Sources of Variation

(1)	∃ Variation <u>between group means</u>	SS_B (Between)
	Attibuted to treatment(s) (Treatment variation)	SS_{T} (Treatment)
	(Factor of interest)	SS _{model}
	Regression: $\Sigma(\hat{y} - \overline{y})^2$	TSS (tmt SS)
	Anova: $\Sigma n_i (\overline{x}_i - \overline{x})^2$; $df = (k-1)$	
	SSB=SST-SSE	
(2)	∃ Variation <u>within</u> any group	SS_W (within)
()	"Within group" variation	SS _{err} (error)
	Unexplained random error	SS _{resid}
	("Residual" variance, or "error" variance)	RSS (residual SS)
	Regression: $\Sigma(y - \hat{y})^2$	
	Anova: $\Sigma(x_i - \overline{x}_i)^2$; $df = (N-1) - (k-1) = N - k$	
$\langle \mathbf{O} \rangle$		$CC \qquad (total)$
(3)	Total variation	SS_{TOT} (total)
	Lump all observations together, ignoring factors of interest. Deviation from the grand mean	
	Deviation nom the grant mean	
	$\Sigma(x_i - \overline{x})^2$; $df = (N-1)$	
	$\frac{df \cdot \operatorname{var}(x_i)}{df \cdot \operatorname{var}(x_i)}$	
	Or calculate from SST=SSB+SSW, or SST=SS _{tmt} + SS _{error}	
	Under H ₀ , MS _{tmt} \approx MS _{err} (MSB == MSW) and both estima σ_e^2	
	If H_0 false, $MS_{tmt} > MS_{err}$.	
	The "residual standard error" is the "root MSE" (i.e., square root of the mean square error)	
	R^2 is the variation explained by the model = SS_{tmt}/SS_{err} .	