.

1. Define a distribution F that is χ-squared with two degrees of freedom.
1. Observe K from a Poisson distribution with mean λ.
2. Sum K observations from F and report this value, if K = 0 report 0.

2. Define a distribution F that is standard normal.
1. Observe X from a Bernoulli distribution with paramater p.
2. If X = 0 report 0 otherwise report a draw from F .

Are these distributions interesting priors ?

Dynkin’s π − λ theorem

We will soon need to define probability measures on infinite and possible uncountable sets, like the
power set of the naturals. This is hard. It is easier to define the measure on a much smaller collection of
the power set and state consistency conditions that allow us to extend the measure to the the power set.
This is what Dynkin’s π − λ theorem was designed to do.



6

Definition 0.0.6 (π-system) Given a set Ω a π system is a collection of subsets P that are closed under finite
intersections.
1) P is non-empty; 2) A ∩B ∈ P whenever A, B ∈ P .

Definition 0.0.7 (λ-system) Given a set Ω a λ system is a collection of subsets L that contains Ω and is closed
under complementation and disjoint countable unions.
1) Ω ∈ L ; 2) A ∈ L ⇒ Ac ∈ L ; 3) An ∈ L , n ≥ 1 with Ai ∩Aj = ∅ ∀i 6= j ⇒

⋃∞
n=1 An ∈ L .

Definition 0.0.8 (σ-algebra) Let F be a collection of subsets of Ω. F is called a field (algebra) if Ω ∈ F and F
is closed under complementation and countable unions,
1) Ω ∈ F ; 2) A ∈ F ⇒ Ac ∈ F ; 3) A1, ..., An ∈ F ⇒

⋃n
j=1 Aj ∈ F ; 4) A1, ..., An, ... ∈ F ⇒

⋃∞
j=1 Aj ∈ F .

A σ-algebra is a π system.
A σ-algebra is a λ system but a λ system need not be a σ algebra, a λ system is a weaker system.

Example 0.0.6 Ω = {a, b, c, d} and L = {Ω, ∅, {a, b}, {b, c}, {c, d}, {a, d}, {b, d}, {a, c}} L is closed under
disjoint unions but not unions.

However:

Lemma 0.0.2 A class that is both a π system and a λ system is a σ-algebra.

Next lecture we will start constructing probability measures on infinite sets and we will need to push
the idea of extension of measure. In this the following theorem is central.

Theorem 0.0.2 (Dynkin) If P is a π system and L is a λ system, then P ⊂ L implies σ(P) ⊂ L .


